
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–6

Algorithms for Sorting Unsigned Linear Genomes by the
DCJ Operations
Haitao Jiang 1,2, Binhai Zhu 1∗and Daming Zhu 2

1Department of Computer Science, Montana State University, Bozeman, MT 59717, USA.
2School of Computer Science and Technology, Shandong University, Jinan, China.
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: The double cut and join operation (abbreviated as DCJ)
has been extensively used for genomic rearrangement. Although the
DCJ distance between signed genomes with both linear and circular
(uni- and multi-) chromosomes is well studied, the only known result
for the NP-complete unsigned DCJ distance problem is an approxima-
tion algorithm for unsigned linear unichromosomal genomes. In this
paper, we study the problem of computing the DCJ distance on two
unsigned linear multichromosomal genomes (abbreviated as UDCJ).
Results: We devise a 1.5-approximation algorithm for UDCJ by
exploiting the distance formula for signed genomes. In addition, we
show that UDCJ admits a weak kernel of size 2k and hence an FPT
algorithm running in O(22kn) time.
Contact: bhz@cs.montana.edu

1 INTRODUCTION
Computing genomic distance on gene order is a fundamental pro-
blem in computational biology. In the last two decades, a variety
of biological operations, such as reversals, translocations, fusions,
fissions, transpositions and block-interchanges, have been proposed
to handle gene order. Thedouble cut and joinoperation, introduced
by Yancopouloset al., 2005, unifies all the classical operations. In
the past, the rearrangement distance for signed genomes is well stu-
died for single operations, like reversals (Hannenhalli and Pevzner,
1999), combinations of operations (reversals, translocations, fusions
and fissions) (Hannenhalli and Pevzner, 1995) and universaloperati-
ons (double cut and join) (Bergeronet al., 2006; Yancopouloset al.,
2005).

Unfortunately, as for unsigned genomes, most of these problems
seem to be NP-hard. Then it is natural to devise relevant appro-
ximation algorithms. A 1.5-approximation algorithm was devised
for sorting by unsigned reversals (Christie, 1998), and theapproxi-
mation factor was improved to 1.375 by Bermanet al., 2002. The
problem of sorting by unsigned translocations was investigated by
Cui et al., 2008, and an algorithm with an approximation factor
of 1.5 + ε was proposed. Transposition, though occurring much
less than reversal and translocation, is an indispensable operation
in the evolutionary events. The problem of sorting by transpositi-
ons was first studied by Bafna and Pevzner, 1998, who devised a
1.5-approximation algorithm running in quadratic time. Later, the

∗to whom correspondence should be addressed

approximation factor was improved to 1.375 by Elias and Hartman,
2006. The problem of sorting by short block-moves, a specialbut
more practical case of transpositions, was studied by Jiangand Zhu,
2010, and they obtained an 14/11-approximation algorithm.The
design of FPT algorithms for genome rearrangement problemswas
started very recently, with the help ofweak kernels. (Intuitively, an
FPT algorithm is an exact algorithm which runs in polynomialtime
when the problem solution size, like the number of unsigned rever-
sals to sort a sequence, is bounded by a constant. The relevant formal
definitions will be given in the next section.) Both sorting by unsi-
gned reversals and sorting by unsigned translocations admit small
weak kernels, hence are in FTP (Jianget al., 2010).

As far as we know, the only known positive result for sorting unsi-
gned genomes by minimum DCJ operations (or interchangeably,
the unsigned DCJ distance problem) is a factor-1.416 approxi-
mation for the case of linear unichromosomal genomes (Chen,
2010). Of course, even in this case the problem involves compu-
ting a maximum alternating-cycle decomposition (MAX-ACD)of
the breakpoint graph, which is NP-complete (Caprara, 1999); the-
refore, it is not surprising that the unsigned DCJ distance problem
is NP-complete, even for linear unichromosomal genomes (Chen,
2010). Prior to our current work, there has been no FPT algorithm
known for the unsigned DCJ distance problem.

Our ContributionsIn this paper, we introduce DCJ operations
on unsigned linear multichromosomal genomes to compute the
corresponding genomic distance. We devise a 1.5-approximation
algorithm for linear multichromosomal genomes in Section 3. In
Section 4, we obtain a weak kernel of size 2k for UDCJ; moreover,
we present an FPT algorithm running inO(22kn) time.

