Vol. 00 no. 00 2005
Pages 1-6

Algorithms for Sorting Unsigned Linear Genomes by the

DCJ Operations

Haitao Jiang 2, Binhai Zhu '*and Daming Zhu?

IDepartment of Computer Science, Montana State University, Bozeman, MT 59717, USA.
2School of Computer Science and Technology, Shandong University, Jinan, China.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Motivation: The double cut and join operation (abbreviated as DCJ)
has been extensively used for genomic rearrangement. Although the
DCJ distance between signed genomes with both linear and circular
(uni- and multi-) chromosomes is well studied, the only known result
for the NP-complete unsigned DCJ distance problem is an approxima-
tion algorithm for unsigned linear unichromosomal genomes. In this
paper, we study the problem of computing the DCJ distance on two
unsigned linear multichromosomal genomes (abbreviated as UDCJ).
Results: We devise a 1.5-approximation algorithm for UDCJ by
exploiting the distance formula for signed genomes. In addition, we
show that UDCJ admits a weak kernel of size 2k and hence an FPT
algorithm running in O(22n) time.

Contact: bhz@cs.montana.edu

1 INTRODUCTION

Computing genomic distance on gene order is a fundamental pr
blem in computational biology. In the last two decades, aewar
of biological operations, such as reversals, translonatifusions,
fissions, transpositions and block-interchanges, have pemosed
to handle gene order. Tlwuble cut and joiroperation, introduced
by Yancopoulot al., 2005, unifies all the classical operations. In
the past, the rearrangement distance for signed genomes| istur
died for single operations, like reversals (Hannenhald Bevzner,
1999), combinations of operations (reversals, transioosaf fusions
and fissions) (Hannenhalli and Pevzner, 1995) and univepsahti-
ons (double cut and join) (Bergeremal., 2006; Yancopoulost al.,
2005).

Unfortunately, as for unsigned genomes, most of these @nabl
seem to be NP-hard. Then it is natural to devise relevantoappr
ximation algorithms. A 1.5-approximation algorithm wasvided
for sorting by unsigned reversals (Christie, 1998), andateroxi-
mation factor was improved to 1.375 by Bermetnal., 2002. The
problem of sorting by unsigned translocations was investid by
Cui et al, 2008, and an algorithm with an approximation factor

approximation factor was improved to 1.375 by Elias and Hart,

2006. The problem of sorting by short block-moves, a spdmidl
more practical case of transpositions, was studied by AaddZhu,
2010, and they obtained an 14/11-approximation algoritfiime

design of FPT algorithms for genome rearrangement probleass
started very recently, with the help ofeak kernels(Intuitively, an

FPT algorithm is an exact algorithm which runs in polynontiade

when the problem solution size, like the number of unsigrese -

sals to sort a sequence, is bounded by a constant. The refexaal

definitions will be given in the next section.) Both sorting tnsi-

gned reversals and sorting by unsigned translocationstasmall

weak kernels, hence are in FTP (Jiatal., 2010).

As far as we know, the only known positive result for sortimgid
gned genomes by minimum DCJ operations (or interchangeably
the unsigned DCJ distance problem) is a factor-1.416 approx
mation for the case of linear unichromosomal genomes (Chen,
2010). Of course, even in this case the problem involves eemp
ting a maximum alternating-cycle decomposition (MAX-ACD)
the breakpoint graph, which is NP-complete (Caprara, 1,99@)
refore, it is not surprising that the unsigned DCJ distarrcdlem
is NP-complete, even for linear unichromosomal genomeiiCh
2010). Prior to our current work, there has been no FPT alyori
known for the unsigned DCJ distance problem.

Our Contributionsin this paper, we introduce DCJ operations
on unsigned linear multichromosomal genomes to compute the
corresponding genomic distance. We devise a 1.5-approixima
algorithm for linear multichromosomal genomes in Sectionr8
Section 4, we obtain a weak kernel of sizefdr UDCJ; moreover,

we present an FPT algorithm running@(22*n) time.

