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Abstract. In this paper, we compute the first linear kernel for the com-
plementary problem of Maximal Strip Recovery (CMSR) — a well-known
NP-complete problem in computational genomics. Let k be the param-
eter which represents the size of the solution. The core of the technique
is to first obtain a tight 18k bound on the parameterized solution search
space, which is done through a mixed global rules and local rules, and via
an inverse amortized analysis. Then we apply additional data-reduction
rules to obtain a tight 78k kernel for the problem. Combined with the
known algorithm using bounded degree search, we obtain the best FPT
algorithm for CMSR to this date, running in O(2.36kk2 + n2) time.

1 Introduction

The rapid development of the parameterized complexity theory greatly enhances
our understanding beyond NP-completeness and the traditional computational
complexity theory [6, 22, 13]. For many theoretically intractable applications,
FPT (fixed-parameter tractable) algorithms can be very effective [7, 11, 21].

In the parameterized complexity theory, kernelization is a very useful tool [9,
14]. Loosely, kernelization means the reduction of the problem instance size to a
function of k (k is the parameter throughout this paper). In reality, small (espe-
cially small linear) kernel can make it feasible to use some traditional method like
branch-and-bound or ILP, so it is always meaningful. On the other hand, there
are various problems which do not admit small (or even polynomial) kernels
unless the polynomial hierarchy collapses to its third level [1, 8, 10, 12].

In the Complementary Maximal Strip Recovery (CMSR) problem, we need to
delete at most k letters from the two input sequences (signed permutations) such
that the remaining letters all form into strips (or maximal common substrings
of length at least two, some could be in negated and reversed form). To this
date, there are two bounded search tree algorithms running in O∗(3k) [17] and
O∗(2.36k) [3] respectively for CMSR, but no (linear or even polynomial) kernel
is known. Part of the reason that a (linear) kernel is elusive for the CMSR is that
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the only known local rule (see Lemma 1, i.e., ‘long’ maximal common substrings
can be kept as strips) is not enough to establish any polynomial kernel.

In this paper, we obtain a linear 78k kernel for CMSR. The core of our idea
is to first bound the parameterized solution search space (i.e., the set of letters,
whose size is a function of k, from which an optimal solution can be obtained).
By applying a set of global rules (together with the local rule induced by Lemma
1), we show that this space is of size at most 18k. On top of this we can build
successfully the linear kernel of size 78k for CMSR.

This paper is organized as follows. In Section 2, we define the MSR and
CMSR problems and the corresponding concepts for FPT formally. In Section
3, we derive the 78k kernel bound for CMSR. In Section 4, we close the paper
with several open problems.

2 Preliminaries

MSR and CMSR Maximal Strip Recovery (MSR) was a problem originally
proposed by the David Sankoff group to eliminate noise and ambiguities in ge-
nomic maps [5, 24]. In comparative genomics, a genomic map (interchangeably, a
sequence) is represented by a sequence of distinct gene markers (interchangeably,
letters). A gene marker can appear in two different genomic maps, in either pos-
itive or negative form. A strip (syntenic block) is a sequence of distinct markers
that appears as subsequences in two maps, either directly or in reversed and
negated form. Given two genomic maps G1 and G2, the problem Maximal Strip
Recovery (MSR) [5, 24] is to find two subsequences of d strips (each of length at
least two), denoted as G⋆

i , for i = 1, 2, and find two signed permutations πi of
〈1, . . . , d〉, such that each sequence G⋆

i = Sπi(1) . . . Sπi(d) (here S−j denotes the
reversed and negated sequence of Sj) is a subsequence of Gi, and the total length
of the strips Sj is maximized. Intuitively, those gene markers not included in G⋆

1

and G⋆
2 are noise and ambiguities. The complementary problem of deleting the

minimum number of noise and ambiguous markers to have a feasible solution
(i.e., every remaining marker must be in some strip) is exactly the complement
of MSR, which will be abbreviated as CMSR.

We refer to Fig. 1 for an example. In this example, each integer represents a
marker.

