
1

Adaptive Point Location With Almost No
Preprocessing in Delaunay Triangulations

Binhai Zhu
Department of Computer Science

Montana State University
Bozeman, MT 59717-3880

USA
Email: bhz@cs.montana.edu

Abstract—This paper studies adaptive point location in De-
launay triangulations with o(n1/3) (and practically O(1)) pre-
processing and storage. Givenn pseudo-random points in a
compact convex setC with unit area in two dimensions (2D)
and the corresponding Delaunay triangulation, assume thatwe
know the query points are clustered into k compact convex
sets Ci ⊂ C, each with diameter D(Ci), then we show that
an adaptive version of the Jump&Walk method (which requires
o(n1/3) preprocessing) achieves average query boundO(n

1−4δ

3)

when in the preprocessingΘ(n
1−4δ

3) sample points are chosen
within each Ci, where D(Ci) = Θ(1

nδ) and 0 ≤ δ ≤ 1/4. Similar
result holds in three dimensions (3D). Empirical results in2D
show that this procedure is 23%-350% more efficient than its
predecessors under various clustered cases.

Keywords: point location, Delaunay triangulation, jump-and-
walk, probabilistic analysis.

I. I NTRODUCTION

Point location is one of the classical problems in computa-
tional geometry, GIS, graphics and solid modeling. The theo-
retical problem is well studied in the computational geometry
literature and several theoretically optimal algorithms have
been proposed since early 1980s; see for example, Snoeyink’s
survey [26]. Practical point locations only received massive
attention from computational geometers starting in 1990s [16],
[13], [23], [14], [11]. All these works are somehow based on
an idea due to Green and Sibson to use the “walkthrough”
method to perform point location in Delaunay triangulation, a
common data structure used in these areas. (We remark that
similar ideas have been used in answering ray-shooting queries
[2], [21].) In particular the Jump&Walk method of [16], [23]
uses random sampling to select a good starting point to walk
toward the destination while [13], [14] mix the “walkthrough”
idea with some extra simple tree-like data structure to make
the algorithm more general (for example, deal with arbitrary
data [13] or handle extremely large input while bounding the
query time [14]).

Although the algorithm of [16], [23] probably does not
work very well for arbitrary input data and it is not
as efficient as the one in, e.g., [14], it does have its
own strength: its simplicity. It uses no preprocessing and
is very easy to implement. Because of that, several fa-
mous software packages are using this algorithm, for ex-

ample, theTriangle mesh generator[25], the Qhull pack-
age [http://www.geom.umn.edu/software/qhull]
and theX3D Grid Generation System [27]. (In fact, in the
X3D Grid Generation System, it took the builders just one
weekend to update the point location subroutine in their
system in 1996.) Because of these reasons, we investigate the
Jump&Walk algorithm further in this paper, under some more
realistic situations.

Theoretically, for pseudo-uniformly distributed points in a
convex setC, in 2D Jump&Walk is known to have a running
time of O(n1/3) when the query point is slightly away from
the boundary ofC [16]. Similar result holds in 3D [23]. (The
boundary condition in 2D was dropped by Devroyeet al. in
2004 [15].) Certainly, an interesting question can be asked: Is
Ω(n1/(d+1)) the average query lower bound for point location
in Delaunay triangulations of random points (within a general
convex set), when no preprocessing is allowed? Although we
cannot answer this question definitely, in this paper we prove
that if the query points are known to be clustered then we can
adaptively change the Jump&Walk algorithm so that it runs
in o(n1/(d+1)) time for d=2,3. The new Adaptive Jump&Walk
algorithm, similar to its predecessor, still retains the simplicity:
with almost no preprocessing.

