CSCI 460—Operating Systems

Lecture 3
Memory Management—memory hierarchy

Textbook: Operating Systems
by William Stallings



1. The Memory Hierarchy

e In the more recent decades, computer memory is not afranged
in a linear fashion.

e The design constraints on memory rest on:
- 1. Capacity.
— 2. Speed (access time).

— 3. Cost (unit cost).
e Their relationship

— Faster Speed (access time) — Greater Cost.
— Greater Capacity — Smaller Cost.

— From these two, we have: Greater Capacity — Slower
Speed.

— So you can’t have Greater Capacity, Small Cost and Fast
Speed at the same time!







2. Memory Hierarchy (cont.)

e If we look from top to bottom at Figure 1.14 (in Stallings), the
following can be observed.

— Cost is decreasing.

— Memory capacity is increasing.

— Speed is slowing down.

— Frequency of access of memory by processor is decreasing.

e Why?

— Locality of Reference.

— Locality of reference is not only valid in OS. It is the basis for
compiler optimization, computer architecture and database
management (and recently in the Internet browsing).

e Thanks to the semiconductor industry (for building different
kinds of storage media for us)!



| level 1 memorg_ . |ooo words
| 0.1 Us access time

level 2 memory |
3 ' (0o, 000 words
{us access <ime

T,+T,

‘Average access time

0 1
Fraction of accesses involving only Level 1 (Hit ratio)

Figure .15 Performance of a Simple Two-Level Memory



} Word Transfer

Figure 1.16 Cache and Main Memory




Memory

address
0f .
1 : ;
2 [y Block
3 (K words)
Block
|
Word
Length

(a) Main memory

Figure 1.17 Cache/Main-Memory Structure

Slot
Number Tag Block

Block Length
(K Words)

m—

(b) Cache

n

| 2
(K M=T
it of Llocks

' wmain mamo



3. Cache Memory

e Motivation.

— On all instruction cycles, the processor access memory at
least once: to fetch the instruction, to fetch operands and/or
store the results. Think of executing an assemble instruc-
tion: ADD C, A, B(C«+— A+ B).

— In general memory access speed cannot match the processor
speed. So it makes sense to exploit the principle of locality
by building a small, fast memory between the processor and
main Mmemory. |

e This fast memory, almost invisible from OS, is cache.

e The objective of cache memory is to speed up the memory so
that it is almost as fast as the speed of processor and at the
same time it provides a memory size which is large enough (for
most jobs).

e Let’s us look at the structure of a cache/memory systemn.



3

RA — Read

Receive address
RA from CPU

1s block No

Address

Access main

containing RA
in cache?

Fetch RA word
and deliver
to CPU

memory for block

containing RA

Allocate cache
slot for main

. memory block

!

Perform in parallel

Load main

memory block
into cache slot

' . Deliver RA word
to CPU '

Figure 118 Cache Read Operations



4. Cache Memory (cont.)

e Let’s look at Figure 1.18. What problems can you see with this
example? |

e Cache design is beyond this course. But the following issues
must be considered in general.

— 1. Cache size.

— 2. Block size. Suitable size of block will ensure that the hit
ratio is high.

— 3. Mapping function. When a block is read into the cache,
the Ist question is to decide where we should put it. (2
hints: (A) When one block is read in, another one should
be moved out, so we should minimize the probability that a
moved-out block will be referenced again in the near future.
(B) The more flexible the mapping function, the more time
it takes to search the cache to find a block.)

— 4. The replacement policy. (Can you think of some?)

— 5. Write policy. If the contents of a block in the cache
are changed, we should write it back to the main memory

before replacing it. So when should this write operation
takes place? |



N2

Performance Analysis of Two-level Memory

o Assume that we have two levels of memory, M;, My (M; is
smaller, but faster.) Let’s first look at the average system access

time 7.

T,=HxT;+(1-H)X (T +T)
=T, +(Q1-H)XT, (1.1)

T. = average (system) access time

T, = access time, of M1 (e.g., cache, disk cache)

T, = access time of M2 (e.g., main memory, disk)

H = hit ratio (fraction of time reference is found in M1)

T 5
o Let 7 be the access efficiency, we have

(e 1
- s
T, 1+(1-H)F

We want this ratio to be close to 1.

M'



IIIII

o
—
]

T,

1

1

0.01

Access Efficiency

IR [ W

0.001
0.0 0.2 0.4 0.6 0.8 1.0

Hit Ratio=H

Figure 1.23  Access Efficiency as a Function of Hit Ratio (r = T,/T})



e Let’s now look at the average cost per bit for the two-level
memory, C,.

_CS + G5,

(1.2
’ 33+ 8, (1-2)

C, = average cost per bit for the combined two-level memory
C, = average cost per bit of upper-level memory M1

C, = average cost per bit of lower-level memory M2

S; = size of M1

S, = size of M2

e To make C; roughly the same as Cy. We should make S; <<
Sy. (C1 >> C5 due to the hardware cost, which we can do
very little to change it.) Notice that

& . 5
Cs &t%s

02 1—1—%?‘



:

Illill'

W A L =J0

1

(C,/Cy) = 1000

o
!

2

tlILllt

W b Lh 200

(CI/Cz) = 100

Relative combined cost (Cg/C»)
o]

10 —

8 -

7

6 -

5 -

% (C{/Cy) =10

3 4

2_\&

1 1 T I |“| T 1 I T T T I II T 1 I I I I lli
5678910 2 3 456789100 2 3 4 5 6 7 8

Relative size of two levels (S,/S,)

Figure 1.22  Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory



Ratio

it

H

Relative Memory Size (51/S7)

Figure 1.24 Hit Ratio as a Function of Relative Memory Size

In PmCt“CQ, . :
D Cache size. K~ 125K

2) Hré ratio >0.75 almes
ol the time




