
Exact and approximation algorithms for the complementary

maximal strip recovery problem

Haitao Jiang∗ Zhong Li† Guohui Lin†‡ Lusheng Wang§ Binhai Zhu¶

October 23, 2010

Abstract

Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the

maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1

and G2 such that the resultant subsequences, denoted as G∗

1
and G∗

2
, can be partitioned into the

same set of maximal substrings of length greater than or equal to two. Such substrings can occur

in the reversal and negated form. The complementary maximal strip recovery (CMSR) problem

is to delete the minimum number of markers from both G1 and G2 for the same purpose, with

its optimization goal exactly complementary to maximizing the total number of gene markers

retained in the final maximal substrings. Both MSR and CMSR have been shown NP-hard and

APX-hard. A 4-approximation algorithm is known for the MSR problem, but no constant ratio

approximation algorithm for CMSR. In this paper, we present an O(3kn2)-time fixed-parameter

tractable (FPT) algorithm, where k is the size of the optimal solution, and a 3-approximation

algorithm for the CMSR problem.

Keywords: Fixed-parameter tractable, approximation algorithm, amortized analysis

1 Introduction

In comparative genomics, one of the first steps is to decompose two given genomes into synthetic

blocks — segments of chromosomes that are deemed homologous in the two input genomes. Many

decomposition methods have been proposed, but they are very vulnerable to ambiguities and errors.

A few years back, the maximal strip recovery (MSR) problem was formulated for eliminating noise

and ambiguities in genomic maps, which are isolated points that do not co-exist with other points [4,

9]. In the more precise formulation, we are given two genomic maps G1 and G2 each represented as

∗School of Computer Science and Technology, Shandong University. Jinan, Shandong, China. Email:

htjiang@cs.montana.edu
†Department of Computing Science, University of Alberta. Edmonton, Alberta T6G 2E8, Canada. Email:

zhong4@ualberta.ca
‡Email: guohui@ualberta.ca
§Department of Computer Science, City University of Hong Kong. Kowloon, Hong Kong, China. Email:

cswangl@cityu.edu.hk
¶Department of Computer Science, Montana State University. Bozeman, Montana 59717-3880, USA. Email:

bhz@cs.montana.edu

1

2 Jiang, Li, Lin et al.

a sequence of n distinct gene markers, and we want to retain the maximum number of markers in

both G1 and G2 such that the resultant subsequences, denoted as G∗
1

and G∗
2
, can be partitioned into

the same set of maximal substrings of length greater than or equal to two. Each retained marker

thus belongs to exactly one of these substrings, which can appear in the reversed and negated form

and are taken as nontrivial chromosomal segments. The deleted markers are regarded as noise or

errors.

The MSR problem, and its several close variants, have been shown NP-hard [8, 2, 3]. More

recently, it is shown to be APX-complete [2, 6], admitting a 4-approximation algorithm [3]. This

approximation algorithm is a modification of an earlier heuristics for computing a maximum clique

(and its complement, a maximum independent set) [4, 9], to convert the MSR problem to computing

the maximum independent set in t-interval graphs, which admits a 2t-approximation [1, 3]. In this

paper, we investigate the complementary optimization goal to minimize the number of deleted

markers — the complementary MSR problem, or CMSR for short. CMSR is certainly NP-hard,

and was proven to be APX-hard recently [7]. Nevertheless, there is no known constant ratio

approximation algorithm. We present here an O(3kn2)-time exact bounded search tree algorithm

for the problem, where k is the size of the optimal solution, and a 3-approximation algorithm. We

want to point out that, a short fixed-parameter tractable (FPT) algorithm was proposed in [8]

based on an incorrect lemma, which is corrected in this paper as Lemma 1. This lemma is also

useful in our FPT algorithm and the approximation algorithm.

In the sequel, we use a lower case letter to denote a gene marker. A negation sign together with

the succeeding gene indicate that the gene is in its reversal and negated form. We reserve the dot

symbol for connection use, for example, a · b means gene b comes directly after gene a. When a

common substring (also called strip, or synthetic block) of G1 and G2 is identified, we will (often)

label it using a capital letter. We abuse this capital letter a bit to also denote the set of genes in

the substring.

The rest of the paper is organized as follows. In Section 2, we present some structural properties

of the optimal solutions to the CMSR problem, which will be used in the design of the FPT

algorithm, presented in Section 3, and the design and the worst-case performance analysis of the 3-

approximation algorithm, presented in Section 4. We conclude the paper with a few open questions

in Section 5.