Studying geometric algorithms/data structures when the
information on the query data is partially known is a new
challenge for computational geometers. Aryaet al. showed that
if such information is known then it is possible to modify the
known data structures to have an almost optimal average query
bound for planar point location [3], [4], [6]. But in all these
cases, either the preprocessing time or space is superlinear. In
[5], Arya et al. presented a data structure which has expected
linear space and achieves almost optimal expected query
bound and they do not make any assumption on the subdivision
and query data. (Our setting is different from those used by
Ayra et al. and we assume that a Delaunay triangulation is
given and we useo(n1/3) preprocessing. Our assumption that
the query points are clustered is realistic. Example 1, in a
mesh smoothing procedure we update a particular region by
inserting many Steiner points – all of them are clustered.
Example 2, if we have a geographical map of Europe on-line,
the region of London would be looked more during the 2012
Olympic Games.)

2

In general, point location deals with the following prob-
lem: given a set of disjoint geometric objects, determine the
object containing a query point. The literature often restricts
the objects to cells of subdivisions of geometric regions. In
many applications, for example, in mesh generation and finite-
element analysis (FEA), people focus even further on point
location within Delaunay triangulations of dense points.
Delaunay triangulations. For completeness, we briefly
mention the following definitions. Further details can be
found in some standard textbooks like[24]. The convex hull
of a finite point setX is the smallest convex set containing
X . The convex hull of a set ofk + 1 affinely independent
points in Rd, for 0 ≤ k ≤ d, is called ak-simplex; that is,
a vertex, an edge, a triangle, or a tetrahedron, etc. Ifk = d,
we also say the simplex isfull dimensional. A triangulation
T of X is a subdivision of the convex hull ofX consisting
of simplices with the following two properties: (1) for every
simplex in T , all its faces are also simplices inT ; (2) the
intersection of any two simplices inT is either empty or a
face of both, in which case it is again a simplex inT . A
Delaunay triangulation D of X is a triangulation in which
the circumsphere of every full-dimensional simplex is empty,
i.e., contains no points ofX in its interior.

Point location by walking. The basic idea is straightforward;
it goes back to early work on constructing Delaunay
triangulations in 2D and 3D [19], [9]. Given a Delaunay
triangulationD of a setX of n points in Rd, and a query
point q; in order to locate the (full-dimensional) simplex in
D containing q, start at some arbitrary simplex inD and
then “walk” from the center of that simplex to neighboring
simplex “in the general direction” of the target pointq.
The underlying assumption is that theD is given by an
internal representation allowing constant-cost access between
neighboring simplices. The list of suitable data structures
includes the 2D quad-edge data structure [20], the edge-facet
structure in 3D [17], its specialization and compactification
to the domain of 3D triangulations [22], or its generalization
to d dimensions [10], etc.

Jump-and-Walk. In this algorithm, we modify the
aforementioned method by jumping to a good starting
point via random sampling on the data point set
{X1, X2, . . . , Xn}, i.e., we choose a set ofO(n1/(d+1))
simplices and walk from the one which is the closest
to q. It is shown in [16], [23] that this algorithm takes
expectedO(n

1
d+1) time for d = 2, 3 (for d = 3 there is

an extra log n/ log log n factor). But it is not yet known
whetherΩ(n

1
d+1) is the average lower bound for this problem.

Adaptive Jump-and-Walk. Given the Delaunay triangulation
D of thesen points {X1, X2, . . . , Xn}, and a query point
q which is known to be within one of thek regions
Ci(i = 1, ..., k) 1, the following procedure locates the simplex

1In practice, we can useO(1) grids to partitionD. Over a large number
of queries,Ci ’s can be identified approximately. This assumption is only for
our proof.

of D containingq, if such a simplex exists.

Preprocessing:For i = 1 to k do the following. Select
m pointsYi1, . . . , Yim at random and without replacement in
Ci from X1, . . . , Xn. If a pointXl is not inCi then repeat. In
the end we generatem rample points in each of thek convex
regions.

Query:

(1) Determine the indexj ∈ {11, . . . , 1m, . . . , k1, . . . , km}
minimizing the distanced(Yj , q). SetY = Yj .

(2) Locate the simplex containingq by traversing all sim-
plices intersected by the line segment(Y, q).

Notice that we assumek = O(1) and moreover; we assume
Ci’s can be described withO(1) bytes so that whether a point
lies in Ci can be determined inO(1) time. Also, in practice
instead of selecting random data points we choose random
edges — which is easier for implementation [23]. Step (2),
that is, the straight “walk,” is easy to implement given the
adjacency list implementation mentioned above.