2 PRELIMINARIES
Gene, Chromosome and GenomeAn unsigned gene is a sequence
of DNA, usually denoted by a positive integer. A chromosome can
be viewed as a sequence of genes and denoted by a permutation,
while a genome is a set of chromosomes. A gene lies at the end
of some linear chromosome is called anend-gene. Genei and j
form an adjacencyif they are consecutive in some chromosome.
An adjacency(gi, gi+1) is perfect if it satisfies|gi+1 − gi| = 1.
A chromosome is perfect if every adjacency is perfect. A genome
is perfect if all its chromosomes are perfect. As a convention, we
always list the genes in a perfect genome in increasing order. For

c© Oxford University Press 2005. 1



Jiang et al

instance, a perfect genome with three chromosomes and ten genes
can be listed as (1,2,3,4), (5,6,7) and (8,9,10). We study unsigned
linear multichromosomal (multi-linear or simply linear, for short)
genomes in this paper.

Breakpoint GraphAbove all, we recall the well-known tool for
computing the genomic rearrangement distance, the Breakpoint
Graph (Bafna and Pevzner, 1998). Given two unsigned genomes
A and B on the same set ofn genes, theBreakpoint Graph
BG(A,B) = (V, Eb ∪ Eg), where |V | = n and each vertex
in V corresponds to a gene, every adjacency inA forms a black
edge belonging toEb and every adjacency inB forms a gray edge
belonging toEg. It is known that in this case computing a maxi-
mum alternating-cycle decomposition inBG(A, B) is NP-complete
(Caprara, 1999).

As for signed genomesF and H , the breakpoint graph
BGs(F, H) is a bit different. Due to the sign, each gene has one
head and one tail corresponding to two vertices in the breakpoint
graph. Consequently, the head has only one adjacency inF andH
respectively, so does the tail. Then each vertex in the breakpoint
graph has degree at most two, which means that the breakpoint
graph is composed of cycles and paths, and the black edges and
gray edges appear alternatively in the cycles or paths. So the maxi-
mum alternating-cycle decomposition is easy in this case. Acycle
containsl black edges is called anl-cycle.

The Double Cut and Join OperationsThe Double Cut and Join
operation (abbreviated as DCJ) unifies all the traditional genome
rearrangement operations such as reversal, translocation, fusion,
fission, transposition and block-interchange, as well as excision,
integration, circularization and linearization. The formal definition
of a DCJ operation on the breakpoint graph is as follows.

DEFINITION 1. The Double Cut and Join operation acts on the
Breakpoint Graph in the following four ways (Figure 1):

1. For two black edgesb1 = (gi, gi+1) andb2 = (gj , gj+1), cut
them, and either form two new black edgesb′1 = (gi, gj+1) and
b′2 = (gj , gi+1) or form two new black edgesb′1 = (gi, gj) and
b′2 = (gi+1, gj+1).

2. For a black edgeb = (gi, gi+1) and an end-genegj , cut the
black edge, and either form a new black edgeb′ = (gi, gj) and
a new end-genegi+1 or form a new black edgeb′ = (gj , gi+1)
and a new end-genegi.

3. For two end-genesgi and gj , join them with a black edge
(gi, gj).

4. For a black edgeb = (gi, gi+1), cut it into two end-genesgi

andgi+1.

Note that the black edges and end-genes involved in one DCJ ope-
ration can be in the same chromosome, then a circular chromosome
may form after some DCJ operations.

Problem StatementWe now formally formulate the problem to be
investigated in this paper.

Sorting Unsigned Genomes by the DCJ Operations (UDCJ):
Input: Two unsigned linear genomesA andB and an integerk.
Question: Can A be converted intoB by a series ofk DCJ
operationsρ1, ρ2, · · · , ρk?

(2)(1) (3)(4)

gi

gi

gi

gi

gi

gi

gi

gi

gi+1

gi+1

gi+1

gi+1

gi+1

gi+1

gj

gj

gj

gj gj

gj

gj

gj

gj+1

gj+1

gj+1

Fig. 1. The DCJ operation.

