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Abstract

In this paper, we investigate the problem of approximat-
ing a set S of 3D points with co-axisal objects typically
from CAD/CAM (namely, cylindrical segments, cones and
conical frustums). The objective is to minimize the sum of
volumes of these objects (as well as the number of objects
used). The general problem when the objects can have ar-
bitrary axes is strongly NP-hard as a cylindrical segment,
a cone and a conical frustum can all degenerate into a line
segment. We present a general algorithm which combines a
neat doubling search method to decompose S into desired
subsets (or components). For each subset S, we present
a unified practical approximation algorithm for minimizing
the volume of the cone (conical frustum, or cylindrical seg-
ment) which encloses points in S. Preliminary empirical
results indicate that the algorithm is in fact very accurate.

Keywords: Geometric modeling, Approximation algo-
rithms, Smallest enclosing cone, Smallest enclosing conical
frustum, Smallest enclosing cylindrical segment

1 Introduction

Approximating/fitting points with simple objects is a
traditional problem in geometric modeling and computa-
tional geometry. Typically this is due to that simpler objects
can facilitate the late computation process, e.g., the famous
bounding-box method [Zh97, ZS99, BS01] and its applica-
tion in collision detection (e.g., in [ASC+06]). Since a few
years ago, several groups of researchers investigated the
problem of computing the smallest enclosing cylinder (or
cylindrical segment) for a set of points in three dimensions
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(3D) [SSTY00, Ch02, Be04, LZJO04, Zh04]. The applica-
tions of some of these research are from the manipulation
of molecular configuration [Be04] and the approximation
of a neuron with cylindrical segments in constructing neural
maps to study their functionality (so as to further study
human/animal behavior) [JT96, JT00, PDJ99, LZJO04].

In many applications related to CAD/CAM and solid
modeling, enclosing a set of points with a cylinder or a
cylindrical segment does not really solve the problem.
(An example is when we model a tree or a neuron with
cylindrical segments, the bottom of the trunk in a tree
is usually thicker than other parts. A conical frustum is
obviously a more natural fit.) So naturally one would think
about using a cone or conical frustum, which will be one
of the problems studied in this paper. However, in many
applications even that is not enough. In Figure 1, we show
an example of the Oil Pressure Sending Unit produced by
the OMIX company. In this case, if many sample points
are obtained from the surface (or interior) of the unit and
one is to compute some kind of simple object enclosing
these points, then apparently a cylinder or a cylindrical
segment (or even a cone or conical frustum) does not make
much sense. For this specific problem, we probably need
a set of these objects with a common axis. To the best of
our knowledge, this problem of fitting points with a set of
co-axisal cones, conical frustums and cylindrical segments
has never been formally studied before. In fact, even for
fitting points with a single cone or conical frustum there
has been no formal result.

In this paper, we first study the problem of enclosing a
set of 3D points using either a cone or a conical frustum (or
a cylindrical segment) of the minimum volume. We present
a unified approximation algorithm which can not only solve
the above base problems, but can also be generalized to the
cases of enclosing a set of 3D points with a pair of cones or
conical frustums or at most two cones or conical frustums
together with a cylindrical segment (i.e., as long as the
approximate objects form a convex set, see Figure 4). We
then show how to generalize the algorithms further so that
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Figure 1. 2D Illustration of the OMIX R© Oil Pressure
Sending Unit.

we can enclose a set of 3D points with an arbitrary number
of cylindrical segments, cones and conical frustums as long
as they are all co-axisal and connected (i.e., base by base,
see Figure 1). Again, the objective for these generalizations
is to minimize the sum of volumes of the objects.

Be reminded that we are in fact dealing with a special
case of an NP-complete problem. Theoretically, given n
points in 3D if one wants to compute the minimum number
of cylindrical segments so as to minimize the sum of radii
of these segments (or the sum of volume, or the volume of
the union of the segments), then the problem is strongly
NP-hard [Zh04]. The proof there uses line segments to
represent the degenerated cylindrical segments, so it also
works for degenerated cones or conical frustums.