2 Structural properties of the CMSR problem

We first look at an example instance of the CMSR problem (also an instance of the MSR prob-

lem), in which G1 = 〈a, b, c, d, e, f, g, h, i, j, k, ℓ〉 and G2 = 〈−i,−d,−g,−f, h, a, c, b,−ℓ,−k,−j,−e〉

(we use commas to separate the gene markers for easier reading). By deleting markers c, d,

e, and h from both G1 and G2, the resultant subsequences are G∗
1

= 〈a, b, f, g, i, j, k, ℓ〉 and

G∗
2

= 〈−i,−g,−f, a, b,−ℓ,−k,−j〉. These two resultant subsequences can be decomposed into

three maximal substrings S1 = a · b, S2 = f · g · i (appearing in the reversal and negated form in

G∗
2
), and S3 = j · k · ℓ (appearing in the reversal and negated form in G∗

2
). For this small instance,

one can prove that the optimal solution to the MSR problem has size 8, and (consequently) the

optimal solution to the CMSR problem has size 4.

Given any instance, in at most quadratic time, we can determine all maximal common substrings

The CMSR problem 3

in G1 and G2. Note that the quadratic time could be improved to a linear time, with proper data

structure such as suffix-tree. Note also that a substring and its reversed negated form are considered

identical. Every letter in G1 occurs in exactly one of these substrings. Some of these substrings

have length greater than or equal to two, called type-0 substrings; the others have length one, called

isolates.

An optimal solution OPT to the instance (of the CMSR problem) is a minimum-size subset of

letters that, deleting them from G1 and G2 gives the remainder subsequences denoted G∗
1

and G∗
2
,

respectively, which can be partitioned into maximal substrings of length at least 2.

Lemma 1 There exists an optimal solution OPT to the instance, such that

1) for each type-0 substring S, either S ⊂ OPT or S ∩ OPT = ∅;

2) if |S| ≥ 4, then S ∩ OPT = ∅.

Proof. Let OPT be an optimal solution. For a type-0 substring S, assume to the contrary

that some but not all of its letters are in OPT . We know that the letters of S − OPT appear

consecutively in both G∗
1

and G∗
2
, and they form or participate in a single maximal substring,

denoted as T . We may put letters of S ∩ OPT back to G∗
1

and G∗
2

according to their positions in

G1 and G2, respectively. These letters do not break but participate in the maximal substring T .

This contradicts the optimality of OPT . Therefore, either S ⊂ OPT , or S ∩ OPT = ∅.

If S has length of 4 or greater and S ⊂ OPT , we again put the letters of S back to G∗
1

and G∗
2

according to their positions in G1 and G2, respectively. This added S, as a consecutive segment,

might break into maximal substrings of G∗
1

and G∗
2

to give rise to at most 4 distinct letters that

no longer belong to any maximal substrings of length at least 2. Since S becomes a (or part of a)

maximal common substring, we can delete the (at least 4) letters of S from OPT while adding to

OPT the (at most 4) letters that fall out of maximal substrings of length at least 2. The added

letters certainly do not belong to any type-0 substrings. Therefore, this letter-swapping process

gives another optimal solution that contains one less type-0 substring of length at least 4. Repeating

the same argument if necessary, at the end we will achieve an optimal solution that do not contain

any type-0 substring of length at least 4. 2

Lemma 1 fixes an erroneous claim made in [8], that OPT contains no type-0 substrings.

3 An exact bounded search tree algorithm

In this section, we consider solving CMSR with an FPT algorithm [5]. Basically, an FPT algorithm

for a decision problem Π on whether or not there exists a solution of value (in our case, at most) k

is an algorithm that solves the problem in O(f(k)nc) = O∗(f(k)) time, where f(·) is any function

only on k, n is the input size, and c is some fixed constant not related to k.

Given any instance, in the FPT algorithm to be described, it first determines all type-0 sub-

strings. By Lemma 1, it will never delete any letter of those type-0 substrings of length at least 4

(i.e., they are all retained in G∗
1

and G∗
2
). Some of these substrings, however, might get extended

4 Jiang, Li, Lin et al.

by appending other letters, or merge into longer final maximal common substrings of G∗
1

and G∗
2
.

Also by Lemma 1, in the sequel the algorithm considers maximal substrings of G1 and G2 as single

units. For ease of presentation, all the type-0 substrings of length at least 4 are marked. The

unmarked units are thus length-3 and length-2 type-0 substrings, and isolates. The FPT algorithm

considers an isolate; it either deletes it from G1 and G2, or marks it as retained in (the final) G∗
1

and G∗
2

by deleting some other unmarked units from G1 and G2. In either case, a smaller instance

is generated with the target solution value decreased by at least 1. The FPT algorithm recursively

works on the smaller instances, with the terminating instances containing no isolates.

The FPT algorithm examines G1 from head to tail (from left to right) to locate the first isolate,

denoted as u. If there is none, then the algorithm terminates and it marks all unmarked units.

Note that u might not be the first unmarked unit in G1, neither the first isolate in G2. Note also

that u has to have an adjacent companion to stay together in a maximal common substring of G∗
1

and G∗
2
. Let P1 denote the rightmost marked unit to the left of u in G1, if exists; let S1 denote the

leftmost marked unit to the right of u in G1, if exists. By Lemma 1, this companion has to be the

last letter of P1, or the first letter of S1, or some unmarked unit in between P1 and S1.