Not surprisingly, in [23], both MSR and CMSR were shown to be NP-
complete. Most recently, MSR was shown to be APX-hard [2, 15] and CMSR
was also shown to be APX-hard [16]. For positive results, in [5, 24], some heuris-
tic approaches based on MIS and Max Clique were proposed. In [4], a factor-
4 polynomial-time approximation algorithm was proposed for MSR. In [17], a
factor-3 polynomial-time approximation algorithm was proposed for CMSR and
an O∗(3k) FPT algorithm was proposed for CMSR (the latter improves and
corrects an FPT bound in [23]). Recently, the approximation factor for CMSR
was improved to 2.33 [20] and the corresponding FPT algorithmic bound was
improved to O∗(2.36kn2) [3]. In this paper, we will focus only on the complement
of MSR, or the CMSR problem.
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G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉

G2 = 〈−9,−4,−7,−6, 8, 1, 3, 2,−12,−11,−10,−5〉

S1 = 〈1, 2〉

S2 = 〈6, 7, 9〉

S3 = 〈10, 11, 12〉

π1 = 〈1, 2, 3〉

π2 = 〈−2, 1,−3〉

G
⋆

1 = 〈1, 2, 6, 7, 9, 10, 11, 12〉

G
⋆

2 = 〈−9,−7,−6, 1, 2,−12,−11,−10〉

Fig. 1. An example for the problem MSR and CMSR. MSR has a solution size of eight
(with d = 3 strips in G⋆

1 and G⋆

2; i.e., (1,2),(6,7,9) and (10,11,12)). CMSR has a solution
size of four: the deleted markers are 3,4,5 and 8.

FPT and Kernel We now present some definitions regarding FPT algorithms.
Basically, a fixed-parameter tractable (FPT) algorithm for a decision problem
Π with parameter k is an algorithm which solves the problem in O(f(k)nc) =
O∗(f(k)) time, where f is any function only on k, n is the input size and c is
some fixed constant not related to k. FPT also stands for the set of problems
which admit such an algorithm.

A useful technique in parameterized algorithmics is to provide polynomial
time executable data-reduction rules that lead to a problem kernel. A data-
reduction rule replaces (I,k) by an instance (I ′,k′) in polynomial time such that:
(1) |I ′| ≤ |I|, k′ ≤ k, (2) (I,k) is a Yes-instance if and only if (I ′,k′) is a Yes-
instance, and (3) |I ′| ≤ g(k) for some function g. |I ′| is called the size of the kernel
for the problem instance (I, k). A set of polynomial-time data-reduction rules
for a problem are applied to an instance of the problem to achieve a reduced
instance termed the kernel. A parameterized problem is FPT if and only if
there is a polynomial time algorithm applying data-reduction rules that reduce
any instance of the problem to a kernelized instance of size g(k). More about
parameterized complexity can be found in the monographs [7, 11, 21].

3 A Linear Kernel for CMSR

Our idea for constructing the linear 78k kernel for CMSR is based on first identi-
fying the parameterized solution search space for CMSR. Formally, a parameter-
ized solution search space for the CMSR problem is a subset S of the markers in
G1, G2 such that we only need to delete k markers in S to obtain some optimal
sequences G⋆

1 and G⋆
2; moreover, |S| ≤ g(k) for some function g. Once an S (of

size 18k) is obtained, it is relatively easy to obtain the linear kernel.
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3.1 Bounding the Solution Search Space for CMSR

We first need to do some preprocessing. Before any marker is deleted, we can
identify all maximal common substrings of length at least one (possibly in
negated and reversed form, which will also be called maximal common sub-
strings, or block for convenience) of G1 and G2. We also call a length-1 maximal
common substring (which is a letter) an isolated letter or isolate. Two substrings
are called neighbors if there is no other string in between them. The following
lemma is proved in [17], and for completeness we include the proof here.