The minimumk is the unsignedDCJ distancebetweenA andB.
Following the results in (Caprara, 1999; Chen, 2010), UDCJ is also
NP-complete.

W.L.O.G, assume thatB is perfect. LetlA and lB be the num-
ber of linear chromosomes inA andB respectively, we can also
assume thatlA ≥ lB , since all the DCJ operations are reversi-
ble, which means that if there exists consecutive DCJ operations
ρ1ρ2 · · · ρm that convertA into B, then we can also convertB into
A by ρ−1

m ρ−1

m−1 · · · ρ
−1

1 , whereρ−1

i is the reversed operation ofρi.

FPT and Weak KernelBasically, a fixed-parameter tractable (FPT)
algorithm for a decision problemΠ with solution valuek is an algo-
rithm which solves the problem inO(f(k)nc) = O∗(f(k)) time,
wheref is any function only onk, n is the input size andc is some
fixed constant not related tok. FPT also stands for the set of pro-
blems which admit such an algorithm (Downey and Fellows, 1999;
Flum and Grohe, 2006). Weak kernel is a relatively new concept;
intuitively, it refers to the direct or indirect “search space” to solve a
search problem. For a search problem in NP, if it admits a weakker-
nel of sizeg(k), then it is in FPT (Jianget al., 2010). We comment
that weak kernel is different from the traditional kernel inwhich the
problem instance size is reduced (to a function ofk), while a weak
kernel only implies that the direct or indirect solution search space
is reduced (to a function ofk). More details can be found in (Jiang
et al., 2010).

3 A 1.5-APPROXIMATION ALGORITHM
In this section, we present a 1.5-approximation algorithm for Dou-
ble Cut and Join distance on unsigned multi-linear genomes.We
first comment that the method by Chen, 2010 cannot be converted
to solve our problem as with multi-linear genomes the underlying
breakpoint graph is more complex (i.e., possibly with many paths).
Given an original genomeA with lA chromosomes and a target per-
fect genomeB with lB chromosomes, our goal is to convertA into
B by a series of DCJ operations so that the number of DCJ opera-
tions is as few as possible. To design an approximation algorithm,
we first need the structure properties of UDCJ, which in fact can be
obtained from the correspondingsignedgenomes.

3.1 Structure Properties of UDCJ
For an unsigned genomeA, a signed-versionof A is obtained by
assigning“ + ” or “ − ” to each gene inA, with “ + ” signs

2



short Title

usually omitted. Obviously, every genome ofn genes has exponen-
tial, i.e.,2n, signed-versions. Given two signed genomesF, H , we
useDCJs(F, H) to denote their signed DCJ distance.

THEOREM 1. Given two unsigned linear multichromosomal
genomesA and B, let the minimum DCJ distance betweenA,B
beDCJ(A, B). ThenDCJ(A, B) = DCJs(A

∗, B+), whereA∗

is some signed-version ofA, andB+ is a special signed-version of
B with all signs being positive.

PROOF. Notice that, loosely speaking, we can takeB = B+.
(⇒) Assume that there exists a series of consecutive DCJ operati-

onsρ1ρ2 · · · ρm that convertA into B. We say that a DCJ operation
ρ changes the sign of a geneg if ρ involves reversing a segment of
genes includingg. For each geneg in A, let Tg denote the num-
ber of times that the sign ofg is changed if we trace all them DCJ
operations.g is assigned“ − ”, if Tg is odd; and“ + ”, if Tg is
even. Then we obtain a signed-version ofA, A∗, which can be con-
verted intoB+ by them equivalent signed DCJ operations. Thus
DCJ(A, B) ≥ DCJs(A

∗, B+).
(⇐) If there exists a signed-versionA∗ of A that can be converted

into B+ by m signed DCJ operationsρ1ρ2 · · · ρm, then we can also
use thesem (signed) DCJ operations to convertA into B, ignoring
the gene signs. ThusDCJ(A, B) ≤ DCJs(A

∗, B+).