2 PRELIMINARIES

Gene, Chromosome and Genowe unsigned gene is a sequence
of DNA, usually denoted by a positive integer. A chromosorae ¢
be viewed as a sequence of genes and denoted by a permutation,

of 1.5 + ¢ was proposed. Transposition, though occurring muchwhile a genome is a set of chromosomes. A gene lies at the end

less than reversal and translocation, is an indispensgi@eation
in the evolutionary events. The problem of sorting by trarss
ons was first studied by Bafna and Pevzner, 1998, who devised
1.5-approximation algorithm running in quadratic time.téra the

*to whom correspondence should be addressed

of some linear chromosome is called and-gene Gene: and j
form an adjacencyif they are consecutive in some chromosome.
An adjacency(g;, gi+1) is perfectif it satisfies|gi+1 — gi| = 1.

A chromosome is perfect if every adjacency is perfect. A geao
is perfect if all its chromosomes are perfect. As a conventive
always list the genes in a perfect genome in increasing oFeter

© Oxford University Press 2005.
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instance, a perfect genome with three chromosomes and s ge gi  gi+1 gi  9i gi | 93
can be listed as (1,2,3,4), (5,6,7) and (8,9,10). We studygued !
linear multichromosomal (multi-linear or simply lineagrfshort) Gi 1 Git1 | .

genomes in this paper. .T’o gi  gin mi+1 Ji+1 i
Breakpoint GraphAbove all, we recall the well-known tool for ° ’/ o g 9 ° 9i  Git1 o Ji
computing the genomic rearrangement distance, the Bré&akpo g; ' gj+1 — gj o

Graph (Bafna and Pevzner, 1998). Given two unsigned genomes o Jj
A and B on the same set ofi genes, theBreakpoint Graph o—e *

BG(A,B) = (V,Ey, U Ey), where|V| = n and each vertex it 9+t gi

in V' corresponds to a gene, every adjacencyiiorms a black @) @ (3@

edge belonging tdv, and every adjacency i forms a gray edge
belonging toE,. It is known that in this case computing a maxi-
mum alternating-cycle decomposition8G( A, B) is NP-complete
(Caprara, 1999).

As for signed genomest and H, the breakpoint graph
BG(F, H) is a bit different. Due to the sign, each gene has one
head and one tail corresponding to two vertices in the breiakp
graph. Consequently, the head has only one adjacenEyand H NP-complete. .
respectively, so does the tail. Then each vertex in the lpaak W'L'(_)'G’ assume tha is _perfeCt' Letls an_dlB be the num-
graph has degree at most two, which means that the breakpoiﬁ’(er of linear chromosomes i and B respectlve!y, We can alsol
graph is composed of cycles and paths, and the black edges aﬁﬁ?sume_ thaty > I, since all th_e DCJ opera_tlons are reversi-
gray edges appear alternatively in the cycles or paths. Satixi- ble, which means that if there exists consecutive DCJ ojpeist

mum alternating-cycle decomposition is easy in this caseydle ~ P1P2° ’_’f”ﬂhat CO”YE”A Into ]%,lt.hen we can also conveft info
containg black edges is called drcycle. ABY i 1Py, Wherep; is the reversed operation pf.

Fig. 1. The DCJ operation.

The minimumk is the unsignedCJ distancebetweenA and B.
Following the results in (Caprara, 1999; Chen, 2010), UDal$o

FPT and Weak KerneBasically, a fixed-parameter tractable (FPT)
algorithm for a decision probleii with solution valuek is an algo-
rithm which solves the problem i@(f(k)n®) = O*(f(k)) time,
where f is any function only ork, n is the input size and is some
fixed constant not related fo. FPT also stands for the set of pro-
blems which admit such an algorithm (Downey and Fellows 9199
Flum and Grohe, 2006). Weak kernel is a relatively new cofcep
intuitively, it refers to the direct or indirect “search sjgd to solve a
search problem. For a search problem in NP, if it admits a vkeak
nel of sizeg(k), then itis in FPT (Jiangt al., 2010). We comment
that weak kernel is different from the traditional kernelwhich the
problem instance size is reduced (to a functiokpfwhile a weak
kernel only implies that the direct or indirect solution sgaspace

is reduced (to a function df). More details can be found in (Jiang
et al, 2010).