Lemma 1. [17] Before any marker is deleted, if a length-4 maximal common
substring xyzw or −w−z−y−x appears in both G1 and G2 (or, if xyzw appears
in G1 and −w−z−y−x appears in G2, and vice versa), then there is an optimal
solution for MSR which has xyzw or −w − z − y − x as a strip.

Proof. WLOG, we only consider the case when xyzw appears in G1 and −w −
z− y−x appears in G2. The cases when xyzw (−w− z− y−x) appears in both
G1 and G2 are similar.

Let the length-6 substring in G1 containing xyzw be p1(x)xyzws1(w) and let
the length-6 substring in G2 containing−w−z−y−x be p2(w)−w−z−y−xs2(x).
Here pi(x), si(x) means the predecessor and successor of x in Gi. When deleting
xyzw from G1 and −w − z − y − x from G2, at most two new strips can be
obtained which could contain {p1(x), s1(w), p2(w), s2(x)} (with a total size of
4). Clearly, retaining xyzw and −w− z − y− x as a strip can give us a solution
at least as good as any optimal solution. Hence, the lemma is proven. ⊓⊔

An example for the above lemma is as follows: G1 = cdaxyzwbef and G2 =
e−w− z− y−xfcd− b− a. xyzw appears in G1, −w− z− y−x appears in G2.
So we have one optimal solution G⋆

1 = cdxyzw and G⋆
2 = −w− z − y − xcd. On

the other hand, the optimal solution is not unique as we can select G+
1 = cdabef

and G+
2 = efcd− b− a.

The above lemma holds for maximal common substrings of length greater
than 4. Now let us come back to our journey of obtaining a linear kernel for
CMSR. Lemma 1 certainly provides a useful local rule to reduce the search space
for solving CMSR. The difficulty now is how to handle length-2 and length-3
blocks. For example, let Q be a length-3 block and all Pi’s have length 2, then
in

G1 = xP1QP2y · a1b1 · a2b2 · a3P3b3 · a4P4b4 · −w − z

G2 = zP3QP4w · a4b4 · a3b3 · a2P2b2 · a1P1b1 · −y − x

the optimal solution in fact deletes Q, P1, P2, P3, P4. (Dot symbols are used for
connection purpose.) Notice that Q has length-3 and has no isolated neighbor
at all, yet it has to be deleted for an optimal solution! One could construct
another counter-intuitive example where in a continuous (sequence of) length-
2/3 blocks, only a part (i.e., not all) of them are deleted. So besides Lemma 1,
it is in fact hard to apply any more local rules (with the ones we proposed early
on, eventually counter-examples are found for each of them).
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It turns out that we have to use a set of global rules together with a general
graph method, which is described below in the algorithm.

Let Σ be the alphabet for the input maps G1 and G2. The kernelization
procedure (for identifying S) is as follows.

1. Without deleting any gene marker in G1 and G2, identify a set of maxi-
mal common substrings (possibly in reversed and negated form) of length
at least 4, of length-3, of length-2 (which are called blocks)and of length-
1 (which are called isolates). Then identify all maximal continuous blocks,
which is composed of blocks but isolates, in G1 and G2. We call them super-
blocks henceforth, and denote them as V1 ∈ G1 and V2 ∈ G2. Apparently,
super-blocks and sequences of isolates appear alternatively in G1 and G2 re-
spectively. Then, we can construct a simple bipartite graph G = (V1, V2, E),
where each vertex in V1 or V2 corresponds a super-block of G1 or G2, and
there is an edge (v1, v2) ∈ E between two super-blocks v1 ∈ V1, v2 ∈ V2 iff
they share a common length-2 or length-3 block. (See Fig. 2.)

 

G1: 
 

 

 

 

 

 

G2: 
 

 

 

a  b  c  u  v  d  e  f  g  x w  j  k  h  i  

a  b  c  d  e  u  x  v  h  i  j  k  f  g w  

Fig. 2. Blocks, super-blocks, isolates and the bipartite graph. There are five

blocks: abc, de, hi, jk, fg; four isolates: u, x, v, w; three super-blocks in G1:

abc, defg, jkhi and two super-blocks in G2: abcde, hijkfg.