We now proceed to obtain the necessary properties of the opti-
mal solution. First of all, in order to avoid distinct endpoints of
chromosomes inA andB, we add unlabeled caps to both ends of
each linear chromosome in genomesA and B respectively, then
connect the A-cap and its adjacent end-gene with a black edgeand
the B-cap and its adjacent end-gene with a gray edge inBG(A, B).
The above preprocess is calledcapping. Note that each gene in
BG(A,B) has degree 4 after capping, i.e., with two black edges
and two gray edges. After capping, genomesA andB becomeĀ
andB̄ respectively. We denote the resulting graph byBG(Ā, B̄).

As it seems to be hard to extract the properties of the optimalsolu-
tion from BG(Ā, B̄) directly, we take a detour. We notice that, for
signed genomesF andH , after capping each vertex in the break-
point graphBGs(F, H) has degree two and each cap has degree
one, which means that all the paths end with caps. A path with an
A-cap end and a B-cap end (resp. two A-cap ends, two B-cap ends)
is an AB-path (resp. AA-path, BB-path).

In the breakpoint graphBGs(F, H) of signed genomesF and
H , after capping, there are three ways to construct cycles from
BGs(F, H).

1. single-identifying: identify the two caps of each AB-path, close
the path into a cycle containing just one A-cap (with the B-cap
eliminated).

2. double-identifying: identify each B-cap of a BB-path and each
A-cap of an AA-path, join an AA-path and a BB-path into a
cycle containing two A-caps (with the two B-caps eliminated).

3. joining: connect the two A-caps of an AA-path with a gray
edge.

Let BGs(F̄ , H̄) denote the resulting breakpoint graph after con-
structing cycles fromBGs(F, H) following the above three ways.
Then the signed DCJ distance between the signed genomesF̄ and
H̄, DCJs(F̄ , H̄) = b − c, whereb is the number of black edges

andc is the number of cycles inBGs(F̄ , H̄) (Yancopouloset al.,
2005).

21 3

4 5 6 7

−1 +4 −2

−3 −7

+5 +6

2 7 4 3

10 11 12

136 5

81

9

14

Target genomēH

Original genomeF̄

GraphBGs(F̄ , H̄)

Fig. 2. The breakpoint graph BGs(F̄ , H̄), before the identifying and
joining operations are performed.

In Figure 2, we show an example of̄F , H̄ and BGs(F̄ , H̄),
before the identifying and joining operations are performed. In the
figure, an empty round (resp. square) node is an A-cap (resp. B-cap);
moreover, inBGs(F̄ , H̄), a signed gene+i (resp.−i) is already
converted to(2i − 1, 2i) (resp. (2i, 2i − 1)). After two single-
identifying operations are performed, we have two new cycles (6)
and (9,8,4,5,14). After a double-identifying operation isperfor-
med, we have a new cycle (2,3,7,1). After a joining operationis
performed, we have a new cycle (12,13).

It is worth mentioning that this distance formula is equivalent to
that of Bergeronet al., 2006, i.e.,DCJs(F, H) = n −C − ⌊I/2⌋,
wheren is the number of genes,C is the number of cycles andI
is the number of odd paths in their corresponding adjacency graph.
To see this, note thatI also equals to the number of AB-paths in the
breakpoint graph; in addition, we haveb = n + lA, c = C + I +
⌊(2lA − I)/2⌋. SoDCJs(F̄ , H̄) = DCJs(F, H).

COROLLARY 1. Given two unsigned linear multichromosomal
genomesA and B, let A∗ and B+ be defined as in Theorem 1.
ThenDCJ(A, B) = DCJs(Ā

∗, B̄+), whereĀ∗ (resp.B̄+) is a
capping ofA∗ (resp.B+).

PROOF. It follows from Theorem 1 thatDCJ(A, B) =
DCJs(A

∗, B+). The statements in the last paragraph show that
DCJs(A

∗, B+) = DCJs(Ā
∗, B̄+). Then the corollary fol-

lows.

Notice that computing an alternating-cycle decompositionof
BG(Ā, B̄) is equivalent to finding a signed version ofĀ. To extract
the properties of the optimal solution, we first try to make use
of the breakpoint graphBG(Ā, B̄) instead ofBG(A,B). Follo-
wing Corollary 1, we can now make use of the breakpoint graph
BGs(Ā

∗, B̄+). From the wayBGs(Ā
∗, B̄+) is constructed, we

only need to find an optimal̄A∗ such that the number of disjoint
alternating-cycles inBGs(Ā

∗, B̄+) is maximized. The reason is
that the number of black edges inBG(Ā, B̄) is fixed.