The Double Cut and Join Operatiorthe Double Cut and Join
operation (abbreviated as DCJ) unifies all the traditiorexiame

rearrangement operations such as reversal, translocditigion,

fission, transposition and block-interchange, as well ags®q,

integration, circularization and linearization. The fahdefinition

of a DCJ operation on the breakpoint graph is as follows.

DEFINITION 1. The Double Cut and Join operation acts on the
Breakpoint Graph in the following four ways (Figure 1):

1. For two black edge$: = (gi, gi+1) andbz = (g;,gj+1), cut
them, and either form two new black edgés= (g;, g,;+1) and
b5 = (g, gi+1) or form two new black edgés = (g, g;) and
by = (gi+1,95+1)-

2. For a black edge = (gi,¢9:+1) and an end-geng;, cut the
black edge, and either form a new black edge- (g;, g,;) and

anew end-geng; 1 or form a new black edgé = (g;, g
and a new gnd_gg;m_ ¥ = (0 9i11) 3 A 1.5-APPROXIMATION ALGORITHM

3. For two end-geneg; and g;, join them with a black edge !N this section, we present a 1.5-approximation algoritemou-

(9i:95)- ble Cut and Join distance on unsigned multi-linear genoriés.
4. For a black edae — (a:. o cut it into two end-genes: first comment that the method by Chen, 2010 cannot be couverte
' andg 98 = (gi, git1), CU genes to solve our problem as with multi-linear genomes the uryitegl
i+1-

breakpoint graph is more complex (i.e., possibly with maathp).
Given an original genomd with [, chromosomes and a target per-
fect genomeB with [z chromosomes, our goal is to convettinto

B by a series of DCJ operations so that the number of DCJ opera-
tions is as few as possible. To design an approximation isthyoy
Problem StatemeritVe now formally formulate the problem to be Wwe first need the structure properties of UDCJ, which in fact be

Note that the black edges and end-genes involved in one D&J op
ration can be in the same chromosome, then a circular chrmm®s
may form after some DCJ operations.

investigated in this paper. obtained from the correspondirsignedgenomes.

Sorting Unsigned Genomes by the DCJ Oper ations (UDCJ): .

Input: Two unsigned linear genomesand B and an integek:. 3.1 StructurePropertiesof UDCJ

Question: Can A be converted intoB by a series ofk DCJ For an unsigned genomé, a signed-versiorof A is obtained by
operations1, p2, - -+ , pr? assigning“ + ” or “ — ” to each gene i4, with “ + ” signs
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usually omitted. Obviously, every genomerofjenes has exponen-
tial, i.e., 2", signed-versions. Given two signed genonies?, we
useDCJ,(F, H) to denote their signed DCJ distance.

THEOREM 1. Given two unsigned linear multichromosomal
genomesA and B, let the minimum DCJ distance betwednB
be DCJ(A, B). ThenDCJ(A, B) = DCJs(A*, BT), where A*
is some signed-version df, and BT is a special signed-version of
B with all signs being positive.

PrROOF. Notice that, loosely speaking, we can take= B™.

(=) Assume that there exists a series of consecutive DCJ operati

onspips - - - pm that convertA into B. We say that a DCJ operation
p changes the sign of a gepef p involves reversing a segment of
genes includingy. For each geng in A, let T, denote the num-
ber of times that the sign af is changed if we trace all the DCJ
operations.g is assigned‘ — 7, if T, is odd; and*“ + 7, if T, is
even. Then we obtain a signed-versionfyfA*, which can be con-

verted into BT by them equivalent signed DCJ operations. Thus

DCJ(A, B) > DCJs(A*, B™).

(«=) Ifthere exists a signed-versiofi* of A that can be converted
into BT by m signed DCJ operations, ps - - - p., then we can also
use thesen (signed) DCJ operations to convettinto B, ignoring
the gene signs. ThUBC J(A, B) < DCJs(A*, BT). O

We now proceed to obtain the necessary properties of the opti

mal solution. First of all, in order to avoid distinct endpts of

chromosomes il and B, we add unlabeled caps to both ends of

each linear chromosome in genomésand B respectively, then
connect the A-cap and its adjacent end-gene with a black @adde
the B-cap and its adjacent end-gene with a gray edgsGifA, B).