We comment that this research is related to reverse
engineering, but in our case we work on the point cloud
directly instead of a surface triangulation. Moreover,
we present theoretically-sound approximations for our
problems. This is different from some alternative solutions
in reverse engineering [VMC97, WK05, AFS06].

The paper is organized as follows. In Section 2, we make
necessary definitions. In Section 3 we discuss the small-
est enclosing cone (conical frustum) and related problem
of covering points with enclosing objects whose union is
convex. In Section 4, we discuss how to generalize the
algorithm, by using a doubling search technique, to the
more general problem of covering points with many co-
axial cones, conical frustums and cylindrical segments. In
Section 5, we conclude the paper.

2 Preliminaries

In this section we make some necessary definitions
regarding geometry and approximation algorithms which
are related to the problem to be studied. Throughout this
paper, the distance metric is Euclidean unless otherwise

specified. Most of the definitions and the related materials
can be found in textbooks on algorithms and computational
geometry, e.g., in [CLRS01, PS85].

An approximation algorithm for a minimization opti-
mization problem Π provides a performance guarantee of
λ if for every instance I of Π, the solution value returned
by the approximation algorithm is at most λ of the optimal
value for I . (Notice that following the above definition,
λ is at least 1.) For the simplicity of description, we
simply say that this is a factor λ approximation algorithm
for Π. Typical we are only interested in polynomial time
approximation algorithms.

Given a set S of n points in 3D, the diameter of S,
D(S), is the maximum distance d(pi, pj), pi, pj ∈ S, over
all points in S. The width of S, W (S), is the minimum
distance between two parallel planes which contain all the
points in S in between. A cylinder C is an infinite set of
points which have at most a distance R to a given line l in
3D. The line l is called the center of C. The section area of
C which is vertical to l corresponds to a disk with radius R.

Given a line segment s1s2 in 3D, let the distance from
a point q to the line through s1s2 be d(q, r). The distance
from q to s1s2 is d(q, r) if r is on the line segment s1s2,
otherwise the distance from q to s1s2 is infinite. A cylindri-
cal segment G is an infinite set of points which have at most
distance R to a given line segment s1s2 in 3D. Similarly, the
line segment s1s2 is called the center of G and R is called
the radius of segment. The two section areas through s1, s2

are called the bases of G. The length of s1s2, d(s1, s2),
is called the length of G and 2R is called the width of
G. We denote them as length(G) and width(G) respectively.
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Figure 2. A Cone and a Conical Frustum.

A cone C is a pyramid with a circular cross section
which is symmetric along the line through its apex a and
the center of its base, b. The length between a and b,
h = d(a, b), is called the height of the cone. If the radius of
C’s base is R1 then the volume of C is VC = π

3 hR2
1. The

intersection of C and a plane through the line segment ab
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is a triangle, whose internal angle at the vertex a is called
the aperture angle and whose internal angle at the vertex b
is called the base angle of the cone C. A conical frustum
F (or truncated cone) is a frustum obtained by slicing the
top of a cone (with a cut parallel to its base). The length
between the centers of F ’s two bases, H , is the height of
F . If the radii of F ’s bases are R1, R2 respectively, then the
volume of F is VF = π

3 H(R2
1 + R1R2 + R2

2). In Figure
2, we show two examples of a cone and a conical frustum
respectively. As in theory a conical frustum is a special case
of a 3D cone (i.e., by setting exactly one of R1, R2 as zero),
we add a constraint that R1 is at least a constant fraction
of R2 (say 1/5), or vice versa. We assume that the conical
frustums we discuss henceforth satisfy this assumption.

3 The Smallest Enclosing Cone and the
Smallest Enclosing Conical Frustum Prob-
lems

In this section, we investigate the problem of computing
the smallest enclosing cone (conical frustum) of a set of
points in 3D such that the volume of the cone (conical frus-
tum) is minimized. This problem has found applications in
CAD and CAM, and to the best of our knowledge, there
has never been a formal study for these problems before.