3



Jiang et al

Then we havedopt = DCJ(A, B) = DCJs(Ā
∗, B̄+) = b −

c1−c2−c′3, whereb is the number of black edges inBGs(Ā
∗, B̄+),

c1 andc2 are the number of 1-cycles and 2-cycles inBGs(Ā
∗, B̄+)

respectively, andc′3 is the number of cycles with three or more black
edges inBGs(Ā

∗, B̄+). Obviously,c′3 ≤ (b − c1 − 2c2)/3, thus
we have the following formula:

dopt = b − c1 − c2 − c′3

≥ b − c1 − c2 − (b − c1 − 2c2)/3

= 2(b − c1)/3 − c2/3

=
2

3
· (b − c1 − c2/2).

The above formula implies that, if we can convertA into B
by at mostb − c1 − c2/2 DCJ operations, then we obtain a
1.5-approximation algorithm for UDCJ.

3.2 The Algorithm
The idea of our approximation algorithm is as follows. We com-
puteBG(Ā, B̄) and try to first keep all the 1-cycles in it. Then we
compute many 2-cycles fromBG(Ā, B̄) (in fact, at leastc2/2 such
2-cycles). We comment that a similar idea was used by Christie,
1998 on sorting by unsigned reversals. On the other hand, theLP-
relaxation algorithm by Chen, 2010 cannot handle paths (andcaps)
so it cannot be immediately generalized to solve our problem.

The following lemma, which involves handling paths and caps,
shows that keeping all the 1-cycles inBG(Ā, B̄) is a good strategy
to obtain some optimal alternating-cycle decomposition ofit.

LEMMA 1. There is some maximum alternating-cycle decom-
position ofBG(Ā, B̄) in which all c′1 1-cycles inBG(Ā, B̄) are
kept.

(a) (b) (c) (d)

Fig. 3. 1-cycle containing two genes.

PROOF. We modify the optimal alternating-cycle decomposition
in BG(Ā, B̄) in such a way: if two genes, saygi and gi+1, are
connected by a black edge and a gray edge, then we reassign the
signs of these two genes to obtain a 1-cycle; if a gene, saygi, is
connected to an A-cap by a black edge and to a B-cap by a gray
edge, then we reassign the sign of the gene and identify the two
caps to obtain a 1-cycle. If the newly obtained 1-cycle contains two
genes, then there are two cases.

Case (I): Only one of the signs ofgi and gi+1 is changed.
W.L.O.G, assume that the sign ofgi is changed, see Figure 3 (a).
The number of cycles is increased by one.

Case (II): Both of the signs ofgi and gi+1 are changed, see
Figure 3 (b)(c)(d). The number of cycles is increased by two or one
or unchanged respectively.

If the newly obtained 1-cycle contains one gene and a cap (which
is identified by an A-capa and a B-capb), then there are four cases.
Note thatb must be identified with some A-capa′′.

Case (1): The A-capa joins with another A-capa′. The number
of cycles is unchanged. See Figure 4 (a).

Case (2): The A-capa is identified with a B-capb′ and a,b
belongs to distinct cycles. The number of cycles is unchanged. See
Figure 4 (b).

Case (3): The A-capa is identified with a B-capb′ anda,b belongs
to the same cycle. The number of cycles is increased by one. See
Figure 4 (c).

Case (4): The A-capa is identified with the B-capb but the
cycle containinga,b also contains two identified capsa′ andb′. The
number of cycles is increased by one. See Figure 4 (d).

(b)(a)

(c)

(d)

A−cap B−cap Two caps to be identified

Fig. 4. 1-cycle containing one gene and one cap.