Lemma 2 If isolate u is retained in the final G∗
1

and G∗
2
, then at least one unmarked unit must be

deleted.

Proof. Let P2 denote the rightmost marked unit to the left of u in G2, if exists; let S2 denote

the leftmost marked unit to the right of u in G2, if exists (Figure 1). We consider the following

three cases.

G2: r r r
P2 r r r f

u
r r r

S2 r r r

G1: r r r
P1 r r r f

u
r r r

S1 r r r

�
�
�
�
�
�
�

Figure 1: The local configuration at isolate u.

In the first case, the adjacent companion of isolate u to stay together in a maximal common

substring of G∗
1

and G∗
2

is the last letter of P1. It follows that P1 and P2 are identical. If there are

letters in between P1 and u in G1, the lemma is proved. Otherwise, P1 · u is a substring of G1.

Similarly, if there are letters in between P2 and u in G2, the lemma is proved. Otherwise, P2 · u is

a substring of G2. This is a contradiction to the assumption that u is an isolate.

In the second case, the adjacent companion of isolate u to stay together in a maximal common

substring of G∗
1

and G∗
2

is the first letter of S1. This case can be similarly argued as in the first

case.

In the last case, the adjacent companion of isolate u to stay together in a maximal common

substring of G∗
1

and G∗
2

is some unmarked unit, denoted as V , in between P1 and S1 in G1. V has

The CMSR problem 5

to be in between P2 and S2 in G2. Assume without loss of generality that u appears to the left of

V in G1. Then, u also appears to the left of V in G2 (or −u appears to the right of −V in G2).

There must be some letters in between u and V in G1 or in G2, otherwise contradicting to the

assumption u is an isolate. These letters are not retained in G∗
1

and G∗
2
. 2

The key step in the FPT algorithm is to locate this adjacent companion of isolate u, if it is

retained. The search process goes as follows. Compatible to the proof of Lemma 2, the algorithm

scans from isolate u to the left in G1 to locate the first unit V1 that also appears to the left of u

but not passing P2 in G2, if exists. This V1 can be an unmarked unit, can also be P1 (and thus

P2), but not to the left of P1. The intention is that, if indeed the adjacent companion of isolate u

as described in Lemma 2 is to the left of u, then either it is V1, or otherwise V1 has to be deleted.

Likewise, the algorithm scans from isolate u to the left in G2 to locate the first unit V2 that also

appears to the left of u but not passing P1 in G1, if exists. Similarly, this V2 can be an unmarked

unit, can also be P2 (and thus P1), but not to the left of P2.

G2: r r r
P2 r r r

V1 r r r
V2 r r r f

u
r r r

S2 r r r

G1: r r r
P1 r r r

V2 r r r
V1 r r r f

u
r r r

S1 r r r

�
�
�
�
�
�
�

�
�

�
�

��

C
C
C
C
CC

Figure 2: Searching for V1 and V2 to the left of isolate u.

Note that V1 exists if and only if V2 exists, since V1 is a candidate when searching for V2 and vice

versus (Figure 2). In Case L1, V1 and V2 are identical; thus firstly there must be some unmarked

units in between V1 and u in either G1 or G2; and secondly the algorithm deletes these units to

generate an instance of solution value k′ ≤ k − 1, since at least a letter is deleted. In Case L2,

V1 and V2 are different; thus they are unmarked and they cannot co-exist in G∗
1

and G∗
2
; let A1

denote the set of letters in between V1 and u (including V1) in G1, and A2 denote the set of letters

in between V2 and u (including V2) in G2, then the algorithm deletes either all the letters of A1 or

all the letters of A2 to generate two instances of solution value k′ ≤ k − 2, since |A1|, |A2| ≥ 2.

The algorithm also needs to explore to the right of isolate u if the adjacent companion of isolate

u as described in Lemma 2 is to the right of u, and we use W1 and W2 to denote the counterparts

(Figure 3). First of all, if V1/V2 do not exist, then W1/W2 must exist for otherwise isolate u has

to be deleted. In Case R1, W1 and W2 are identical; then similarly there must be some unmarked

units in between u and W1 in either G1 or G2; and the algorithm deletes these units to generate

an instance of solution value k′ ≤ k − 1. In the other case, W1 and W2 are different; let B1 denote

the set of letters in between u and W1 (including W1) in G1, and B2 denote the set of letters in

between u and W2 (including W2) in G2.