We will first present an (1 + ε)-approximation for the
smallest enclosing cone problem. Then we will show how
to generalize (modify) it to handle the smallest enclosing
conical frustum and the smallest enclosing cylindrical seg-
ment problems. We will also sketch some further extension
to co-axisal convex objects.

3.1 The smallest enclosing cone problem

In this subsection we present a simple yet efficient
approximation algorithm for the smallest enclosing cone
problem. Given a set S of n points, let C∗ be the smallest
enclosing cone of S (i.e., S is completely contained in C∗

and the volume of C∗ is minimized). It is easy to see that
C∗ can be determined by 7 parameters: the coordinates of
its apex and the center of its base, as well as the radius of
its base. Therefore, one can determine C∗ using 7 points
in S. So, using a brute-force method we can compute C∗

in O(n8) time (the additional n factor comes from check-
ing whether the computed cone contains all the points in S).

In practice, even if we can improve the running time for
the smallest enclosing cone problem (say to O(n6)), it will
be hardly useful practically as n could be easily greater
than 5000. So instead of trying to reduce the running times
for obtaining the optimal or approximate solution, we will

resort to a practical close approximation for C∗. In this
case, by ‘practical’ we really mean easily implementable
yet fast enough for practical datasets. We first have the
following simple approximation algorithm:

Algorithm Cone-1(S).

(1) Compute the width W of S. Let δ ≤ 1
35 ≈ 0.02857

be a given small constant. Let ε = 13δ ≤ 13
35 ≈ 0.371.

(2) Compute a minimum axis-parallel bounding box B
of S. Decompose the faces of B into grids with grid edge
length being at most

√
2δW .

(3) Pick all possible pairs of grid points p′, p” such that
they are on different faces of B. Perform a coordinate trans-
formation such that the line p′p” is the X-axis, every point
in S has a non-negative X-coordinate in the new coordinate
system.

(4) For each point q = (x, y, z) of S in the new co-
ordinate system, perform a transformation q → q′ =
(x, 0,

√
y2 + z2). Let the set of these transformed points

be Q′. Compute the 2D convex hull of Q′ and let each
hull edge e on CH(Q′) define a candidate apex for a cone
C(p′p”, e) enclosing S (this apex is the intersection of the
extension of e with p′p”, or the X-axis).

(5) Order the upper hull of CH(Q′) from the high-
est vertex and we have two lists of edges, L1 and
L2. Consider adjacent edges ei = (vi−1, vi), ei+1 =
(vi, vi+1) in L1, and the corresponding cones C(p′p”, ei)
and C(p′p”, ei+1). Let x = x0 be the X-coordinate of
the leftmost point of CH(Q′). Discretize the interval Ii

on the X-axis, determined by the two apexes of cones
C(p′p”, ei) and C(p′p”, ei+1) with discrete points Aj’s
such that d(Aj , Aj+1) ≤ δW

2 . Discretize the interval Ji

on x = x0 in the XZ-plane, determined by the two apexes
of cones C(p′p”, ei) and C(p′p”, ei+1) with discrete points
Bj’s such that d(Bj , Bj+1) ≤ δW

2 . For each discrete point
Aj on Ii, compute the enclosing cone C1,1

i,j with apex Aj

and with aperture angle 2 � viAjo and compute the vol-
ume of C1,1

i,j (Figure 3). For each discrete point Bj in Ji,

compute the enclosing cone C1,2
i,j with an apex on the X-

axis in the XZ-plane and with base angle � viBjX0, where
X0 = (x0, 0) is on the XZ-plane.

(6) Compute symmetrically all the cones relative to L2,
C2,1

i,j , C2,2
i,j .

(7) Among all possible C1,1
i,j , C1,2

i,j , C2,1
i,j , C2,2

i,j return the
one with the minimum volume.

Regarding Algorithm Cone-1, we have the following the-
orem.