2. Rule(2.1) Firstly, for each block of length at least 4, change it to a new letter
in Σ1 (and delete the corresponding old letters in it from Σ whenever such
a new letter in Σ1 is created), with Σ1 ∩Σ = ∅.
Rule(2.2) Secondly, for any pair of super-blocks s1 ∈ V1, s2 ∈ V2 which
contain at least two pairs of common length-2 or length-3 blocks, identify
the leftmost and rightmost such common blocks in s1 (e.g., Pi, Pj) and in
s2 (e.g., Pl, Pr, with Pi = Pl, Pj = Pr or Pi = Pr, Pj = Pl, some possibly
in reversed and negated form). Change each block between and inclusive of
Pi, Pj (resp. Pl, Pr) in s1 (resp. s2) into a new letter in Σ1. As shown in
Fig. 3, the blocks gh and mn contribute to multiple edges between the two
super-blocks mngh and gh12mnij in G.
Rule(2.3) Thirdly, for any super-block (in V1 or V2) containing at least two
length-3 blocks, identify the leftmost and rightmost length-3 blocks, say
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Ps, Pt. Change each block between and inclusive of Ps, Pt into a new let-
ter in Σ1, such as the blocks rst and opq in Fig. 3.
Rule(2.4) Then, construct the simple bipartite graph G = (V1, V2, E), where
there is an edge (v1, v2) ∈ E between two super-blocks v1 ∈ V1, v2 ∈ V2 iff
they share a common length-2 or length-3 block not yet put in Σ1. For any
cycle in G, identify the length-2 or length-3 blocks involved in the cycle and
change each of them into a new letter in Σ1. As shown in Fig. 3, the four
edges corresponding to blocks 12, 34, ij and kl form a cycle in G.

 

a  x  b  r  s  t  o  p  q  c  y  d  g  h    1   2  m  n  i  j  e  f  3  4  u  v  k  l  z  w  

m n  g  h  x  r  s  t  a  b  o  p  q  1  2  3  4  c  d  i  j  k  l  w  e  y f  u  v  z  

Fig. 3. Multiple edges and cycles in the bipartite graph.

Rule(2.5) Finally, within any super-block, for all blocks between two letters
in Σ1, change each of them into a new letter in Σ1. For the leftmost (right-
most) super-block in G1 and G2, if there is no isolate on its left(right), for
all blocks on the left (right) of letters in Σ1, change each of them into a new
letter in Σ1.

3. Let the resulting sequences be G′

1, G
′

2. Return S ← Σ as a parameterized
search space.

The correctness of Step 2 is as follows (Lemma 1 covers Rule (2.1)):

Lemma 2. Rule (2.2) is correct.

Proof. First, suppose that between Pi, Pj in V1 there is a P ′ of length-2 or length-
3 which is deleted in some optimal solution. As P ′ has no isolated neighbor in G1,
deleting it will create a new strip which includes at most two isolated neighbors
of it in G2. Therefore, we can keep P ′ as a strip and obtain another solution at
least as good as the assumed optimal solution (which deletes P ′).

For Pi and Pj , as they are in V1 and V2, each of them has at most 2 isolated
neighbors (one each in G1 and G2). If some optimal solution deletes one (or
both) of them, by the same argument, we can keep one (or both) of them as
strips to have a solution at least as good as the assumed optimal solution. ⊓⊔

Note that after Rule (2.2) is run, now a super-block could contain length-2
and length-3 blocks (no two common to another super-block), as well as letters
in Σ1.
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Lemma 3. Rule (2.3) is correct.

Proof. First, suppose that between Ps, Pt in V1 (resp. V2) there is a P ′′ of length-
2 or length-3 which is deleted in some optimal solution. As P ′′ has no isolated
neighbor in G1 (resp. G2), deleting it will create a new strip which includes at
most two isolated neighbors of it in G2 (resp. G1). Therefore, we can keep P ′′

as a strip and obtain another solution at least as good as the assumed optimal
solution (which deletes P ′′).