The above preprocess is calledpping Note that each gene in

BG(A, B) has degree 4 after capping, i.e., with two black edges

and two gray edges. After capping, genomksnd B becomeA
and B respectively. We denote the resulting graphibgi (A, B).

As it seems to be hard to extract the properties of the optholak
tion from BG(A, B) directly, we take a detour. We notice that, for
signed genome§’ and H, after capping each vertex in the break-

point graphBG(F, H) has degree two and each cap has degre

one, which means that all the paths end with caps. A path with

A-cap end and a B-cap end (resp. two A-cap ends, two B-cap end

is an AB-path (resp. AA-path, BB-path).

In the breakpoint grapBG(F, H) of signed genome$” and
H, after capping, there are three ways to construct cycles fro
BG(F, H).

1. single-identifyingidentify the two caps of each AB-path, close
the path into a cycle containing just one A-cap (with the B-ca
eliminated).

2. double-identifyingidentify each B-cap of a BB-path and each
A-cap of an AA-path, join an AA-path and a BB-path into a
cycle containing two A-caps (with the two B-caps elimingted

3. joining: connect the two A-caps of an AA-path with a gray
edge.

Let BG(F, H) denote the resulting breakpoint graph after con-

structing cycles fromBG, (F, H) following the above three ways.
Then the signed DCJ distance between the signed genshaesl
H, DCJs(F,H) = b— ¢, whereb is the number of black edges

andc is the number of cycles iBG(F, H) (Yancopouloset al.,
2005).

1 2 3 B
[F-e---e---e-{] Target genomed
D’"[”'S”'é’*im
-1 +4 -2
O—eo—eo——
_3 _7 L. —
O—e——0O Original genome”
+5 +6
O—e——0O
=
G 2 !t 8 143 G
e
O—pb /o521 p330 —
. ) 0 l/ GraphBGs(F, H)
O—*% K o e

Fig. 2. The breakpoint graph BG(F, H), before the identifying and
joining operations are performed.

In Figure 2, we show an example &, H and BG,(F, H),
before the identifying and joining operations are perfodmi@ the
figure, an empty round (resp. square) node is an A-cap (respplp
moreover, inBG(F, H), a signed gene-i (resp. —i) is already
converted to(2i — 1,2:) (resp. (2i,2i — 1)). After two single-
identifying operations are performed, we have two new /¢&
and (9,8,4,5,14). After a double-identifying operationpisrfor-
med, we have a new cycle (2,3,7,1). After a joining operat®n
performed, we have a new cycle (12,13).

It is worth mentioning that this distance formula is equéralto
that of Bergeroret al.,, 2006, i.e.,DCJ,(F,H) =n —C — |1/2],
wheren is the number of geneg, is the number of cycles antl
is the number of odd paths in their corresponding adjacenagty

o0 see this, note thdtalso equals to the number of AB-paths in the

-
aebreakpoint graph; in addition, we habte=n + 4, c = C + I +
d(2la —1)/2]. SoDCJ.(F, H) = DCJs(F, H).

COROLLARY 1. Given two unsigned linear multichromosomal
genomesA and B, let A* and BT be defined as in Theorem 1.
ThenDCJ(A, B) = DCJs(A*, BT), where A* (resp. B1) is a
capping ofA* (resp.B™).