Theorem 3.1 Algorithm Cone-1 presents a factor-(1 + ε)
approximation for the smallest enclosing cone problem. The
running time of Algorithm Cone-1 is O(n log n

ε4 + n
ε5 ).
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Figure 3. Illustration for Algorithm Cone-1.

Proof. We first show the approximation factor part. Let
V ∗(S) be the optimal volume of the cone C∗ enclosing S.
Let V ∗

1 (S) be the optimal volume of a cone enclosing S
whose center goes through two grid points on B. Let V (S)
be the optimal volume of a cone enclosing S returned by
Algorithm Cone-1(S). We first show that

V (S) ≤ (1 + 5δ) · V ∗
1 (S).

Let r and h be the base radius and height of the cone
whose volume is V ∗

1 (S). By construction, V (S) ≤ π
3 (r +

δW
2 )2(h + δW

2 ). As we have W ≤ 2r, W ≤ h, we
have V (S) ≤ π

3 (r + rδ)2(h + 2hδ) ≤ (1 + 5δ)π
3 r2h =

(1 + 5δ)V ∗
1 (S), when δ ≤

√
33−5
2 ≈ 0.18614.

Second we show that

V ∗
1 (S) ≤ (1 + 7δ) · V ∗(S).

Let c∗, r∗ and h∗ be the center, the base radius and height
of the cone whose volume is V ∗(S). The line through c∗

must pass through two square grids and by construction
the smallest discrete cone has volume V ∗

1 (S) ≤ π
3 (r∗ +

δW )2(h∗ + δW + δW ). Again, we have W ≤ 2r∗, W ≤
h∗. Therefore, we have V ∗

1 (S) ≤ (1 + 2δ)3 · π
3 (r∗)2h∗ ≤

(1 + 7δ)V ∗(S), when δ ≤
√

11−3
4 ≈ 0.07915.

Putting these together, we have

V (S) ≤ (1 + 13δ) · V ∗(S) = (1 + ε)V ∗(S),

provided that δ ≤ 1
35 ≈ 0.02857 and ε = 13δ ≤ 0.371.

Now we summarize the running time of Algorithm
Cone-1(S). Apparently we have O( 1

δ2 × 1
δ2 ) = O( 1

ε4 ) pos-
sible pairs of p′, p”. After one of them is fixed (we still call
them p′, p”), the transformation to obtain set Q′ takes O(n)
time, computing CH(Q′) takes O(n log n) time and there
are O(n) possible hull edge e’s and each C(p′p”, e) can
be computed in O(1) time (as the leftmost and rightmost
points of Q′ can be computed in O(1) time, once CH(Q′) is
known). Therefore, when p′, p” are fixed, at the end of step
(4) the overall running time of the algorithm is O(n log n).

At step (5) and (6), notice that we have O(n) extreme
vertices vi’s and for each i we have O(1

δ ) discrete points
Aj’s and Bj’s. So when p′, p” are fixed, the running time
at step (5) and (6) is O(n

δ ) = O(n
ε ). Therefore, the running

time of Algorithm Cone-1 is O(n log n
ε4 + n

ε5 ). ��

In some practical applications, δ must be very small (say,
δ ≤ 0.001). Under those situations, the running time of the
above approximation algorithm might be too high. How-
ever, we notice that after the axis p′p” is fixed, Algorithm
Cone-1 really takes O(n log n + n

δ ) time. So we can use
some of the known heuristic methods to quickly find an ap-
proximate optimal axis, e.g., the one in [LZJO04]. This can
obviously handle the high running time concern for those
applications.

3.2 The smallest enclosing conical frus-
tum problem

For the smallest enclosing conical frustum problem, we
only need to make minor modifications to Algorithm Cone-
1(S). First, let x1 be the maximum X-coordinate of a point
in Q′. Let X1 = (x1, 0) be a point on the XZ-plane (Fig-
ure 2). We need to generate discrete points on the lines
x = x0 and x = x1 (instead of on x = x0 and the X-axis).
At the end of steps (5) and (6) of Algorithm Cone-1(S) we
should make some changes such that conical frustums F 1,1

i,j ,

F 1,2
i,j , F 2,1

i,j , F 2,2
i,j (instead of the corresponding cones) are

computed. The remaining details are similar to those in the
proof of Theorem 3.1 hence omitted. We thus have the fol-
lowing corollary.