Following Lemma 1, we know that keeping all the 1-cycles in
in BG(Ā, B̄) will not affect the value of some optimal alternating-
cycle decomposition of it. Therefore, from now on we only focus on
the optimal alternating-cycle decomposition ofBG(Ā, B̄) which
always keeps all the 1-cycles. Consequently, in order to approxi-
mate the optimal DCJ distance, we just need to find out as many as
at least half of the 2-cycles in an optimal alternating-cycle decom-
position ofBG(Ā, B̄) (which keeps all 1-cycles). Now we present
the algorithm2-Cycle Decompositionto compute such 2-cycles. In
this algorithm, we first construct a graphG1 whose vertices are the
black edges (not in any 1-cycle) inBG(Ā, B̄) andM is a maximum
matching inG1.

Note that the maximum matchingM can be computed in polyno-
mial time (Galilet al., 1986); moreover, each edge inM results in
a candidate 2-cycle. In order to bound the cardinality ofS, we need
the following lemmas.

LEMMA 2. Let M be a maximum matching inG1, then|M | ≥
c2.

PROOF. Following the discussion in Section 3.1,c2 corresponds
to the number of 2-cycles in an optimal alternating-cycle decompo-
sition ofBG(Ā, B̄). These 2-cycles clearly form a matching inG1.
By the maximality ofM , we have|M | ≥ c2.

4



short Title

Algorithm 2-Cycle Decomposition

Input: BG(Ā, B̄)

Output:A set of edge-disjoint 2-cycles

1 Construct a graphG1 = (P, E1) as follows:

1.1 Each black edge inBG(Ā, B̄), not contained in any 1-cycle,

corresponds to a vertex inP .

1.2 For each pair of verticesu = (gi, gi+1) andv = (gj , gj+1)

corresponding to black edges between two genes,(u, v) ∈ E1

iff there exist two gray edges which can form a 2-cycle

together with these two black edges.

1.3 For each pair of verticesu = (gi, ai) andv = (gj , aj)

corresponding to black edges between a gene and a A-cap,

(u, v) ∈ E1 iff there exist a gray edge(gi, gj) in BG(Ā, B̄).

1.4 For a 2-gene vertexu = (gi, gi+1) and a 1-gene-1-cap

vertexv = (gj , aj), (u, v) ∈ E1 iff there exist two gray edges

(gi, gj) and(gi+1, bj) or two gray edges(gi+1, gj) and

(gi, bj+1) in BG(Ā, B̄), wherebj andbj+1 are B-caps.

2 Compute a maximum matchingM in G1.

3 Construct a graphG2 = (Q, E2) as follows:

3.1 Each 2-cycle computed at Step 2 corresponds to a vertex inQ.

3.2 Two vertices inQ form an edge inE2 iff their corresponding

cycles share a gray edge.

4 Compute a maximum independent setS of G2.

5 ReturnS which is a set of edge-disjoint 2-cycles.

LEMMA 3. The graphG2 is composed of simple paths and
isolated vertices.

PROOF. All 2-cycles computed at Step 2 cannot share black
edges. Since each gray edge is connected to at most four black
edges, at most two 2-cycles which do not share black edges can
share this gray edge. Equivalently, each gray edge can belong to
at most two cycles computed fromM . Each 2-cycle has two gray
edges, so each vertex inG2 has degree at most two.

It is sufficient to prove thatG2 does not contain cycles. Assume to
the contrary that 2-cyclesC1C2 · · ·Cr form a cycle inG2, whereCi

shares gray edgegi with Ci+1, 1 ≤ i ≤ r−1, andCr sharesgr with
C1. ThenC1 contains two gray edgesg1 andgr, but the endpoints of
g1 andgr cannot form two black edges (otherwise these two black
edges will force into some black cycle — which implies that the
input genome contains some circular chromosome). See Figure 5.

...
g1 g2 gr

C1 C2 Cr

Fig. 5. An example of 2-cycles sharing gray edges.

It is obvious that every 2-cycle containing caps has degree at most
one inG2, because the gray edge containing caps cannot be shared
by two 2-cycles computed fromM . The property we just proved in

Lemma 3 is important for us to compute a maximum independent set
in G2 (without this property, the computation of a maximum inde-
pendent set might be intractable). Lemma 3 immediately implies the
next lemma.

LEMMA 4. Let S be a maximum independent set inG2, then
|S| ≥ ⌈ |M|

2
⌉.