In the next section, we will focus on proving the expected
performance of the Adaptive Jump&Walk algorithm under the
assumption thatX1, ..., Xn are pseudo-uniformly distributed
in a compact convex setC and the query points are known
to be within k (k is a constant) compact convex subsets
Ci(i = 1, ..., k) of C.

Outline. The paper is organized as follows. In Section 2,
we first prove the theoretical result. In Section 3, we present
empirical results over randomly generated point sets ranging
from n = 10K to 50K. Our tests confirm that the method with
O(1) preprocessing is more efficient than its the Jump&Walk
method under several clustered cases. In Section 4, we con-
clude the paper with some open problems.

II. T HEORETICAL ANALYSIS

We start by recalling some fundamental definitions. LetC
be a compact convex set ofR2 and letα andβ be two reals
such that0 < α < β. We say that a probability measureP
is an (α, β)-measure over C if P [C] = 1 and if we have
α λ(S) ≤ P [S] ≤ β λ(S) for every measurable subsetS of
C, where λ is the usual Lebesgue measure. AnR2-valued
random variableX is called an(α, β)-random variable over
C if its probability law L(X) is an (α, β)-measure overC.
A particular and important example of an(α, β)-measureP
is whenP is a probability measure with densityf(x) such
that α ≤ f(x) ≤ β for all x ∈ C. This probabilistic model
was slightly general than the uniform distribution and we will
loosely call itpseudo-uniform or pseudo-random.

We first prove a bound on the expected number of tries
to generate the sample points in the preprocessing step.
Throughout the paper,ci, i ≥ 0, denote positive constants
depending upon the geometric properties ofC, C1, ..., Ck.

Theorem 1: Let C be a compact convex set with unit area
in R2, Ci (i = 1, ..., k) be compact convex subsets ofC
with diameterD(Ci) and letX1, . . . , Xn be n points drawn
independently inC from an (α, β)-measure. The expected

3

number of tries to choosem points which lie in Ci from
X1, . . . , Xn is bounded by

c0
km

D(Ci)2
.

Proof: Let C, C1, ..., Ck andX1, . . . , Xn be as in Theo-
rem 1. The probability that a pointXl lies in Ci is at least

α · area(Ci) = αc1πD(Ci)
2 .

The expected number of tries to choose one point which lies
in Ci from X1, . . . , Xn is bounded by

1

α · area(Ci)
=

c0

D(Ci)2
.

To generatem sample points inCi, the expected number of
tries is bounded byc0

m
D(Ci)2

.

As k = O(1), the preprocessing time and space isO(m).
As we requirem = Θ(n

1−4δ

3), 1 ≤ δ ≤ 1/4, to achieve the
best query bound (see the theorem below), the preprocessing
time and space are bothΘ(n

1−4δ

3), 1 ≤ δ ≤ 1/4, which is
o(n1/3). In practice, however, we only need to generate and
storeO(1) sample edges in each cluster, so the preprocessing
complexity isO(1).

Below is the result on the expected running time of the
Adaptive Jump-and-Walk algorithm, when applied onD, the
Delaunay triangulation ofn random points inR2. Note that
d(., .) denotes the Euclidean distance between points,d(x, A)
is infy∈A d(x, y) wheneverA is a set.

Theorem 2: Let C be a compact convex set with unit area
in R2, Ci (i = 1, ..., k) be compact convex subsets ofC
with diameterD(Ci) and letX1, . . . , Xn be n points drawn
independently inC from an (α, β)-measure. Assume that
Ci(i = 1, ..., k) is at distance of at leastc6(log n/n)1/2 from
∂C. If the query pointq is independent ofX1, . . . , Xn and is
known to be withinCi(i = 1, ..., k), then the expected time
of the simple algorithm given above is bounded by

c2m + c3

√

n

m
D(Ci)

2 .