Corollary 3.1 Algorithm Cone-1 can be modified to com-
pute a factor-(1+ ε) approximation for the smallest enclos-
ing conical frustum problem in O(n log n

ε4 + n
ε5 ) time.

3.3 Extension to the smallest enclosing
cylindrical segment problem

Algorithm Cone-1(S) can be extended to compute a
factor-(1 + ε) approximation for the smallest (volume)
enclosing cylindrical segment problem. Most of the re-
search on the smallest enclosing cylinder (cylindrical seg-
ment) aims at minimizing the radius, which the exception
of [Be04], in which the objective function can be volume as
well.

This modification can be done by simply finding the
point in Q′ with the maximum Y-coordinate at the end
of step (4). So the running time would be reduced to
O(n log n

ε4 ). Of course, this is not a new result; in fact, it is a
bit slower than the running time of the algorithm in [Be04],
which takes O( n

ε4 ) time to compute a factor-(1+ε) approx-
imation. But then we have a unified method for approximat-
ing S with either an approximate smallest enclosing cone,
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conical frustum or cylindrical segment. This is important in
our implementation as it saves a lot of coding effort. So we
have the following corollary.

Corollary 3.2 When used as a subroutine for the general
problem in Section 4, Algorithm Cone-1 can be modified
to compute a factor-(1 + ε) approximation for the smallest
enclosing cone, conical frustum or cylindrical segment of
S.

3.4 Further extension

Algorithm Cone-1(S) can be further extended to com-
pute a factor-(1 + ε) approximation to the minimum vol-
ume convex co-axisal object (i.e., the object is either a pair
of cones and/or conical frustums sharing a common base,
or at most two cones or conical frustums together with a
cylindrical segment in the middle (Figure 4). The idea is
to choose a pair of points on the chains L1, L2 (which are
on CH(Q′)) and the point on CH(Q′) with the highest Y-
coordinate, then use these points to determine topologically
a convex co-axisal object. Then similar to Algorithm Cone-
1, we can discretize the search intervals and compute the
one with the smallest volume (among all discrete convex
co-axisal objects considered). This optimal discrete solu-
tion is a factor-(1 + ε) approximation to the minimum vol-
ume convex co-axisal object. As we did not implement this
part of extension, we just sketch this idea and skip further
technical details.

Figure 4. Convex Co-axisal Objects.

4 Enclosing 3D points with Co-Axisal Ob-
jects

In this section, we discuss how to enclose a set S
of 3D points with a set of (connected) co-axisal objects
(i.e., cylindrical segments, cones or conical frustums).
“Connected” means that neighboring objects must share
bases. We show that the solutions we have obtained in the
previous section can be used as efficient subroutines for
solving the problem. Without loss of generality, we assume
that the points in S are sorted along their X-coordinates
(i.e, along p′p” in Algorithm Cone-1) and are stored in an
array A[1..n].

Let O∗[1..n] be the optimal solution; i.e., there are n∗

connected co-axisal objects in O∗[1..n] such that they en-
close A[1..n] and their sum of volume is minimized. When
the context is clear, we also use O∗[1..n] to denote the cor-
responding minimum volume. We first prove the following
lemma.

Lemma 4.1 If O∗[1..n] is the optimal solution, then there is
no partition of A[1..n] into A[1..n′

p] and A[n′
p + 1..n] such

that the resulting solution O∗[1..n′
p] + O∗[n′

p + 1..n] <
O∗[1..n]; moreover, if O[1..n] is not the optimal solution,
then there exists a partition which will result in a solution
better than O[1..n].

Proof. The first part of the lemma is easy to prove: If there
is such a partition then we can obtain a solution better than
O∗[1..n], which contradicts the optimality assumption of
O∗[1..n].

