A etailed. Solution to tha Readars
amo( Wi teyrsé: Pbb(@m |

f

- A/gon‘thm Cand Solution)

—

When o writer proass requeses acass
+to the shargd ressura, any .ru.b:efq.y..t
veadar process mus € wast ﬁ:‘r Cha Wh'teyr
to gain accss b tha shored resouwrce
oncl Than release (€. |

—— Ths methed sell allows a stream
of readers to enter the cneical
V23:‘0n wed a writer arrives,

—  lwriter Than Takas priority over
all wa:efwat readzrs except €hase
&,Creaﬂ(g, accessing Cha shared yesouwne



WRITERC)
!

(hile € TRUE)D

'l'f CWz == i.) [ st writar blocks
PcreadBlock) ;, I & resders
\/ Cmutexz) |

Pcurice Block) ; ) Then ie blocks
dctess resource ; OCher wn'ters

\/ ¢ writ Block ) ;

P Cmutacz) ;
Na=Wz—-1,
I\JC ( WJ_-—'-':O) // If né oCher writr |

VCKMB’O*) /A Is “’f‘:j the resowrce
|| Thew allow renderr-ae‘_

; V Cmctexz)/s /| access tha resour 2



DEADERC )
1 Lhila CTRUE)D

PC wn‘tependfv) ; // On/y the current- [s¢ ;nelJer
gl [ Can reset (M"rézpendvua_

(readBlock ) ; o It then blocks other readers
| ¢ P Cmutext) ;

I?z._ z'f'i . |
1 C(R: == I firse reader also blocks

P Cwn te.B/od:) /| other writers
N Cmetesd).

%vc #’MB/DCI:) | [ Now other reaé(nrs = mw(
[ Lo “Pendv‘a) [ o5 wntePendg =4 "’3‘“"
a@@m resowre ;

==0 ) // ljc no Jf/"«-@t’ readers are

Vémceb"/uk) | ST resding, than allow
i ‘ N /)pf;:béz wrs €in a_ -




A/ﬂoh'fém

wte B2 =0, Wa2=0;
femfhare mutexd = 4, mulex2= 1,
S.G.Mmphore readBlock = 4,

| write Pendsy =1,

| wrteBlock = 1,

CoBEGIN .

rz)oent until no more datn [CEADERC ). |

repeat unty( no meore dete WRITERC),

CoEND



[ | whon
C . Af}Z‘ t——) oaré’)

,—;)r(,

C by |
CACM, 97 ¢

' 6.3 Readers and Writers
As a more significant example, we take 2 problem
which arises in on-line real-time applications such as
airspace control. Suppose that each aircraft is repre-
‘“*—_‘sented by a récord, and that this record is kept up to
‘date by a number of “writer” processes and accessed by
a number of “reader” processes. Any number of
“reader” processes may simultaneously access the same
. Tecord, but obviously any process which is updating
(wntmg) the individual components of the record must
have exclusive access to it, or chaos will ensue. Thus we
need a class of monitors; an instance of this class local
to each individual aircraft record will enforce the re-
quired discipline for that record. If there are many air-
craft, there is a strong motivation for minimizing local
data of the monitor; and if each read or write operation
is brief, we should also minimize the time taken by each -

monitor entry

When many readers are mterested ina smgle aircraft
” record, there is a danger that a writer will be indefinitely
prevented from keeping that record up to date. We
therefore decide that a new reader should not be per-
mitted to start if there is a writer waiting. Similarly, to
. avdid the danger of indefinite exclusion of readers, all
redders waiting at the end of a write should have priority
over the next writer. Note that this is a very different
scheduling rule from that propounded in {4}, and does
not seem to require such subtlety in implementation.
Nevertheless, it may be more suited to this kind of
application, where it is better to read stale mformatlon

than to wait indefinitely!

N,

~,

The monitor obviously requrres four local proce-
=" dures:

startread
endread
starmwrite
endwrite

entered by reader who wishes to read.
entered by reader who has finished rmdmg
entered by writer who wishes to write.
entered by writer wao has finished wntrng

We need to keep a count of the number of users who are
reading, so that the last reader to finish will know this
fact:

readercount:integer

~ We also need a Boolean to indicate that someone is
. actually writing:

busy: Boolean;

=

We introduce separate conditions for readers and

" 556

writers to wait on:
OKtoread, OKtowrite: condition;
The following annotation is relevant:

OKtoread = — busy
OKtowrite = — busy & readercount = 0 .
invariant: busy => readercount =

class readers and writers: monitor
begin readercount:integer; '
busy: Boolean;
OKtoread, OKrowrite: candman,
- procedure startread; :
begin if busy \/ OKtawme queue then OKroread . wait;
readercount := readercount + 1;
OKtoread. gignal;
comment Once one reader canstart they all can;
‘end .rtan'read'
- procedure endread; o
begin readercount := readercoun.r -1
. if readercount = 0 then Omeme .rlgna]
end endread;
g pmeedm—e sran'wnre;.
i readercount < 0 v bluy then OKtowme wait
5 busy = true ... L

PRt

D

gq ;.s '-:' .
i.f OKlaread queue then OKroread. s:gna!
Ty ... else’ OKlowrzre.sngnaI
\ aﬂendwrire, B
i reademoum =0; ...
Busy 1= false '
end readers and writers;

I am grateful to Dave Gorman for assrstmg m the
discovery of thls solunon.

7. Conclysion =~ - -~

This péper suggests that an appropriate structure for
a module of an operating.system, which schedules re-
=sources for parailel user processes, is very similar to"tﬁa
of a data representation used by a sequential program.
However, in the case of monitors, the bodies of ihe
procedures must be protected against Te-entruiic i:-yﬁ
bemg implemented as critical regions. The textual group-
ing of critical regions together with the data which they
update seems much superior to critical regions scattered
through the user program, as described in [7, 12]. It also
corresponds to the traditional practi :e of the writers of ~
opérating system supervisors. It can be recc: mended
~without reservation.
- However, it is much more difficult to be confident g
about the condition concept as a synchronizing pnml ;
tive. The synchronizing facility which is easiest to use 15
probably the conditional waiz [2, 12]: '

wait(B};

where B is a general Boolean expression (it causes the
given process to wait until B becomes true); but this may .
be too mcfﬁcrcnt for general use in operating systems,

Cammuniratinns

of

Netohor 1074
Volume 17

[T




