CSCI 460—Operating Systems

Lecture 3
Memory Management—memory hierarchy

Textbook: Operating Systems
by William Stallings



1. The Memory Hierarchy

e In the more recent decades, computer memory is not afranged
in a linear fashion.

e The design constraints on memory rest on:
- 1. Capacity.
— 2. Speed (access time).

— 3. Cost (unit cost).
e Their relationship

— Faster Speed (access time) — Greater Cost.
— Greater Capacity — Smaller Cost.

— From these two, we have: Greater Capacity — Slower
Speed.

— So you can’t have Greater Capacity, Small Cost and Fast
Speed at the same time!







2. Memory Hierarchy (cont.)

e If we look from top to bottom at Figure 1.14 (in Stallings), the
following can be observed.

— Cost is decreasing.

— Memory capacity is increasing.

— Speed is slowing down.

— Frequency of access of memory by processor is decreasing.

e Why?

— Locality of Reference.

— Locality of reference is not only valid in OS. It is the basis for
compiler optimization, computer architecture and database
management (and recently in the Internet browsing).

e Thanks to the semiconductor industry (for building different
kinds of storage media for us)!
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Figure .15 Performance of a Simple Two-Level Memory
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3. Cache Memory

e Motivation.

— On all instruction cycles, the processor access memory at
least once: to fetch the instruction, to fetch operands and/or
store the results. Think of executing an assemble instruc-
tion: ADD C, A, B(C«+— A+ B).

— In general memory access speed cannot match the processor
speed. So it makes sense to exploit the principle of locality
by building a small, fast memory between the processor and
main Mmemory. |

e This fast memory, almost invisible from OS, is cache.

e The objective of cache memory is to speed up the memory so
that it is almost as fast as the speed of processor and at the
same time it provides a memory size which is large enough (for
most jobs).

e Let’s us look at the structure of a cache/memory systemn.
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4. Cache Memory (cont.)

e Let’s look at Figure 1.18. What problems can you see with this
example? |

e Cache design is beyond this course. But the following issues
must be considered in general.

— 1. Cache size.

— 2. Block size. Suitable size of block will ensure that the hit
ratio is high.

— 3. Mapping function. When a block is read into the cache,
the Ist question is to decide where we should put it. (2
hints: (A) When one block is read in, another one should
be moved out, so we should minimize the probability that a
moved-out block will be referenced again in the near future.
(B) The more flexible the mapping function, the more time
it takes to search the cache to find a block.)

— 4. The replacement policy. (Can you think of some?)

— 5. Write policy. If the contents of a block in the cache
are changed, we should write it back to the main memory

before replacing it. So when should this write operation
takes place? |
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Performance Analysis of Two-level Memory

o Assume that we have two levels of memory, M;, My (M; is
smaller, but faster.) Let’s first look at the average system access

time 7.

T,=HxT;+(1-H)X (T +T)
=T, +(Q1-H)XT, (1.1)

T. = average (system) access time

T, = access time, of M1 (e.g., cache, disk cache)

T, = access time of M2 (e.g., main memory, disk)

H = hit ratio (fraction of time reference is found in M1)

T 5
o Let 7 be the access efficiency, we have

(e 1
- s
T, 1+(1-H)F

We want this ratio to be close to 1.

M'
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Figure 1.23  Access Efficiency as a Function of Hit Ratio (r = T,/T})



e Let’s now look at the average cost per bit for the two-level
memory, C,.

_CS + G5,

(1.2
’ 33+ 8, (1-2)

C, = average cost per bit for the combined two-level memory
C, = average cost per bit of upper-level memory M1

C, = average cost per bit of lower-level memory M2

S; = size of M1

S, = size of M2

e To make C; roughly the same as Cy. We should make S; <<
Sy. (C1 >> C5 due to the hardware cost, which we can do
very little to change it.) Notice that
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Figure 1.22  Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory
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