Note that if a gene is contained in some 1-cycle, then its signcan
be fixed easily, i.e., if the black edge reads from (left to right) like
(i, i + 1) then both genesi andi + 1 will be given positive signs,
otherwise they will be given negative signs. If a gene is contained
in some 2-cycle, its sign is fixed similarly. For instance, ifin a 2-
cycle the two black edges read like(i, j), (i + 1, j + 1) (from left
to right), then the signing should be+i,−j,−(i + 1), +(j + 1).
The other cases, e.g., when the directions of these black edges are
possibly changed, are very much symmetric hence omitted. Tocom-
plete the cycle decomposition, we arbitrarily assign signsto the
remaining genes, then properly identify and join the remaining caps
in the corresponding breakpoint graph. The completeWhole-Cycle
Decompositionalgorithm is presented as follows.

Algorithm Whole-Cycle Decomposition

Input:BG(Ā, B̄)

Output:BGs(Ā′, B̄+)

1 Keep all 1-cycles and assign proper signs to genes involved
in the 1-cycles inBG(Ā, B̄).

2 Call 2-Cycle Decomposition, and assign proper signs to genes
involved in the resulting 2-cycles.

3 Assign arbitrary signs to the remaining genes to have a signed
genomeĀ′.

4 ConstructBGs(Ā′, B̄+) by identifying and joining caps with
single-identifying, double-identifying and joining operations.

Notice that once we haveBGs(Ā′, B̄+) it is straightforward to
compute the signed DCJ distancedwcd = DCJs(Ā′, B̄+) in linear
time (Bergeronet al., 2006; Yancopouloset al., 2005).

THEOREM 2. Algorithm Whole-Cycle Decompositionapproxi-
mates the DCJ distance between two unsigned linear multichromo-
somal genomes with a factor of 1.5.

PROOF. From Lemma 4, we know that|S| ≥ ⌈c2/2⌉; it follows
from Lemma 1 thatc′1 = c1. The distance computed by Algorithm
Whole-Cycle Decompositionis dwcd ≤ b − c′1 − |S|. The optimal
distancedopt satisfies thatdopt ≥ 2(b−c′1−c2/2)/3. Thus,dwcd ≤
(b − c′1 − ⌈c2/2⌉) ≤ 1.5dopt.

4 A WEAK KERNEL AND AN FPT ALGORITHM
Similar to the problem of Sorting by Unsigned Reversals and Sor-
ting by Unsigned Translocations (Jianget al., 2010), the UDCJ
problem also possesses a (small and indirect) weak kernel.

Let k be the minimum number of DCJ operations convertingA
into B. A weak kernelfor UDCJ is a set of genes inA whose signs
cannot be fixed after the genes involved in all 1-cycles have been
properly signed (following Lemma 1). Before computing the size of
the weak kernel, we state the following lemma, which is simple but
critical.

5



Jiang et al

LEMMA 5. Each DCJ operation can generate at most two 1-
cycles.

PROOF. Each DCJ operation cuts two black edges and forms at
most two new black edges. Each new black edge can form at most
one 1-cycle.

THEOREM 3. The UDCJ problem has a weak kernel of size 2k,
hence can be solved inO∗(22k) time.

PROOF. The 2k weak kernel is straightforward from Lemma 1
and Lemma 5. For any optimal alternating-cycle decomposition of
BG(Ā, B̄) which contains all possible number ofc′1 1-cycles, we
havek = b − c′1 − c′2 andc′2 ≤ (b − c′1)/2, wherec′2 is the num-
ber of cycles of length at least 2 in the optimal alternating-cycle
decomposition ofBG(Ā, B̄). Thus,k ≥ (b − c′1)/2, equivalently,
(b−c′1) ≤ 2k. Following Lemma 1, we can assign signs to all genes
involved in 1-cycles. So each of the remaining gene is connected
to two black edges and each black edge has at most two unsigned
genes as its endpoints, which means that the number of unsigned
genesN is bounded by the number of black edges not involved in
any 1-cycle, e.g.,N ≤ b − c′1 ≤ 2k. Hence the problem admits a
weak kernel of size 2k.