If |B1| = 1, then W1 is an isolate; the algorithm proceeds to scan from isolate W1 further to the

right in G1 to locate the first unmarked unit X1 that also appears to the right of u in G2. Since

6 Jiang, Li, Lin et al.

G2: r r r
P2 r r r f

u
r r r

W2 r r r
X2 r r r

W1 r r r
S2 r r r

G1: r r r
P1 r r r f

u
r r r

W1 r r r
X1 r r r

W2 r r r
S1 r r r

�
�
�
�
�
�
�

�
�

�
�

�
�

�
��

@
@

@
@

@@

Figure 3: Searching for W1, W2, X1, and X2 to the right of isolate u.

W2 is a candidate for X1, we conclude that such X1 exists in between W1 and W2, or it is W2. In

Case R2, X1 sits to the left of W1 in G2 and there are no units in between W1 and X1 in G1; the

algorithm deletes W1 to generate an instance of solution value k′ = k − 1. The reason is that if

W1 is retained in G∗
1

and G∗
2
, one can always delete it and add back X1 to have another optimal

solution. In the other case, if there are no units in between W1 and X1 in G1, then X1 must sit to

the right of W1 in G2, and the algorithm adds the letters of X1 to B1; if X1 sits to the left of W1

in G2, then there must be some units in between W1 and X1 in G1, and the algorithm adds these

units into B1. By such an adding process, B1 contains at least two letters.

If |B2| = 1, the algorithm does exactly the same procedure, either falling into Case R2 to delete

W2 and generate an instance of solution value k′ = k − 1, or adding at least one extra letter to B2.

Consequently, in the remaining case (Case R3), the algorithm faces with two sets B1 and B2,

both of size at least 2. Due to the fact that none of the letters of B1 can co-exist with any letter

of B2, the algorithm deletes either all the letters of B1 or all the letters of B2 to generate two

instances of solution value k′ ≤ k − 2, since |B1|, |B2| ≥ 2.

Let f(k) be the number of smaller instances that are solved for assembling an optimal solution

to the instance of solution value k. The above analysis states that the following recurrence holds.

f(k) ≤

f(k − 1), if u is deleted;

+ max

O(1), if u is kept and V1/V2 do not exist;

f(k − 1), if u is kept and falls into Case L1;

2f(k − 2), if u is kept and falls into Case L2;

+ max

O(1), if u is kept, V1/V2 exist, but W1/W2 do not exist;

f(k − 1), if u is kept and falls into Case R1;

f(k − 1), if u is kept and falls into Case R2;

2f(k − 2), if u is kept and falls into Case R3.

Solving this recurrence gives us f(k) ≤ 3k. Since the preprocessing to determine all maximal

common substrings of G1 and G2 needs at most quadratic time, so does the scanning process for

isolate u, V1, V2, W1, W2, X1 and X2, if necessary and if they exist, the total running time of

the FPT algorithm is O(3kn2) = O∗(3k). A high-level description of the algorithm is in Figure 4.

Therefore, we have proved the following theorem.

The CMSR problem 7

Theorem 3 The CMSR problem can be solved in O(3kn2) time, where n is the number of gene

markers, k is the minimum number of gene markers such that deleting them from the genomic maps

partitions the remainder maps into a common set of synthetic blocks of size at least two.

Input: two sequences (permutations) G1 and G2 on n letters, parameter k.

Output: a set of k letters or less, removing which from the two sequences results in a partition

into maximal common substrings of length at least 2.

1. Determines all type-0 substrings, and marks those of length 4 and greater;

2. Scans G1 from head to tail (left to right) for the first isolate u;

2.1. if no such u found, return;

2.2. sets “flag off”;

3. Deletes u, and recursively calls on the remainder sequences with parameter k − 1;

4. Scans in G1 from u to its left for V1;

4.1. if no such V1 found, sets flag on;

4.2. else scans in G2 from u to its left for V2;

4.2.1. if V1 = V2, executes Case L1;

4.2.2. else executes Case L2;

5. Scans in G1 from u to its right for W1;

5.1. if no such W1 found and flag on, return false;

5.2. else if no such W1 found, return;

5.3. else scans in G2 from u to its right for W2;

5.3.1. if W1 = W2, executes Case R1;

5.3.2. else

5.3.2.1. lets B1 be the set of letters from u up to W1 in G1, including W1;

lets B2 be the set of letters from u up to W2 in G2, including W2;

5.3.2.2. if |B1| = 1, scans in G1 from W1 to its right for X1;

5.3.2.2.1. if no units in between W1 and X1 in G1 and X1 is to the left of W1 in G2,

executes Case R2;

5.3.2.2.2. else if no units in between W1 and X1 in G1,

then adds the letters of X1 to B1;

5.3.2.2.3. else if X1 is to the left of W1 in G2,

then adds the letters in between W1 and X1 in G1 to B1;

5.3.2.3. if |B2| = 1, scans in G2 from W2 to its right for X2;

5.3.2.3.1. if no units in between W2 and X2 in G2 and X2 is to the left of W2 in G1,

executes Case R2;

5.3.2.3.2. else if no units in between W2 and X2 in G2,

then adds the letters of X2 to B2;

5.3.2.3.3. else if X2 is to the left of W2 in G1,

then adds the letters in between W2 and X2 in G2 to B2;

5.3.2.4. executes Case R3;

Figure 4: A high-level description of the FPT algorithm for the CMSR problem.