The second part of the lemma can be proven as follows.
If there exists no partition which will induce a solution
better than O[1..n], then by definition O[1..n] is the optimal
solution. Again, this contradicts with the non-optimality
assumption of O[1..n]. ��

The above lemma does not immediately imply an algo-
rithm. However, we can use it on finding the first optimal
object in O∗[1..n] in a greedy fashion. We have the follow-
ing local lemma.

Lemma 4.2 (Local Lemma) If k∗
1 is the first partition in

the optimal solution O∗[1..n], then there is no partition of
A[1..k∗

1 ] into A[1..n′
1] and A[n′

1 + 1..k∗
1 ] such that the re-

sulting solution O∗[1..n′
1] + O∗[n′

1 + 1..k∗
1 ] < O∗[1..k∗

1 ];
moreover, if O[1..l1] is not in the optimal solution, where l1
is the corresponding first partition, then there exists a par-
tition l′1 < l1 which induces a better solution O[1..l′1] +
O[l′1 + 1..l1] < O[1..l1].

The proof of this local lemma is similar to that
for Lemma 4.1 hence omitted. Based on this local
lemma, we can obtain a decision procedure Algorithm
Local(A[i..j], σ). Let Cone1(A[i..j]) be the approximate
minimum volume of either a cone, conical frustum or a
cylindrical segment returned by Algorithm Cone-1 (or
one of its generalizations). Algorithm Local(A[i..j], σ)
decides whether there is a local partition on A[i..j] whose
resulting solution has a sum of volume which differs from
Cone − 1(A[i..j]) by an amount of σ, where σ is some
given constant.

Algorithm Local(A[i..j], σ)
(1) Search with p = j − 1, j − 2, j − 3, ..., i + 1 for the

first p such that |(O[i..p−1]+O[p, j])−Cone1(A[i, j])| >
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σ · Cone1(A[i, j])). If p is found then return false; other-
wise, return true.

Let j − i = m. The running time of Algorithm
Local(A[i..j], σ) is f(m) = O(mT (m)), where T (m) is
the running time for Algorithm Cone-1 on an input of m

points. So f(m) = O(m2 log m
ε4 + m2

ε5 ).
We can use binary search (using the Local(-,-) algorithm

as a decision procedure) to compute the first partition
A[n1] (hence the optimal co-axisal object enclosing
A[1..n1]). This would take O(f(n) log n) time. So the
whole time complexity for computing O∗[1..n] would be
O(n∗f(n) logn).

However, we show below that with doubling search
[KK89, Ch96] this running time can be improved greatly,
especially when n∗ is large. We present the following
Algorithm MinV ol(A[1..n], σ) which solves the problem
in O(f(n) log n

n∗ ) time. We use a greedy method to find
the first breakpoint (the largest index j) such that A[1..j]
can be covered by one optimal object (within error σ), but
A[1..j + 1] cannot be covered by any one object with the
minimum volume (again within error σ).

Algorithm MinV ol(A[1..n], σ)
(1) Search with t = 1, 2, 3, ... the first t such that

Local(A[1..2t−1], σ) returns true while Local(A[1..2t], σ)
returns false. Then find the first breakpoint k1 in
A[2t−1..2t] using binary search.

(2) Repeat the above process on A[k1 +1..n] to compute
all of the n∗ − 1 breakpoints.

Clearly k1 can be found in O(f(k1) log k1) time. This is
due to that when k1 is in A[2t−1..2t], then 2t is at most 2k1.
Let n1, n2, ..., nn∗ be the sizes of the subarrays determined
by the n∗ − 1 breakpoints (note that n1 = k1). The overall
running time of MinVol is

∑

i

f(ni) log ni,

which is O(f(n) log n
n∗ ), where

∑
1≤i≤n∗ ni = n. As Al-

gorithm Cone-1 is used as a subroutine, the eventual ap-
proximation factor is increased by at most σ. By setting
α = ε + σ with ε = Θ(σ), we then have the following
theorem.

