A GNFA, $(Q, \Sigma, S, q_{\text{start}}, q_{\text{accept}})$ is a 5-tuple s.t.

1. Q is the finite set of states
2. Σ is the input alphabet
3. $S : (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow R$,
 R is the set of all regular expressions over Σ
4. q_{start} is the start state
5. q_{accept} is the accept state
Lem. If a language is regular, then it is described by a regular expression.

IDEA: (1) DFA \rightarrow GNFA
* (2) GNFA \rightarrow regular expression

Sketch of proof (step 2):
"By construction",

Let M be the DFA for language A, we first convert M to a GNFA G.
Then, run $\text{Convert}(G)$:

1. Let k be the # of states in G
2. If $k = 2$, return the expression R
3. If $k > 2$, select any state q_i, $p \in Q$
different from q_start and q_accept.
 Delete q_i as in Fig 1 to obtain a new GNFA G' (with $k-1$ states)
4. Recursively call $\text{Convert}(G')$.