In particular, if D(Ci) = c4/nδ, 0 ≤ δ ≤ 1/4 and if m =

⌈c5n
1−4δ

3 ⌉ the expected time isO(n
1−4δ

3).
The proof of the theorem rests on the following lemmas.

In the following, Lemma 1 estimates the number of points of
X1, . . . , Xn which lie in Ci for somei.

Lemma 1: Let C, C1, ..., Ck and X1, . . . , Xn be as in the
Theorem. With probability1/φ (φ > 1), the number of points
of X1, . . . , Xn which lie in Ci, N [X, Ci], is bounded by

βc7n · area(Ci) = c8n · D(Ci)
2 .

Proof: The expected number of points ofX1, . . . , Xn

which lie in Ci, E[X, Ci], is bounded by

βn · area(Ci) = c9n · D(Ci)
2 .

By Markov’s inequality,

P{N [X, Ci] > φE[X, Ci]} ≤ E[X, Ci]

φE[X, Ci]
=

1

φ
,

whereφ > 1 is any positive constant. Therefore with probabil-
ity at least1− 1

φ , N [X, Ci] ≤ φE[X, Ci] ≤ φβn ·area(Ci) =

c8n · D(Ci)
2 .

To estimate the number of triangles visited by the direct
walk from Y to q, as in [16] we need the following lemma of
[8] which is reorganized as follows.

Lemma 2: Let C, Ci be as in the Theorem and letS[X, Ci]
be the data points withinCi. If L is a fixed line segment of
length|L| within Ci and ifL is independent ofS[X, Ci], then
the expected number of triangles or edges of the Delaunay
triangulation forX1, . . . , Xn crossed byL is bounded by

c10 + c15|L|
√

N [X, Ci] ,

which is c10 + c12|L|D(Ci)
√

n .
Proof: Without loss of generality, assume thatq lies in

Ci. Let Y i be the sample point inCi which is the closest
to q. By the definition ofY , d(Y, q) ≤ d(Y i, q). Following
the results of [8], the expected number of triangles crossedby
(Y, q) is smaller than or equal to that crossed by(Y i, q). So
from now on we focus on the segment(Y i, q). To use Lemma
2 for a random line segmentL (in Ci), we must first make sure
that L is independent of theN [X, Ci] points ofX1, . . . , Xn

in Ci. This is done similarly to [16]. LetDm be the Delaunay
triangulation for data points{X1, ..., Xn} − {Yi1, . . . , Yim}.
ThenL = (Y i, q), the line segment connectingY i and q, is
independent of the data points{X1, ..., Xn}−{Yi1, . . . , Yim}.
By Lemma 2,(Y i, q) crosses an expected number ofc10 +
c12Ed(Y i, q)D(Ci)

√
n − m edges inDm.

Notice that d2(Y i, q)π is the probability contents of the
circle at q of radiusd(Y i, q), and is therefore distributed as
the minimum ofm i.i.d. (independently identically distributed)
uniform [0, c13 · area(Ci)] random variables, which we call
Z. Clearly, E{Z} = c13 · area(Ci)/(m + 1). Let N denote
the number of triangles inD crossed by(Y, q). Clearly EN
is bounded by the number of triangles inD crossed by
(Y i, q) which is in turn bounded by the number triangles
of Dm crossed by(Y i, q) plus the sumS of the degrees of
Yi1, . . . , Yim in the Delaunay triangulationDm. To see this,
note thatL either crosses a triangle without one of theYil ’s
as a vertex (in which case the triangle is identical inD and
Dm) or with one of theYil’s as a vertex. The total number of
the latter kind of triangles does not exceedS. The expected
value ofS is, by symmetry,m times the expected degree of
Yi1, which is at most 6 by Euler’s formula.

Following Lemma 1 and Lemma 2, we have

EN ≤ 6m + c10 + c15

√

c10nD(Ci)2 − mE{d(Y i, q)}
≤ 6m + c10 + c12D(Ci)

√
nE{d(Y i, q)}

≤ 6m + c10 + c12D(Ci)
√

n
√

E{d2(Y i, q)}
= 6m + c10 + c12D(Ci)

√
n
√

E{(Z/π)}
= 6m + c10 + c12D(Ci)

√
n
√

{c14 · area(Ci)/π(m + 1)}
≤ 6m + c10 + c14D(Ci)

√
n
√

{D(Ci)2/(m + 1)}
= 6m + c10 + c14D(Ci)

2
√

n/(m + 1) .