8 Jiang, Li, Lin et al.

4 A 3-approximation algorithm

From Lemma 1, all type-0 substrings of length 4 and greater are retained in our approximation

algorithm to be presented next. The output of our algorithm will be compared against an optimal

solution OPT which also retains all these substrings. In the following, we only deal with length-3

and length-2 type-0 substrings, and isolates.

In the first step, our algorithm retains all length-3 and length-2 type-0 substrings. In the

second step, our algorithm recursively removes one isolate; such a removed isolate has to satisfy the

condition (C) listed in the following, with the goal that removing it from (the current) G1 and G2

gives rise to (at least) a new common substring of length 2. This new common substring is not a

common substring to the original G1 and G2, and is called a type-1 substring for distinction purpose.

Note that after such isolate removal, some units (type-0 and/or type-1 substrings, and/or isolates)

might be able to be merged into longer maximal common substrings. For consistency purpose, we

do not merge two existing substrings; but we will append isolates to existing substrings (type-0 or

type-1) whenever possible, since our goal is to get rid of isolates. These appended isolates become

no longer isolates, and the extended substrings keep their type (type-0 or type-1).

The isolate chosen to be removed by our algorithm has to satisfy the following condition (C).

When none can be identified, the algorithm enters the last step to remove all the remaining isolates,

if any. Denote this target isolate as u.

(C) In either G1 or G2, two neighboring units of u are also isolates; and after removing u, they

form into a type-1 common substring of length 2.

It could be the case that in both G1 and G2, the two neighboring units of u form into a type-1

common substring of length 2 after deleting u; our algorithm will identify the case and subsequently

all these isolates become no longer isolates. There is another (disjoint) case in which, besides forming

the type-1 common substring of length 2, another neighboring isolate of u in different sequence can

be appended to an existing, or the newly formed, substring; our algorithm will identify this case too

and subsequently the appended isolate becomes no longer an isolate. Intuitively, removing isolate

u saves (i.e., retains) at least two other isolates, and can save one or two more isolates.

For ease of discussion, let U = {u1, u2, . . . , um} denote the set of isolates located in sequential

order by our algorithm, which are all removed. Associated with each uj, let Vj denote the set of

neighboring isolates of uj in the current G1 and G2 that become no longer isolates after removing

uj . We have |Vj | ≥ 2, for j = 1, 2, . . . ,m. In particular, the two neighboring isolates of uj that

form a type-1 substring after deleting uj are denoted as aj and bj (where there are two such pairs,

aj and bj refer to an arbitrary one of them). Let R denote the set of remaining isolates at the time

the algorithm finds no isolates satisfying condition (C); that is, R is the set of isolates deleted by

our algorithm at the last step. The following two lemmas state some preliminary observations.

Lemma 4 The set of all isolates I is the union of the disjoint sets U , V1, V2, . . . , Vm, and R, that

is, I = U ∪
(

∪m
j=1

Vj

)

∪ R; moreover, the algorithm deletes all isolates of U ∪ R, but no others.

Lemma 5 In the original input sequences G1 and G2, the letters in between aj and bj all belong

to {u1, u2, . . . , uj−1, uj}; moreover, uj is in between aj and bj in exactly one of G1 and G2.

The CMSR problem 9

Recall that we use in the discussion an optimal solution OPT which satisfies the two properties

listed in Lemma 1. We partition OPT into a subset O3 of length-3 type-0 substrings, a subset O2

of length-2 type-0 substrings, and a subset O1 of isolates: OPT = O3 ∪ O2 ∪O1. These substrings

and isolates are referred to as units in the sequel. Consider the inverse process of deleting units of

OPT from G1 and G2 to obtain the final sequences G∗
1

and G∗
2
. In this inverse process, we add the

units of OPT back to G∗
1

and G∗
2

using their original positions in G1 and G2 to re-construct G1

and G2. At the beginning of this process, there are no isolated letters in G∗
1

or G∗
2
; all the isolates

of I are thus either units of I ∩ O1, or generated by inserting units of OPT back, which break

the maximal common substrings into fragments of which some are single letters. At any time of

the process, inserting one unit of OPT back to the current G1 and G2 can generate at most four

fragments of single letters, since in the worst case two current length-2 substrings can be broken

into four such fragments. Some of these single letters might not be the isolates of U ∪R; those that

are in U ∪R, as well as the inserted unit when it belongs to (U ∪R)∩O1, are said to be associated

with the inserted unit of OPT . We firstly insert units of O3 and O2, one by one; each of them is

associated with at most four isolates of U ∪ R (Lemma 6); the resultant sequences are denoted as

G0
1

and G0
2
.