ProOF. It follows from Theorem 1 thatDCJ(A, B)
DCJs(A*, BT). The statements in the last paragraph show that
DCJ(A*, BT) DCJ;(A*,B"). Then the corollary fol-
lows. O

Notice that computing an alternating-cycle decompositain
BG(A, B) is equivalent to finding a signed version.4f To extract
the properties of the optimal solution, we first try to makes us
of the breakpoint graptBG(A, B) instead of BG(A, B). Follo-
wing Corollary 1, we can now make use of the breakpoint graph
BG,(A*, BY). From the wayBG(A*, B") is constructed, we
only need to find an optimail* such that the number of disjoint
alternating-cycles inBGs(A*, BT) is maximized. The reason is
that the number of black edges BG( A, B) is fixed.
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Then we havel®”® = DCJ(A,B) = DCJ,(A*,BY) = b —
c1—c2 —cj, whereb is the number of black edges BG, (A*, BT),
c1 ande, are the number of 1-cycles and 2-cycleditys (A*, BT)
respectively, and} is the number of cycles with three or more black
edges inBG,(A*, B). Obviously,cs < (b — ¢1 — 2¢2)/3, thus
we have the following formula:

¢ /
d°? b—c1 —ca—cs

b—01 — C2 — (b—01 —262)/3
2(b—c1)/3 —c2/3
2

3

Y

(b—c1—c2/2).

The above formula implies that, if we can convett into B
by at mostb — ¢ — ¢2/2 DCJ operations, then we obtain a
1.5-approximation algorithm for UDCJ.

3.2 TheAlgorithm

The idea of our approximation algorithm is as follows. We eom
pute BG(A, B) and try to first keep all the 1-cycles in it. Then we
compute many 2-cycles froBG(A, B) (in fact, at least. /2 such
2-cycles). We comment that a similar idea was used by Céyisti
1998 on sorting by unsigned reversals. On the other hand,Rhe
relaxation algorithm by Chen, 2010 cannot handle paths ¢apd)
so it cannot be immediately generalized to solve our problem

The following lemma, which involves handling paths and ¢aps
shows that keeping all the 1-cyclesG(A, B) is a good strategy
to obtain some optimal alternating-cycle decompositioit.of

LEMMA 1. There is some maximum alternating-cycle decom-
position of BG(A, B) in which all ¢} 1-cycles inBG(A, B) are
kept.

//"47\: //7‘>(T./\<7\\\
CED CadNn s fa i e e e s e
@ (b) (©) (d)

o _
! b

N
A

Fig. 3. 1-cycle containing two genes.

PROOF. We modify the optimal alternating-cycle decomposition
in BG(A, B) in such a way: if two genes, say and g;+1, are

If the newly obtained 1-cycle contains one gene and a capcfwhi
is identified by an A-cap and a B-cap), then there are four cases.
Note thath must be identified with some A-cay'.

Case (1): The A-cap joins with another A-cam’. The number
of cycles is unchanged. See Figure 4 (a).

Case (2): The A-cam is identified with a B-caph’ and a,b
belongs to distinct cycles. The number of cycles is unchdn§ee
Figure 4 (b).

Case (3): The A-capis identified with a B-cap’ anda,b belongs
to the same cycle. The number of cycles is increased by ore. Se
Figure 4 (c).

Case (4): The A-cam is identified with the B-cap but the
cycle containingz,b also contains two identified cap§andd’. The

number of cycles is increased by one. See Figure 4 (d). a
, 4 ‘._./\ N R ‘._‘/\.7D N ’ ‘._./ \.'-‘
@| O ®| U =)
—O —0O,
A RN ©
O—e, —e o—O O—e, —e o-{]
O O .0
. ;/k\ B
-- \: ) D O—e o/—o’ —0
O—e o—¢ »—0O N
| D
o (d)
0
O A-cap B-cap O [ Two caps to be identified

Fig. 4. 1-cycle containing one gene and one cap.

Following Lemma 1, we know that keeping all the 1-cycles in
in BG(A, B) will not affect the value of some optimal alternating-
cycle decomposition of it. Therefore, from now on we onlyde®n
the optimal alternating-cycle decomposition BIG(A, B) which
always keeps all the 1-cycles. Consequently, in order tocepp
mate the optimal DCJ distance, we just need to find out as n&ny a
at least half of the 2-cycles in an optimal alternating-eygécom-
position of BG (A, B) (which keeps all 1-cycles). Now we present
the algorithm2-Cycle Decompositioto compute such 2-cycles. In
this algorithm, we first construct a grajghy whose vertices are the
black edges (not in any 1-cycle) BG(A, B) andM is a maximum

connected by a black edge and a gray edge, then we reassign tA&tching inG..

signs of these two genes to obtain a 1-cycle; if a gene,gsais

Note that the maximum matching can be computed in polyno-

connected to an A-cap by a black edge and to a B-cap by a graSFia' time (Galilet al,, 1986); moreover, each eglgeM results in
edge, then we reassign the sign of the gene and identify the tw@ candidate 2-cycle. In order to bound the cardinality'pfve need

caps to obtain a 1-cycle. If the newly obtained 1-cycle ciostéwo
genes, then there are two cases.