Theorem 4.1 There is a factor-(1 + α) approximation for
the problem of enclosing a set of n 3D points with n∗

connected co-axisal objects such that their sum of vol-
ume is minimized. The running time of this algorithm is
O((n2 log n

α4 + n2

α5 ) log n
n∗ ), where n∗ is the number of ob-

jects in the optimal solution.

Figure 5. An Input Cone.

Figure 6. The Reconstructed Cone from Algorithm
Cone-1.

5 Empirical Results

We show some empirical results in this section. Our pre-
liminary implementation is in Java3D API. In Figure 5, we
show an input cone with volume 41.8879. We generate
10,000 points on the surface of it and feed these points to
our program (which is based on Algorithm Cone-1). We set
δ = 0.0285. The output cone is shown in Figure 6 with a
volume of 43.8552. The difference of volume is only about
4.7%, which is significantly better than the theoretical upper
bound of 13 × δ = 37.05%.

In the implementation of Algorithm Local(A[i, j], σ) for
Algorithm MinVol, we try to practically speed up the search
for p by making simultaneously a number of κ partitions
according to the density of the points generated on the sur-
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Figure 7. A Complex Input Co-axisal Object.

face of the object. Then we use the summation of the
κ + 1 co-axisal objects’ volume to compare with that of
Cone1(A[i, j]). Intuitively, this is faster than searching for
p sequentially (i.e., trying all possible cuts) and is supported
by some of our empirical results. (In the worst case this will
not be able to reduce the running time of the algorithm, as
one can easily construct a worst case scenario. See also the
results in Table 1 and Table 2 below.)

In Figure 7, we show an input co-axisal object with vol-
ume 143.4660 and with a total of seven connected pieces.
We generate 14,000 points on the surface of it and feed these
points to our program (which is based on Algorithm Min-
Vol). We set δ = 0.0285, σ = 0.005 and κ = 5. The recon-
structed object cone is shown in Figure 8 with a volume of
147.6515. The difference of volume is only 2.92%. Read-
ers might notice the ‘points’ on the surface of the recon-
structed object, which we do not erase on purpose. These
‘points’ are shadows of the cuts we used in the doubling
search steps.

In summary, our empirical results give small errors and
conform with the theoretical results.

In Figure 9, we show another co-axisal object composed
of nine connected pieces (including a long skinny one). We
test on this object subject to different κ, σ and the density
of sample points (i.e., number of sample points used per
unit surface area). The objective is to explore the relation-
ship of these parameters with the percentage of the approx-
imation error on volume, i.e., α. Throughtout this test, we
set δ = 0.0285 (with no intention of using a smaller δ to
minimize/reduce the overall approximation error, which is
already supported by the theoretical results). Some testing
results are shown in Table 1 and Table 2. The conclusions
from the two tables are that the final approximation error
has almost nothing to do with the density, at least when

Figure 8. The Reconstructed Object from Algorithm
MinVol.

enough sample points are generated on the surface. Small
σ, on the other hand, contributes smaller errors. κ seems
to be the most difficult parameter to control, and there does
not seem to be a correlation between α and κ. So with some
application in which a very small error bound is desirable it
might be a better idea to implement the original version of
Algorithm Local(A[i, j], σ), besides selecting a small α.

κ = 3 κ = 6 κ = 9 κ = 12
σ = 0.008 13.77 12.94 13.06 13.25
σ = 0.006 13.53 12.81 13.03 13.25
σ = 0.004 13.46 12.58 13.00 13.25
σ = 0.002 13.20 12.46 12.62 13.24

Table 1. The percentage of approximation error α, with
δ = 0.0285 and density = 100.

κ = 3 κ = 6 κ = 9 κ = 12
σ = 0.008 14.07 13.52 13.66 12.74
σ = 0.006 14.00 13.50 13.65 12.74
σ = 0.004 14.00 13.49 13.64 12.73
σ = 0.002 13.74 13.47 13.60 12.67

Table 2. The percentage of approximation error α, with
δ = 0.0285 and density = 500.