For Ps and Pt, each of them has at most 3 isolated neighbors (1 in G1 and 2
in G2, or vice versa). If some optimal solution deletes one (or both) of them, by
the fact that they are of length-3, we can keep one (or both) of them as strips
to have a solution at least as good as the assumed optimal solution. ⊓⊔

After the run of Rule (2.3), a super-block could contain at most one length-3
block, as well as length-2 blocks and, of course, letters in Σ1.

Lemma 4. Rule (2.4) is correct.

Proof. In the simple bipartite block graph G, if there is a cycle, with the involved
length-2 or length-3 blocks being P ′

1, P
′

2, ..., P
′

u, then |P ′

i | ≥ 2 for 1 ≤ i ≤ u. If
some optimal solution deletes some of these blocks, say P ′

i1, P
′

i2, ..., P
′

ip, then in
G we have deleted p edges, each associated with some P ′

ij . P ′

ij has at most two
isolated neighbors (at most one each in G1 and G2). Consequently, we could
keep P ′

i1, P
′

i2, ..., P
′

ip as strips to have a solution at least as good as the claimed
optimal solution. ⊓⊔

Lemma 5. Rule (2.5) is correct.

Proof. In a super-block s1 in G1, any block P ′ ∈ s1 between two letters in Σ1

has at most 2 isolated neighbors in G2. So if some optimal solution deletes P ′,
we can put it back to have a solution at least as good as the assumed optimal
solution. ⊓⊔

By now, it is easily seen that any given super-block s, after these run of five
rules, has at most two continuous sequences of blocks which are not put in Σ1.
In other words, at this point, each super-block contains at most one letter in Σ1.

Let Σ1 be the set of all new letters used in the kernelization process, with
Σ1 ∩Σ = ∅. The three lemmas for obtaining the final results are:

Lemma 6. There is an optimal CMSR solution of size k for G1 and G2 if and
only if the solution can be obtained by deleting k markers in Σ from G′

1 and G′

2

respectively.

Notice that after the kernelization step, we have no cycle and no vertex of
degree zero in G. So if any connected component in G has q edges, then it must
have exactly a set H of q + 1 vertices. We have the following lemmas on H .

Lemma 7. Let G contain m connected components H1, H2, · · · , Hm, and let
each Hi have qi edges. Then, in between the vertices in G, there are at least
∑m

i=1 qi + m− 2 sequences of neighboring isolates in G1, G2.
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Proof. The qi + 1 vertices in Hi form a tree. In G1 and G2, these vertices cor-
respond to continuous sequences of blocks (each of length at least 2, some of
which could have been converted to letters in Σ1), separated by sequences of
neighboring isolates. Let Hi have ai vertices in G1 and bi vertices in G2. In G1

the
∑m

i=1 ai vertices bound at least
∑m

i=1 ai − 1 sequences of neighboring iso-
lates. Similarly, in G2 the

∑m

i=1 bi vertices bound at least
∑m

i=1 bi− 1 sequences
of neighboring isolates. In total the vertices in G have bounded at least

(

m
∑

i=1

ai

)

− 1 +

(

m
∑

i=1

bi

)

− 1 =
m
∑

i=1

qi + m− 2

sequences of neighboring isolates, due to ai + bi = qi + 1, for i = 1..m. ⊓⊔

Lemma 8. Given any connected component H in G with q edges, the total length
of all the blocks associated with the edges in H is at most ⌈ 5q

2 ⌉.

Proof. It is clear that 3q is a trivial upper bound, due to Rules (2.1-2.3). To
have this tighter bound, first notice again that the q + 1 vertices in H form a
tree. Then by the fact that no two incident edges can both correspond to length-
3 blocks, we can conclude that the number of length-3 blocks allowed in H is
exactly the size of maximum matching of H , which is obviously at most ⌈q/2⌉
(which occurs when H is in fact a path). Then the total length of all the blocks
associated with the edges in H is at most 2q + ⌈q/2⌉ = ⌈ 5q

2 ⌉. ⊓⊔

Finally, we have the following theorem.

