monitor dining_controller; : :
cond ForkReady([5]; /* condition variable for synchronization */

boolean fork{5] = {true}; /* availability status of each fork */
void get_forks(int pid) /* pid is the philosopher 1d number ¥/
{ _
int left = pid;
int right = (pid++) % 3;
f*grant the left fork*/
if ('fork(left) ,
cwait(ForkReadylleft]); /¥ queue on condition variable */
fork(left) = false;
f*grant the right fork®/
if (!fork(right)
cwait(ForkReady{right]); /* queue on condition variable */
fork(right) = false:

o

" yoid release_forks(int pid)
n
< int left = pid;

int right = (pid++) %.5

f¥release the left fork*/

_ 1f (empty(ForkReady[left]) ~ /*no one is waiting for this fork */
fork(left) = true; _
“else /¢ awaken aprocess waiting on this fork */

cs1gna1(ForkReady[left])

/*release the right fork*/

Af (empty(ForkReady[nght]) /*no one is waiting for this fork */

fork(nght) = true; : .
R /* awaken a process waiting on this fork */

vold phﬂosoph_; (k= @sopher clients */

n whlle (true) 3
get_‘fo.rks(k); : ' /* client requests twoforks via monitor ¥
<eaf spaghetti>; - T e
release_forks(k); /* client releases forks:via the monitor */

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

[EST-and— SET

A process would test tha Condition code using
thf- TS ,‘WC&.OPI bé‘fpre enm;‘nj a Crfﬁc'cc.ﬁ r{ﬂ"on-

D rawbacks N0, when man)/ | Pro(osses are wa.itc‘olj
to enter &« critical l’égion, Sturvalion
Could Occur(unless FcFS Polic/ %1 enférmo()

@ wvai tc":j Pro eSS@S remain n u-hfhdu-ct-‘ug
— Consiemin ait loops— o |
Fesource = consuming tait (oops, buS/Wa&(
WAL T- and - SIGNVAL
TWP hew OFera-ﬁOhs L which are lnu't"aal[g exclusive, are
infroduced . WALT and SIGNAL.
WA IT is Qm-vm4 when €ha proass encowdRers o
bu.fa, Conditior code
SIGNAL is activated whan & f»-ouzss Quits the cntical
rejfﬁ'h and The Condition code is set €o "f*e.t—,,
’Fhe whole Frocedure 'S f)‘m‘shea(5/ /3’0(6‘3‘
 Scheduler o |

? Se ma.Ph ore

The semaphore used
by railroads indicates
whether the train
can proceed. If it is
rawsed the train can
continue, but when
it’s lowered an
oncoming train

is expected.

(a) Stop (b} Ali Clear
DIJ‘ kstra's P.V operations:
S — o Semaphore variable,

Se—s+4
- If s>o then sSe—S-1

If s=o then Wait

Trac{itiona.” , P,V oPerwti‘ons are used ©o en"ércp_
Mutual Exdusion . So S 's uselly Called Mmutex.

<
(oY
v

v

O
™S
A
L4

Actions . - ‘ Results
The sequen tates S ..

}eor fouc: ;i;;” o5 State Calling Runnmg. in Blocked Value
calling P and V number process Operation critical region on s of s

operations on the 0 ' 1

binary semaphore s. 1 P1 P () P1 0

(Note: the value of 9 P1 V (s) 1

the semaphore before 3 P2 P (s) P2 0

the operation is on 4 . PS% P (s) P2 P3 0

- the line preceding the 5 " p4a P (s) _P2 P3, P4 0

current value is on " P3 P4 0

the same lne.) 8 PS V (s) N P4 0

9 P4 Vi) 1

P/’DW and. COV‘S'LLM*S

(a) Producer ———l

{b) Producer ———>

{(c) Producer —

Buff

Consumer b uﬂ?—r f“"u-

T — Consumer b wﬂ'@l’ h“"fﬁ‘ W

ﬂBjﬁerI—"—' Consumer b“#m' emfﬁa'

77!2 task Can be i‘m{;[pau.ed-ea(Q:n‘nj 2 Semfhores_-_

1 Fuld —

number of full positions in the buffer

2, E?‘-Ptj —— number | of e”‘?fj -P"sftions 'n the buffer

The 3rd Sem.FhorQ will ensure mutual exclusion,

3 Mutex

Here are the definitions of the producer and consumer processes:

PRODUCER CONSUMER

produce data P (full)

P (empty) - P (mutex)

P (mutex) read data from buffer
. write data into buffer .. V (mutex)

~V (mutex)
V (full)

V (empty)

consume data

Here are the definitions of the variables and functions used in the following

algorithm:

Given:
on:
V (x): .
P (x):

Full, Empty, Mutex defined as semaphores
maximum number of positions in the buffer
x = x+ 1 (xis any variable defined as a semaphore)

fx>0thenx=x-1

COBEGIN and COEND are delimiters used to indicate sections of code to be done
. concurrently '
mutex = 1 means the process is allowed to enter critical region

And here is the algorithm that implements the interaction between producer
and consumer:

empty:= n
 full:= 0
mutex:= 1
COBEGIN ‘
repeat until no more data PRODUCER
repeat until buffer is empty CONSUMER
COEND

gxample.
h=3 [{ |

—empry =3
— fudh” =0

— muwlex =1
PRODUCER, |/ Cfuld) full & 1
(] protuce datn

Consumer : [P Sfuil) : fulde—o
{/ Consume data

Consumer : P Cfutd): weit

/[Consumer wants Ce Consume datw, bk hes to wast
// as there is neothing M{g{aue |

Eeaolers and W”ft@f’S

éxm-ftez a,rrlme. reservafion System — Mmam Y
" readers, afeu writers, |
Solut-ion | . Qeaalers are kart wai'&'r\uj onfj z‘f
a writer is mod"fymj the data
Pn:blem 7

éﬂ/rim Staryation -
Solution2 . One a writer arrives, readets thot are active

ore allowed to fnish pmwg&j bt alL
add:t«anaﬁ réaders MPuI‘on hold,

Problem ?

oy Stmaj:nbn

S‘O(mon 3. —when a writer ¢s fnished , 2l readers who
are waiting ,or “on hold " are allowed €o lfaaa(

— Whes That group of readm 's finished , the
wriwr whe ts “on hold” Can b29in. and any new
reeders must wait untdl -Ha.n. wWn'ter es-'ﬁm.ézed

The State 1. Number of readers who have requested a resource and haven’t yet released
' ' it (R1=0); :
the | 2. Number of readers who are using a resource and haven’t yet released it
stemcan | = (R2=0); | S
Z ‘ . 7 3. Number of writers who have requested a resource and haven’t yet released it
summanzed(* (W1=0);

b 4.0«.“‘ 4. Number of writers who are using a resource and haven’t yet released it
_y - (W2=0). -

initieliged

teo