Case (I): Only one of the signs aof; and g;11 is changed.
W.L.O.G, assume that the sign gf is changed, see Figure 3 (a).
The number of cycles is increased by one.

Case (Il): Both of the signs of; and g;+1 are changed, see
Figure 3 (b)(c)(d). The number of cycles is increased by twone
or unchanged respectively.

the following lemmas.

LEMMA 2. Let M be a maximum matching i1, then|M| >
C2.

PrROOF. Following the discussion in Section 3, corresponds
to the number of 2-cycles in an optimal alternating-cycleatepo-
sition of BG(A, B). These 2-cycles clearly form a matchingGh.
By the maximality ofM, we havel M| > c». O
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Lemma 3 is important for us to compute a maximum independnt s

Algorithm 2-Cycle Decomposition in G2 (without this property, the computation of a maximum inde-

Input: BG(A, B) pendent set might be intractable). Lemma 3 immediatelyiesyhe

Output: A set of edge-disjoint 2-cycles next lemma.

1 Construct a grapli'; = (P, E1) as follows: LEMMA 4. Let S be a maximum independent setGh, then
1.1 Each black edge iBG(A, B), not contained in any 1-cycle, |S| > (%]

corresponds to a vertex iR. . . . . . .
P Note that if a gene is contained in some 1-cycle, then its cégn

be fixed easily, i.e., if the black edge reads from (left tdt)dike
(7,7 + 1) then both genesandi + 1 will be given positive signs,

1.2 For each pair of vertices = (g;, gi+1) andv = (g, 9;+1)
corresponding to black edges between two gefes)) € E;

iff there exist two gray edges which can form a 2-cycle otherwise they will be given negative signs. If a gene is aimed
together with these two black edges. in some 2-cycle, its sign is fixed similarly. For instanceinifa 2-
1.3 For each pair of vertices = (g;,a;) andv = (g;, a;) cycle the two black edges read likg 5), ( + 1,5 + 1) (from left
corresponding to black edges between a gene and a A-cap, to right), then the signing should bei, —j, —(i + 1), +(5 + 1).
(u,v) € E iff there exist a gray edgéy;, g;) in BG(A, B). The other cases, e.g., when the directions of these blactseaig
1.4 Fora2-gene vertex = (g;, gi11) and a 1-gene-1-cap possibly changed, are very much symmetric hence omittedoife

vertexv = (g;,a;), (u,v) € By iff there exist two gray edges plete_the cycle decomposition,_ we grbitrari_ly_ assign _signsshe
(gi,9;) and(gi+ 1, b;) or two gray edgegg:+ 1, g;) and remaining genes, then properly identify and join the renmgjrtaps
. s in the corresponding breakpoint graph. The comp#tele-Cycle
(9i,bj+1) in BG(A, B), whereb; andb;, are B-caps. o ; A
2 Compute a maximum matchinty in G : Decompositioralgorithm is presented as follows.
1-

3 Construct a graplirs = (Q, E2) as follows:
3.1 Each 2-cycle computed at Step 2 corresponds to a vertex i
3.2 Two vertices i@ form an edge in¥; iff their corresponding
cycles share a gray edge.

Algorithm Whole-Cycle Decomposition
Input: BG (A, B)
Output: BG4 (A’, Bt)
1 Keep all 1-cycles and assign proper signs to genes involved
4 Compute a maximum independent Sebf G'z. in the 1-cycles iNBG(A, B).
5 ReturnS which is a set of edge-disjoint 2-cycles. 2 Call 2-Cycle Decomposition, and assign proper signs tege
involved in the resulting 2-cycles.

