Lem. If a language is regular, then it is described by a regular expression.

IDEA: (1) DFA \rightarrow GNFA

* (2) GNFA \rightarrow regular expression

Sketch of proof (step 2):

"By construction".

Let M be the DFA for language A; we first convert M to a GNFA G.

Then, run $\text{Convert}(G)$:

1. Let k be the # of states in G
2. If $k=2$, return the expression R
3. If $k>2$, select any state $q_{\text{rip}} \in Q$ different from q_{start} and q_{accept}.
 Delete q_{rip} as in Fig 1 to obtain a new GNFA G' (with $k-1$ states).
4. Recursively call $\text{Convert}(G')$.

Fig 1