Lemma 6 The number of isolates of U ∪ R associated with each unit of O3 ∪ O2 is at most four.

Next, we insert isolates of O1 ∩ (uj ∪ Vj) back into G0
1

and G0
2
, for j = 1, 2, . . . ,m sequentially.

At the end of the inserting isolates of O1 ∩ (uj ∪ Vj), the resultant sequences are denoted as Gj
1

and Gj
2
. We emphasize that this sequential order is very important, as we need it in the proof of

Lemma 7, which counts the average number of isolates of U ∪ R associated with each isolate of

O1 ∩ (uj ∪ Vj).

Lemma 7 For any j, the average number of isolates of U ∪ R associated with isolates of O1 ∩

(uj ∪ Vj) is at most 2.5.

Proof. Recall that we insert isolates of O1 ∩ (uj ∪ Vj) back into G0
1

and G0
2

in sequential order

of j. When we start to insert isolates of O1 ∩ (uj ∪ Vj), all isolates of O1 ∩
(

∪j−1

i=1
ui ∪ Vi

)

have been

inserted and the resultant sequences are Gj−1

1
and Gj−1

2
.

Firstly, if O1 ∩ (uj ∪ Vj) = ∅, then the lemma is proved automatically. So we assume in the

following that O1 ∩ (uj ∪ Vj) 6= ∅. Let aj and bj be the two neighboring isolates of uj when the

approximation algorithm located uj, as in Lemma 5, such that by removing uj , aj · bj became a

type-1 length-2 substring. We consider the following two disjoint cases: uj ∈ O1 and uj /∈ O1.

In the first case, uj ∈ O1. When aj , bj ∈ O1 and aj and bj are separated by certain letters of

{u1, u2, . . . , uj−1} in G1 (G2, respectively), inserting aj and bj into Gj−1

1
(Gj−1

2
, respectively) does

not generate any new isolates of U ∪R; when aj, bj ∈ O1 and aj and bj are separated by no letters

of {u1, u2, . . . , uj−1} in G1 (G2, respectively), inserting aj and bj into Gj−1

1
(Gj−1

2
, respectively)

can generate at most two isolates of U ∪ R. When one and only one of aj and bj is in O1, then

inserting it into Gj−1

1
and Gj−1

2
does not generate any new isolates of U ∪ R.

If |Vj | = 4, then the other two letters, cj and dj , have the same properties as aj and bj . When

|Vj ∩ O1| = 4, that is, aj , bj , cj , dj ∈ OPT , inserting aj, bj and cj , dj can generate at most 8 new

isolates of U ∪R. When |Vj ∩O1| = 3, and assuming aj , bj , cj ∈ OPT , inserting aj , bj can generate

10 Jiang, Li, Lin et al.

at most 4 new isolates of U ∪ R, but inserting cj generates no new isolates of U ∪ R. When

|Vj ∩O1| = 2, and in the first scenario assuming aj , bj ∈ OPT , inserting aj , bj can generate at most

4 new isolates of U ∪ R; in the second scenario assuming aj, cj ∈ OPT , inserting aj, cj generates

no new isolates of U ∪ R. When |Vj ∩ O1| = 1, and assuming aj ∈ OPT , inserting aj generates no

new isolates of U ∪ R. After inserting isolates of O1 ∩ Vj , if any, inserting uj back into the current

Gj−1

1
and Gj−1

2
does not generate any new isolates of U ∪R. In summary, for |O1 ∩ Vj| = 4, 3, 2, 1,

and 0, respectively, the total number of isolates of U ∪R associated with isolates of O1 ∩ (uj ∪ Vj)

is at most 8, 4, 4, 0, and 0, respectively. It follows that the average number of isolates of U ∪ R

associated with isolates of O1 ∩ (uj ∪ Vj) is at most 8/5.

If |Vj| = 3, then the third letter, cj , was appended to an existing (type-0 or type-1) substring

S when the approximation algorithm removed uj . Similarly to the discussion on aj and bj, cj and

S can only be separated by letters of {u1, u2, . . . , uj−1}, besides uj, in G1 and G2. Moreover, uj

is in between cj and S in at most one of G1 and G2. Therefore, when cj ∈ O1, inserting it into

Gj−1

1
and Gj−1

2
can generate at most one new isolate of U ∪ R. After inserting isolates of O1 ∩ Vj ,

if any, inserting uj back into the current Gj−1

1
and Gj−1

2
does not generate any new isolates of

U ∪ R. Therefore, for |O1 ∩ Vj | = 3, 2, 1, and 0, respectively, the total number of isolates of U ∪ R

associated with isolates of O1 ∩ (uj ∪ Vj) is at most 5, 4, 1, and 0, respectively. It follows that the

average number of isolates of U ∪ R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 4/3.