LEMMA 3. The graphG- is composed of simple paths and 3 Assign arbitrary signs to the remaining genes to have asigr
isolated vertices. genomeA’.
4  ConstructBGs(A’, BT) by identifying and joining caps with
single-identifying, double-identifying and joining oaions.

PrROOF. All 2-cycles computed at Step 2 cannot share black
edges. Since each gray edge is connected to at most four blac
edges, at most two 2-cycles which do not share black edges can o ]
share this gray edge. Equivalently, each gray edge can paton Notice that once we havG, (A, BY) it is straightforward to
at most two cycles computed frofl. Each 2-cycle has two gray Compute the signed DCJ distanéé*! = DCJ,(A’, B) in linear
edges, so each vertex (i, has degree at most two. time (Bergeroret al., 2006; Yancopoulost al., 2005).

Itis sufficient to prove thaf> does not contain cycles. Assume to
the contrary that 2-cycleS,Cs - - - C.. form a cycle inG2, whereC;
shares gray edgg with C;4+1, 1 < i < r—1, andC, sharegy,- with
C4. ThenC; contains two gray edges andg.., but the endpoints of
g1 andg, cannot form two black edges (otherwise these two black PROOFR From Lemma 4, we know thas| > [cz/2]; it follows
edges will force into some black cycle — which implies thaé th from Lemma 1 that; = c;. The distance computed by Algorithm
input genome contains some circular chromosome). Seedfyur Whole-Cycle Decompositida ¢ < b — ¢} — |S|. The optimal

O  distancel®?" satisfies thad®?® > 2(b—c} —c2/2)/3. Thus,d**? <

THEOREM 2. Algorithm Whole-Cycle Decompositioapproxi-
mates the DCJ distance between two unsigned linear mustich¥
somal genomes with a factor of 1.5.

(b—cy — [c2/2]) < 1.5d°P". O
*"—o—o—o *"—o—o
/
/ ’1(11 //92 S gr 4 A WEAK KERNEL AND AN FPT ALGORITHM
—eo—o—o o’—ol—ol Similar to the problem of Sorting by Unsigned Reversals aod S
. Cs C, ting by Unsigned Translocations (Jiareg al., 2010), the UDCJ

problem also possesses a (small and indirect) weak kernel.
Let k£ be the minimum number of DCJ operations convertig
Fig. 5. An example of 2-cycles sharing gray edges. into B. A weak kernefor UDCJ is a set of genes id whose signs
cannot be fixed after the genes involved in all 1-cycles haenb
properly signed (following Lemma 1). Before computing tieesof

Itis obvious that every 2-cycle containing caps has degre®at the weak kernel, we state the following lemma, which is seripit
one inG, because the gray edge containing caps cannot be Sharecqitical.

by two 2-cycles computed from/. The property we just proved in
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LeEmmMA 5. Each DCJ operation can generate at most two 1- Conflict of Interestnone declared.

cycles.

PrROOF. Each DCJ operation cuts two black edges and forms at
most two new black edges. Each new black edge can form at moﬁEFERENCES

one 1-cycle. O

THEOREM3. The UDCJ problem has a weak kernel of size 2
hence can be solved @ (2%*) time.

PrROOF. The Z weak kernel is straightforward from Lemma 1
and Lemma 5. For any optimal alternating-cycle decompmsitif
BG(A, B) which contains all possible number df 1-cycles, we
havek = b — ¢} — ¢5 andcs < (b — ¢})/2, wherec) is the num-
ber of cycles of length at least 2 in the optimal alternatingle
decomposition 0BG (A, B). Thus,k > (b — ¢})/2, equivalently,

(b—c}) < 2k. Following Lemma 1, we can assign signs to all genes

involved in 1-cycles. So each of the remaining gene is cadec

to two black edges and each black edge has at most two unsigne
genes as its endpoints, which means that the number of w@tbign
genesN is bounded by the number of black edges not involved in

any 1-cycle, e.g.N < b — ¢; < 2k. Hence the problem admits a
weak kernel of size2