Theorem 1. In G′

1 (resp. G′

2), there are at most 18k letters (markers) in Σ.
In other words, CMSR has a parameterized solution search space of size 18k.

Proof. We use an inverse amortized analysis. Assume that we have some optimal
MSR solution O∗ (i.e., all letters in O∗ are in some strips), we try to insert the
deleted letters and length-2/3 blocks back into O∗ to obtain G1, G2. There are
four sets of letters/blocks: A — those letters/blocks we insert into G1, G2 (of a
total length k); B — those isolated letters which were in some strips in O∗, but
due to the insertion of type-A letters/blocks, they are broken into isolates; C —
those blocks identified by our kernelization algorithm; and D — the remaining
length-2/3 blocks associated with the edges in the block graph G. Firstly, we
show that

|A|+ |B|+ |D| ≤ 18|A| = 18k.

Note that although A could contain sequences of blocks, they will be counted
into |A| = k.

Each inserted type-A letter can break at most two strips in O∗, resulting in
at most 4 type-B isolates.

The most general scenario is when we have a graph G each of its vertices
corresponds to at most two sequences of type-D blocks, e.g., a vertex in G cor-
responds to D = P1P2 · · ·Pi · Σ1 letters ·Pi+1Pi+2 · · ·Pl (there could be no Σ1

letters between Pi, Pi+1). For this scenario, first recall that now in G we have no



Linear Kernel for CMSR 9

cycle and no vertex of degree zero; moreover, in D we have at most one length-3
block. So if each connected component Hi, 1 ≤ i ≤ m in G has qi edges, then it
must have exactly a set of qi + 1 vertices. By Lemma 7, vertices in G bound at
least

∑m

i=1 qi + m− 2 sequences of isolated neighbors.
We now finish the final proof.
First, let us consider the (at least)

∑m

i=1 qi + m − 2 sequences of isolated
neighbors (also called slots for convenience) bounded by the vertices of G. These
slots are introduced by the insertion of at least ⌈(

∑m

i=1 qi + m − 2)/4⌉ type-A
isolates. As what have just been discussed, each of these type-A isolates can
introduce at most 4 type-B isolates. By Lemma 8, the total length of all the
type-D blocks in G is at most

∑m

i=1⌈
5qi

2 ⌉. Therefore, each type-A isolate can be
charged a total cost of

m
∑

i=1

⌈
5qi

2
⌉/⌈

∑m

i=1 qi + m− 2

4
⌉+ 5,

which is at most 18 (when m = 1). To see why, let t = ⌈(
∑m

i=1 qi + m − 2)/4⌉.
Then

m
∑

i=1

qi ≤ 4t−m + 2.

Therefore,

m
∑

i=1

⌈
5qi

2
⌉ ≤ ⌊

5
∑m

i=1 qi

2
⌋+ m ≤ ⌊

5(4t−m + 2)

2
⌋+ m = 10t + 5− ⌈

3m

2
⌉,

which is at most 10t+ 3 ≤ 13t, with m = 1 and t ≥ 1. Consequently, this means
that our charge is safe.

Second, for each substring of r isolates not bounded (delimited) by vertices
of G (we could have at most 4 such substrings of isolates, 2 each at the ends
of G1 and G2), we first ignore the type-A isolates already contained in some
slot and suppose that we have a remaining of r′ isolates. These r′ isolates can
be either of type-A or type-B. It is easy to see that at least ⌈r′/5⌉ of these
remaining r′ isolates must be deleted. (The deleted ones are of type-A.) Clearly,
18⌈r′/5⌉ > r′. So again our charge is safe.