If |Vj | = 2, after inserting isolates of O1 ∩Vj, if any, inserting uj back into the current Gj−1

1
and

Gj−1

2
can generate at most two isolates of U ∪R. Therefore, for |O1∩Vj| = 2, 1, and 0, respectively,

the total number of isolates of U ∪ R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 6, 2, and

0, respectively. It follows that the average number of isolates of U ∪ R associated with isolates of

O1 ∩ (uj ∪ Vj) is at most 2.

In the second case, uj /∈ O1. Assume without loss of generality that uj is in between aj and

bj in G1 in Lemma 5. When aj ∈ O1 (bj ∈ O1, respectively) and aj (bj, respectively) and uj are

separated by certain letters of {u1, u2, . . . , uj−1} in G1, inserting aj (bj , respectively) into Gj−1

1

does not generate any new isolates of U ∪ R. When aj ∈ O1 (bj ∈ O1, respectively) and aj

(bj , respectively) and uj are separated by no letters of {u1, u2, . . . , uj−1} in G1, inserting aj (bj ,

respectively) into Gj−1

1
can generate at most two isolates of U ∪R, including uj . Nonetheless, when

aj , bj ∈ O1 and aj and bj are separated by no letters of {u1, u2, . . . , uj−1} in G1, inserting aj and

bj into Gj−1

1
can generate at most three isolates of U ∪R, including uj . Similarly, when aj, bj ∈ O1

and aj and bj are separated by certain letters of {u1, u2, . . . , uj−1} in G2, inserting aj and bj into

Gj−1

2
does not generate any new isolates of U ∪ R; when aj, bj ∈ O1 and aj and bj are separated

by no letters of {u1, u2, . . . , uj−1} in G2, inserting aj and bj into Gj−1

2
can generate at most two

isolates of U ∪ R.

If |Vj | = 4, then the other two letters, cj and dj , have the same properties as aj and bj . Note

that when inserting aj and bj into Gj−1

1
generates new isolates of U ∪R, these isolates will be seen

again when inserting cj and dj into Gj−1

2
. Therefore, for |O1 ∩ Vj | = 4, 3, 2, 1, and 0, respectively,

the total number of isolates of U ∪ R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 7, 4, 2, 0,

and 0, respectively. It follows that the average number of isolates of U ∪R associated with isolates

of O1 ∩ (uj ∪ Vj) is at most 7/4.

If |Vj| = 3, then the third letter, cj , was appended to an existing (type-0 or type-1) substring

S when the approximation algorithm removed uj. Similarly to the discussion on aj and bj , cj

and S can only be separated by letters of {u1, u2, . . . , uj−1} in G1 and G2, besides uj in G2.

The CMSR problem 11

Therefore, when cj ∈ O1, inserting cj into Gj−1

2
can generate at most one new isolate of U ∪ R,

which will be seen when inserting bj into Gj−1

1
. Note that S might start with aj or end with bj .

For |O1 ∩ Vj| = 3, 2, 1, and 0, respectively, the total number of isolates of U ∪ R associated with

isolates of O1 ∩ (uj ∪ Vj) is at most 4, 2, 0, and 0, respectively. It follows that the average number

of isolates of U ∪ R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 4/3.

If |Vj | = 2, for |O1 ∩ Vj | = 2, 1, and 0, respectively, the total number of isolates of U ∪ R

associated with isolates of O1 ∩ (uj ∪ Vj) is at most 5, 2, and 0, respectively. It follows that the

average number of isolates of U ∪ R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 5/2.

From the above case analysis, we conclude that the average number of isolates of U∪R associated

with isolates of O1 ∩ (uj ∪ Vj) in the worst case is 5/2 = 2.5. This finishes the proof. 2

Lastly, we insert isolates of O1 ∩ R back into Gm
1

and Gm
2

. At the end of this last inserting

process, we achieve the input sequences G1 and G2.

Lemma 8 The average number of isolates of U ∪ R associated with isolates of O1 ∩ R is at most

3.

Proof. The key fact used in the proof is that after locating isolate um, removing it from the

current sequences, and making letters in Vm non-isolates, the approximation algorithm finds no

more isolates to iterate the process. That is, for any two remaining isolates r, s ∈ R that are not

separated by any existing (type-0 or type-1) substring in both sequences (that is, r and s can

potentially form into a substring, or participate together), there are at least two other isolates,

duplications are separately counted, in between them, counting from both sequences.

In sequences Gm
1

and Gm
2

obtained after inserting units of O3 ∪O2 ∪
(

O1 ∩
(

U ∪ ∪m
j=1

Vj

))

into

G∗
1

and G∗
2
, some units of R are already isolates, while the other reside in substrings (of length at

least two). These units residing in substrings are to be singled out by inserting units of O1 ∩R into

Gm
1

and Gm
2

; and it is these units that are associated with isolates of O1 ∩ R.