In other words, if the DCJ distance is equal to or smaller than

k, there are at most®* signed-versions ofi among which there
must be an optimal one (e.g4* in Theorem 1). For each signed-
version ofA, we can exploit the algorithm in (Bergerenal., 2006;

Yancopoulost al.,, 2005) to check whether it can be converted into
B* by k or few DCJ operations. If so, we can compute the cor-

respondingk unsigned DCJ operations to convettinto B. If no
valid solution is found, we report NO. This algorithm clsaruns
in 0(2%*n) = O*(2*") time. |

5 DISCUSSION

In this paper, we devise the first approximation algorithnthva
factor of 1.5 and an FPT algorithm runningdn(22*n») time for the
NP-complete problem of sorting linear multichromosomail@ees
under unsigned DCJ distance. Itis interesting to improeeaippro-
ximation factor as well as the running time of the FPT aldworit
For genomes containing circular chromosomes, our appraam
algorithm cannot achieve the same performance as lineanges
so it is also meaningful to handle the problem of sorting mixe
genomes (i.e., with both linear and circular chromosomegjeu
unsigned DCJ distance.

ACKNOWLEDGMENT
This research is partially supported by NSF grant DMS-03480

Bafna,V. and Pevzner,P. (1998prting by TranspositionsSIAM J.
Discrete Math, 11, 224-240.

Bergeron,A., Mixtacki,J. and Stoye,J. (2008) Unifying View of
Genome Rearrangement$roceedings of the 6th International
Workshop on Algorithms in Bioinformatics (WABI'06), pp. 36
173.

Berman,P., Hannenhalli,S. and Karpinski,M. (2002)1.375-
Approximation Algorithm for Sorting by ReversalsProcee-
dings of the 10th Annual European Symposium on Algorithms
(ESA02), pp. 200-210.

Caprara,A. (1999F5orting Permutations by Reversals and Eulerian

dCycle DecompositionsSIAM J. Discrete Math12, 91-110.

Chen,X. (20100n Sorting Permutations by Double-Cut-and-Joins
Proceedings of the 16th International Conf. on Computing an
Combinatorics (COCOON’10), pp. 439-448.

Christie,D. (1998) A 3/2-Approximation Algorithm for Sorting
by Reversals Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA98), pp. 244-252.

Cui,Y., Wang,L., Zhu,D., and Liu,X. (2008) A (1.5 + ¢)-
Approximation Algorithm for Unsigned Translocation Diste
IEEE/ACM Trans. Comput. Biology and Bioinforrs, 56-66.

Downey,D. and Fellows,M. (1999) Parameterized Complexity
Springer-Verlag.

Elias,l. and Hartman,T. (2006) A 1.375-Approximation Algo-
rithm for Sorting by TranspositiondEEE/ACM Trans. Comput.
Biology and Bioinform.3, 369-379.

Flum,J. and Grohe,M. (2006Parameterized Complexity Theory
Springer-Verlag.

Galil,Z., Micali,S., and Gabow,H. (198&n O(EMog V) Algorithm
for Finding a Maximal Weighted Matching in General Graphs
SIAM J. Comput.15, 120-130.

Hannenhalli,S. and Pevzner,P. (199Bgansforming men into mice
(polynomial algorithm for genomic distance problenfrocee-
dings of the 36th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’95), pp. 581-589.

Hannenhalli,S. and Pevzner,P. (199%jansforming cabbage into
turnip: polynomial algorithm for sorting signed permuiatis by
reversals J. ACM 46, 1-27.

Jiang,H., Zhang,C. and Zhu,B. (20M¥eak KernelsECCC Report,
TR10-005.

Jiang,H. and Zhu,D. (20107 14/11-Approximation Algorithm for
Sorting by Short Block-MovesTo appear inScience in China
Series F

and by NSF of China under grant 60928006 and 61070019. We&ancopoulos,S., Attie,0. and Friedberg,R. (20@ficient sorting

thank anonymous reviewers for their valuable comments.

of genomic permutations by translocation, inversion anackl
interchange Bioinformatics 21, 3340-3346.