As a simple example, assume that G1 = abc w1w2 de fg x and G2 =

abc de − w2x − w1 fg , they form G which contains a single connected com-

ponent of 4 vertices and 3 edges. We have two slots: w1w2 and −w2x − w1. As
x is charged for a total cost of 18 (including itself), while the length of G1, G2

is only 10, so the charge is safe.
Altogether, this gives us an upper bound of 18k for |A|+ |B|+ |D|. ⊓⊔

We can show that our kernelization algorithm for constructing the parame-
terized solution search space S is in fact tight, i.e., the size of S, returned by
our algorithm, is at least 18k for k = 1. It can be done by modifying the 10k
example at the end of the proof of Theorem 1 as follows.
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G1 = abc de fxg hij kl mn opq

G2 = abc fg de hij mxn kl opq

The corresponding block graph G is a path. The optimal CMSR solution is
to delete x (i.e., k=1). So the above parameterized search space bound is in fact
tight.

3.2 A Simple Upper Bound for the Kernel of CMSR

We first show an easy upper bound for the kernel of CMSR. To obtain a linear
kernel, we need to contract the number of Σ1 letters while keeping S untouched.
Note that, after Rule (2.5), each super-block contains at most one sequence of
letters in Σ1 in both G′

1 and G′

2.

Now let us consider the number of super-blocks, each containing at most
one sequence of letter in Σ1. Following the proof of Theorem 1, the number of
super-blocks is equal to the number of vertices of G, which is

m
∑

i=1

(qi + 1) = (

m
∑

i=1

qi) + m ≤ (4t−m + 2) + m = 4t + 2,

which is bounded by 4k + 2.

To obtain a kernel, what we can do is simply compressing a maximal sequence
of Σ1 letters (each sequence is called a long slot for the ease of presentation)
using the following additional rule after Rules (2.1)-(2.5): if a Σ1 letter which
corresponds to an original block x1x2 · · ·xm (resp. −xm · · · − x2 − x1) appears
leftmost or rightmost in some long slot in either G′

1 or G′

2, then keep a length-4
block x1abxm (resp. −xm − b − a − x1), where a, b are new letters not in Σ
or Σ1; otherwise, delete it. The correctness of the rule is due to that, while
a Σ1 letter (or, a 4-block) does not have to be deleted some isolate can be
connected to the 4-block to form a longer strip in both G1 and G2. With our
method, on average, we might need to keep four 4-blocks for each long slot in
each super-block of G′

i, i = 1, 2 — the total number of 4-blocks kept is bounded
by (4k + 2)× 4 = 16k + 8.

Therefore, we can obtain a kernel for CMSR of size

18k × 2 + (4k + 2)× 4× 4 = 100k + 32 ≤ 132k.

Suppose that Wj is of length 4 and is disjoint with the letters in Wl, for
j 6= l, we can modify the 18k example to have a tight bound of 132k (for
k = 1) for our method. In the 18k example, in the three super-blocks of G1

we insert three quadruples of blocks W1W2W3W4, W5W6W7W8, W9W10W11W12

respectively, in the three super-blocks of G2 we insert three quadruples of blocks
W2W1W4W3, W6W5W8W7, W10W9W12W11. After these insertions, the total size
of G1 and G2 is 18× 2 + 6× 16 = 132.
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3.3 Computing a Better Linear Kernel for CMSR

The above 132k kernel for CMSR can certainly be improved. We need to apply
a few different rules.

Rule(2.6): If there exists a 3-block in a super-block which contains some Σ1

letter, then change this 3-block into a new Σ1 letter.

Lemma 9. Rule (2.6) is correct.

Proof. Since this 3-block Z appears in a super-block (say in G1) which contains
some Σ1 letter, it has at most one isolated neighbor in G1 and at most two
isolated neighbors in G2. So if this 3-block was deleted in the optimal solution,
there are at most three isolates becoming a part of a strip. (As the super-block
in G1 contains some Σ1 letter, at most one isolate can contribute to some strip
after the deletion of Z.) Therefore, keeping this 3-block Z will result in a solution
at least as good as the optimal solution. ⊓⊔

Rule(2.7): If there exists a 3-block in the leftmost (resp. rightmost) super-block
in G1 or G2, without any isolate on its left (resp. right), then change this 3-block
into a new Σ1 letter.

Lemma 10. Rule (2.7) is correct.