In other words, if the DCJ distance is equal to or smaller than
k, there are at most22k signed-versions ofA among which there
must be an optimal one (e.g.,A∗ in Theorem 1). For each signed-
version ofA, we can exploit the algorithm in (Bergeronet al., 2006;
Yancopouloset al., 2005) to check whether it can be converted into
B+ by k or few DCJ operations. If so, we can compute the cor-
respondingk unsigned DCJ operations to convertA into B. If no
valid solution is found, we report NO. This algorithm clearly runs
in O(22kn) = O∗(22k) time.

5 DISCUSSION
In this paper, we devise the first approximation algorithm with a
factor of 1.5 and an FPT algorithm running inO(22kn) time for the
NP-complete problem of sorting linear multichromosomal genomes
under unsigned DCJ distance. It is interesting to improve the appro-
ximation factor as well as the running time of the FPT algorithm.
For genomes containing circular chromosomes, our approximation
algorithm cannot achieve the same performance as linear genomes,
so it is also meaningful to handle the problem of sorting mixed
genomes (i.e., with both linear and circular chromosomes) under
unsigned DCJ distance.

ACKNOWLEDGMENT
This research is partially supported by NSF grant DMS-0918034,
and by NSF of China under grant 60928006 and 61070019. We
thank anonymous reviewers for their valuable comments.

Conflict of Interest: none declared.

REFERENCES
Bafna,V. and Pevzner,P. (1998)Sorting by Transpositions, SIAM J.

Discrete Math., 11, 224-240.
Bergeron,A., Mixtacki,J. and Stoye,J. (2006)A Unifying View of

Genome Rearrangements. Proceedings of the 6th International
Workshop on Algorithms in Bioinformatics (WABI’06), pp. 163-
173.

Berman,P., Hannenhalli,S. and Karpinski,M. (2002)1.375-
Approximation Algorithm for Sorting by Reversals. Procee-
dings of the 10th Annual European Symposium on Algorithms
(ESA’02), pp. 200-210.

Caprara,A. (1999)Sorting Permutations by Reversals and Eulerian
Cycle Decompositions. SIAM J. Discrete Math., 12, 91-110.

Chen,X. (2010)On Sorting Permutations by Double-Cut-and-Joins.
Proceedings of the 16th International Conf. on Computing and
Combinatorics (COCOON’10), pp. 439-448.

Christie,D. (1998) A 3/2-Approximation Algorithm for Sorting
by Reversals. Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’98), pp. 244-252.

Cui,Y., Wang,L., Zhu,D., and Liu,X. (2008) A (1.5 + ǫ)-
Approximation Algorithm for Unsigned Translocation Distance.
IEEE/ACM Trans. Comput. Biology and Bioinform., 5, 56-66.

Downey,D. and Fellows,M. (1999) Parameterized Complexity,
Springer-Verlag.

Elias,I. and Hartman,T. (2006) A 1.375-Approximation Algo-
rithm for Sorting by Transpositions. IEEE/ACM Trans. Comput.
Biology and Bioinform., 3, 369-379.

Flum,J. and Grohe,M. (2006)Parameterized Complexity Theory,
Springer-Verlag.

Galil,Z., Micali,S., and Gabow,H. (1986)An O(EVlog V) Algorithm
for Finding a Maximal Weighted Matching in General Graphs.
SIAM J. Comput., 15, 120-130.

Hannenhalli,S. and Pevzner,P. (1995)Transforming men into mice
(polynomial algorithm for genomic distance problem). Procee-
dings of the 36th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’95), pp. 581-589.

Hannenhalli,S. and Pevzner,P. (1999)Transforming cabbage into
turnip: polynomial algorithm for sorting signed permutations by
reversals. J. ACM, 46, 1-27.

Jiang,H., Zhang,C. and Zhu,B. (2010)Weak Kernels. ECCC Report,
TR10-005.

Jiang,H. and Zhu,D. (2010)A 14/11-Approximation Algorithm for
Sorting by Short Block-Moves. To appear inScience in China
Series F.

Yancopoulos,S., Attie,O. and Friedberg,R. (2005)Efficient sorting
of genomic permutations by translocation, inversion and block
interchange. Bioinformatics, 21, 3340-3346.

6