Let S1, S2, . . . , Sk denote the substrings in Gm
1

and Gm
2

that are made of isolates of R; and

T1, T2, . . . , Tℓ denote the fragments of substrings in Gm
1

and Gm
2

, where the substrings are not

purely made of isolates of R, but the fragments are. Note that |Si| ≥ 2 for every i. To single out

all letters of
(

∪k
i=1

Si

)

∪
(

∪ℓ
j=1

Tj

)

, we first need at least one isolate of O1 ∩R to chop each Ti off its

host substring; afterwards, the above argument states that for every two adjacent letters in Si or

Tj , there are at least two isolates of O1 ∩ R in between them, counting from both sequences. This

gives a lower bound on the minimum number of isolates of O1 ∩ R. Since each isolate of O1 ∩ R

can appear in two places, we have

2|O1 ∩ R| ≥ ℓ +
k

∑

i=1

2(|Si| − 1) +
ℓ

∑

j=1

2(|Tj | − 1) ≥
k

∑

i=1

|Si| +
ℓ

∑

j=1

|Tj |.

Therefore, the total number of isolates of U ∪ R (in this case, R only) that are associated with

isolates of O1∩R is at most
∑k

i=1
|Si|+

∑ℓ
j=1

|Tj |+ |O1∩R|, which is less than or equal to 3|O1∩R|.

This proves the lemma. 2

12 Jiang, Li, Lin et al.

Theorem 9 The CMSR problem admits a 3-approximation algorithm.

Proof. To summarize, all isolates of U ∪ R are associated with units of OPT . From Lemmas 6,

7, and 8, we have

|U∪R| ≤ 4|O3∪O2|+2.5|O1∩
(

U ∪
(

∪m
j=1

Vj

))

|+3|O1∩R| ≤
4

3
×3|O3|+2×2|O2|+3×|O1| ≤ 3|OPT |,

where |OPT | denotes the number of letters in OPT and thus |OPT | = 3|O3| + 2|O2| + |O1|. Note

that the algorithm deletes all isolates of U ∪R, but no others, and therefore it is a 3-approximation

algorithm. 2

5 Conclusions

In this paper, we presented a fixed-parameter tractable algorithm and a 3-approximation algorithm

for the CMSR problem. The running time of the FPT algorithm is O∗(3k), where k is the size of the

optimal solutions. We believe that a more careful analysis on the local configuration of an isolate can

lead to faster FPT algorithms. In the approximation algorithm, the key design technique is greedy,

and the performance ratio is proven using an inverse amortized analysis. Better approximation

algorithms are certainly our future work.

Acknowledgment

We thank Henning Fernau for his valuable comments, and anonymous reviewers for several insightful

comments on an earlier version of the paper. HJ and BZ are partially supported by NSF grant

DMS-0918034 and NSF of China under project 60928006. ZL and GL are supported by NSERC.

LW is supported by a grant from the RGC HKSAR of China under project CityU 120905.

References

[1] R. Bar-Yehuda, M. M. Halldórsson, J. S. Naor, H. Shachnai, and I. Shapira. Scheduling split

intervals. SIAM Journal on Computing, 36:1–15, 2006.

[2] L. Bulteau, G. Fertin and I. Rusu. Maximal strip recovery problem with gaps: hardness

and approximation algorithms. Proceedings of the 20th Annual International Symposium on

Algorithms and Computation (ISAAC’09), LNCS 5878, pages 710-719, 2009.

[3] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering synthetic blocks from comparative maps.

Journal of Combinatorial Optimization, 18:307–318, 2009.

[4] V. Choi, C. Zheng, Q. Zhu, and D. Sankoff. Algorithms for the extraction of syntheny blocks

from comparative maps. In Proceedings of the 7th International Workshop on Algorithms in

Bioinformatics (WABI’07), pages 277–288, 2007.

[5] R. Downey and M. Fellows. Parameterized Complexity, Springer-Verlag, 1999.

The CMSR problem 13

[6] M. Jiang. Inapproximability of maximal strip recovery. Proceedings of the 20th Annual Inter-

national Symposium on Algorithms and Computation (ISAAC’09), LNCS 5878, pages 616-625,

2009.

[7] M. Jiang. Inapproximability of maximal strip recovery, II. Proceedings of the 4th Annual Fron-

tiers of Algorithmics Workshop (FAW’10), LNCS 6213, pages 53-64, 2010.

[8] L. Wang and B. Zhu. On the tractability of maximal strip recovery. J. of Computational

Biology, 17(7):907-914, 2010. (A one-page correction is to appear in January 2011.)

[9] C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from comparative maps

in rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, 4:515–522, 2007.

	Introduction
	Structural properties of the CMSR problem
	An exact bounded search tree algorithm
	A 3-approximation algorithm
	Conclusions