Proof. The proof of this lemma is quite the same as that of Lemma 9, hence
omitted. ⊓⊔

Finally, we make use of Rule (2.3) to have this rule (2.8) to contract the
sequences of blocks corresponding to Σ1 letters.

Rule(2.8): Suppose that we are given a sequence of Σ1 letters π1, π2, . . . , πj ,
where πi corresponds to some block Ci, 1 ≤ i ≤ j. If j = 1, which implies that
C1 is of length at least 4 (it can be concluded from Rule (2.2)-(2.5) that a single
2-block or 3-block can not be changed into a Σ1 letter), then change C1 into a
4-block by keeping the leftmost and rightmost letters, and keep C1. If j > 1,
then change C1 and Cj into 3-blocks, and keep C1 and Cj . Finally, delete all the
blocks that are not kept in both G1 and G2.

Note that, from Lemma 10, we know that while applying Rule (2.8), it is
sufficient to keep or construct only one 3-block in the leftmost (resp. rightmost)
super-block without any isolate on its left (resp. right) in both G1 and G2.

Finally, to obtain the improved kernel, we need to apply the rules in the
following order: (2.1),(2.2),(2.3),(2.4),(2.6),(2.7),(2.5),(2.8). On the other hand,
we can compute a parameterized search space of size 18k by applying rules in
the order: (2.1),(2.2),(2.3),(2.4),(2.5).

We thus have the main theorem of this paper.
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Theorem 2. CMSR has a linear kernel of size 78k.

Proof. Note that the size of a kernel is the total length of both G′

1 and G′

2

after the eight rules are applied. As what has been discussed in Theorem 1, the
total number of letter in type-A and type-B is at most 5k. From Theorem 1, the
number of super-blocks is at most 4k+2, hence the number of type-D blocks is at
most 4k+1. From Lemma 10 and Rule (2.8), there are at most ((4k−2)×2+4)×2
3-blocks that were kept or constructed after applying Rule (2.6) and (2.8). From
Lemma 9, the total number of letters in the type-D blocks is at most (4k+1)×2.
So the size of kernel is bounded by

5k × 2 + ((4k − 2)× 2 + 4)× 2× 3 + (4k + 1)× 2× 2 = 74k + 4 ≤ 78k. (1)

⊓⊔

Corollary 1. Combined with the bounded search tree method, CMSR can be
solved in O(2.36kk2 + n2) time.

Proof. Without the linear kernel bound, using the bounded search tree method,
there is an FPT algorithm which runs in O(2.36kn2) time [3]. With the 78k
linear kernel, the running time of the corresponding algorithm can be improved
to O(2.36kk2 + n2) time. This is a standard procedure: just run the algorithm
on the linear kernel. ⊓⊔

We comment that, by modifying the example at the end of Section 3.1, we
can obtain a linear kernel of size 78k (for k = 1). This shows that the 78k kernel
bound for CMSR is tight for the method (at least for k = 1).

G1= 123 456 ab de fzg hi y1y2y3 x4x5x6 x7x8x9 y4y5y6

kl mn op 789 x1x2x3

G2= 456 123 ab fg de x4x5x6 y1y2y3 y4y5y6 x7x8x9

hi mzn kl op x1x2x3 789

4 Concluding Remarks

We show a non-trivial 78k linear kernel for the Complementary Maximal Strip
Recovery problem. Combined with a known bounded search tree algorithm, this
results in the best known FPT algorithm for CMSR — in O(2.36kk2 +n2) time.
An interesting question is whether these bounds can be further improved.

Using the recent concept of weak kernels [18], Theorem 2 in fact implies that
CMSR has a (direct) weak kernel of size 18k. However, as direct weak kernels
can all be transformed into the traditional kernels (from the experience as in this
paper), we think it is better to use weak kernels solely for the indirect ones. For
problems admitting linear indirect weak kernels (e.g., Sorting by Reversals [18]
and Sorting by Unsigned DCJ Operations [19]), no linear/polynomial kernels
are known and no known bounded search tree algorithm can match up with the
solutions provided by weak kernels.
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