As it takesO(1) time to visit a triangle from its neigh-
bor, the expected running timeT of the Adaptive Jump&

4

Walk is bounded byE{T } ≤ O(m) + O(1) · (6m + c10 +
c14D(Ci)

2
√

n/(m + 1)), which implies that

E{T } ≤ c2m + c3D(Ci)
2
√

n/m.

In particular, if D(Ci) = c4/nδ, 0 ≤ δ ≤ 1/4 and if m =

⌈c5n
1−4δ

3 ⌉ the expected time isO(n
1−4δ

3). This concludes the
proof of Theorem 2.

We remark that similar result holds ford = 3, with an
extralog n/ log log n factor, which corresponds to the expected
maximum vertex degree in a random Delaunay triangulation,
ignoring boundary effects [7]. The details are omitted.

III. EMPIRICAL RESULTS

In this section, we present some empirical results of the
algorithm. In practicem should be a small constant as long
as n is reasonably large (say, bounded by 2 million). The
above observation immediately gives us a practical versionof
the algorithm which only storesO(1) edges, which can be
computed inO(1) expected time. (For the ease of readers, we
still call the algorithm Adaptive Jump&Walk.) When a query
is performed we compute the sample edge which is the closest
to the query point and then simply walk toward it, triangle by
triangle. Throughout this section the input data (hence their
Delaunay triangulation) are all within the unit square (0,0)
and (1,1). We test the algorithm when the query points are
clustered differently.

A. Small clusters

Fig. 1. 200 query points within one and three-clusters.

In this subsection we test this algorithm and compare it
with Jump&Walk. We test it on two situations when the
cluster regions are very small (conforming with conditions
in Theorem 1). The 1-cluster is obtained by forcing all the
query points to be within the square defined by(0.48, 0.48)
and (0.52, 0.52). The 3-cluster contains three cluster squares
defined by (0.47, 0.17) and (0.53, 0.23), (0.77, 0.77) and
(0.83, 0.83) and(0.17, 0.77) and(0.23, 0.83). In Figure 1 we
show two examples of 1-cluster and 3-cluster when there are
200 query points.

n J&W Adaptive J&W Improvement
10K 44 14 214%
15K 51 12 325%
20K 56 12 367%
25K 58 13 346%
30K 58 13 346%
35K 57 13 338%
40K 71 18 294%
45K 75 13 477%
50K 75 21 257%

Table 1. Adaptive Jump&Walk vs Jump&Walk in 1-cluster.

Our empirical results are summarized in Table 1 and Table
2. For eachn, we record the average cost (# of triangles visited
plus the # of comparisons to find the edge which is the closest
to q) over 1000 queries. The cost for generating sample edges
in the new adaptive algorithm is always very small, hence the
amortized cost of preprocessing (over 1000) is almost always
0. We compare the result with Jump&Walk. The last column
in each table shows the percentage of improvement. In both of
the tables, within each cluster we store 3 edges (sampled from
a slightly larger copy — this is to play against a pathological
situation when either the cluster is too small or when there are
very few number of edges within the cluster). So for 1-cluster
we store 3 edges while for 3-cluster we store 9 edges.

n J&W Adaptive J&W Improvement
10K 41 21 95%
15K 54 23 135%
20K 55 21 162%
25K 59 25 136%
30K 63 34 85%
35K 66 26 154%
40K 66 26 154%
45K 74 34 118%
50K 74 34 118%

Table 2. Adaptive Jump&Walk vs Jump&Walk in 3-cluster.

B. Large clusters

Fig. 2. 200 query points within the D-cluster and the X-cluster.