6 Concluding Remarks

In this paper, motivated by applications in CAD/CAM,
we describe a general method to approximate/fit a set of 3D
points with a set of co-axisal objects (cones, conical frus-
tums or cylindrical segments). Besides theoretical proofs,
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Figure 9. The Second Complex Co-axisal Object Used
for Testing.

our preliminary empirical results are very promising. We
comment that while approximating 3D points with arbitrary
branches of co-axisal objects is strongly NP-hard [Zh04],
our method might be extended to situations where the cen-
ters of the enclosing cylindrical segments, cones and conical
frustums form a monotone chain in 3D. This (more general)
problem has other applications, e.g., in fitting a branch of a
tree or a neuron. In any case, our algorithms in this paper
can be used as efficient subroutines for this general prob-
lem.

Acknowledgments

We gratefully acknowledge the support from
the NSF of China (No. 60703028, No. 60473103,
No. 60473127), the National Basic Research Program of
China (No. 2006CB303102) and K.C. Wong Education
Foundation, Hong Kong. Special thanks to anonymous
referees for several useful comments.

References

[AAS97] P. Agarwal, B. Aronov and M. Sharir. Line
transversals of balls and smallest enclosing
cylinders in three dimensions, In Proc. 8th ACM-
SIAM Symp on Discrete Algorithms (SODA’97),
New Orleans, LA, pages 483-492, Jan, 1997.

[AFS06] M. Attene, B. Falcidieno and M. Spagnuolo. Hi-
erarchical mesh segmentation based on fitting
primitives, The Visual Computer, 22(3):181-193,
2006.

[ASC+06] D. Albocher, U. Sarel, Y-K Choi, G. Elber and
W. Wang. Efficient continuous collision detec-
tion for bounding boxes under rational motion,
In Proc. 2006 IEEE Intl. Conf. on Robotics and
Automation (ICRA’06), pages 3017-3022, 2006.

[Be04] S. Bereg. Cylindrical hierarchy for deforming
necklaces, Intl. J. of Computational Geometry
and Applications, 14(1-2):3-17, 2004.

[BS01] G. Barequet and S. Har-Peled. Efficiently ap-
proximating the minimum-volume bounding box
of a point set in three dimensions, J. Algorithms,
38:91-109, 2001.

[Ch96] T. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions, Dis-
crete and Computational Geometry, 16:361-368,
1996.

[Ch02] T. Chan. Approximating the diameter, width,
smallest enclosing cylinder, and minimum-width
annulus, Intl. J. of Computational Geometry and
Applications, 12(1-2):67-85, 2002.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, C. Stein.
Introduction to Algorithms, second edition, MIT
Press, 2001.

[JT96] G. Jacobs and F. Theunissen. Functional organi-
zation of a neural map in the cricket cercal sen-
sory system, J. of Neuroscience, 16(2):769-784,
1996.

[JT00] G. Jacobs and F. Theunissen. Extraction of
sensory parameters from a neural map by pri-
mary sensory interneurons, J. of Neuroscience,
20(8):2934-2943, 2000.

[KK89] C. Kenyon-Mathieu and V. King. Verifying Par-
tial Orders, In Proceedings of the 21st Annual
Symposium on Theory of Computing (STOC’89),
pages 367–374, 1989.

[WK05] J. Wu and J. Kobbelt, Structure recovery via hy-
brid variational surface approximation, Comput.
Graph. Forum, 24(3):277-284, 2005.

[LZJO04] W. Lin, B. Zhu, G. Jacobs and G. Orser. Cylin-
drical approximation of a neuron from recon-
structed polyhedron, In Proc. Intl. Conf. Compu-
tational Science and Applications, LNCS 3045,
pp. 257-266, 2004.

[PDJ99] S. Paydar, C. Doan and G. Jacobs. Neu-
ral mapping of direction and frequency in the
cricket cercal sensory system, J. of Neuroscience,
19(5):1771-1781, 1999.

380



[PS85] F.P. Preparata and M.I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag,
1985.
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