In this subsection we test the algorithm and compare it with
Jump&Walk when the cluster regions are global and relatively
larger relative toC (which do not conform with some of
the conditions in Theorem 1). The D-cluster is obtained by
enforcing all the query points to be close to the diagonal while
the X-cluster is obtained by letting the query points be close
to the two diagonals of the square. In Figure 2 we show two

5

examples of D-cluster and X-cluster when there are 200 query
points.

n J&W Adaptive J&W Improvement
10K 47 29 62%
15K 54 29 86%
20K 59 34 73%
25K 63 33 91%
30K 65 43 51%
35K 70 47 49%
40K 75 55 36%
45K 74 43 72%
50K 77 44 75%

Table 3. Adaptive Jump&Walk vs Jump&Walk in D-cluster.

The setting of experiments is almost the same as that in
the previous subsection except that for D-cluster we store 12
edges while for X-cluster we store 18 edges (all from slightly
fatter copies of the diagonals of the square). The comparisons
are reported in Table 3 and Table 4 respectively.

n J&W Adaptive J&W Improvement
10K 46 35 31%
15K 52 38 37%
20K 58 45 29%
25K 64 49 31%
30K 66 46 43%
35K 70 57 23%
40K 73 55 33%
45K 75 54 39%
50K 83 66 26%

Table 4. Adaptive Jump&Walk vs Jump&Walk in X-cluster.

IV. D ISCUSSIONS AND CLOSING REMARKS

The empirical results presented in the previous section show
that the new adaptive algorithm (withO(1) preprocessing in
practice) is more efficient than its predecessor, the Jump&Walk
method, when the query points are clustered. In fact, when
we choose the sample edges from a fat copy of the cluster
region, the smaller the cluster, the greater the improvement. In
practice, if we know many of the query points are clustered,
but we do not know the exact clustering regions, then we
can partition the bounding box ofC into some rectangles and
over a large number (say 2000) of queries we can identify the
rectangles containing a lot of query points — this will give
us a good approximation forCi’s. Then, as in Section 3 we
can store some random edges sampled from these rectangles
to speed up the queries. This idea should also work if we
have lots of queries, some of them are clustered and some of
them are not. We remark that the method in [18], [13] should
also work well for adaptive point location, but their methods
require more preprocessing time and space than ours.

Although the Jump&Walk method has been studied exten-
sively over the last 15 years, we still have some questions
regarding this method. It would be interesting to know how
the method performs on non-Delaunay triangulations used in

practice. Recently, De Carufelet al. initiated some interesting
work on Jump&Walk in well-shaped meshes [12]. It would
be extremely interesting to know how ‘well-shaped’ meshes
characterize the various practical datasets.

Finally, it would be interesting to know:Is Ω(n1/(d+1)) the
average query lower bound for point location in Delaunay
triangulations of random points (within a non-degenerate
convex set), when no preprocessing is allowed? It is well-
known that when enough (Θ(n) expected time and space)
preprocessing is performed we can answer the queries in
expectedO(1) time [1].

ACKNOWLEDGMENTS

This research is partially supported by NSF under project
DMS-0918034, by NSF of China under project 60928006,
by the Shanghai Thousand Talents Program, and by the
Open Fund of Top Key Discipline of Computer Software and
Theory in Zhejiang Provincial Colleges at Zhejiang Normal
University. The author would like to thank Sunil Arya for com-
municating his research results. Several anonymous reviewers
provided valuable comments which are sincerely appreciated.

REFERENCES

[1] T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota. Practical use
of bucketing techniques in computational geometry. In G. T.Toussaint,
editor, Computational Geometry, pages 153–195. North-Holland, Ams-
terdam, Netherlands, 1985.

[2] B. Aronov and S. Fortune. Average-case ray shooting and minimum
weight triangulations. InProceedings of the 13th Symposium on
Computational Geometry, pages 203–212, 1997.

[3] S. Arya, S.W. Cheng, D. Mount and H. Ramesh. Efficient expected-case
algorithms for planar point location. InProceedings of the 7th Scand.
Workshop on Algorithm Theory, pages 353–366, 2000.

[4] S. Arya, T. Malamatos and D. Mount. Nearly optimal expected-case
planar point location. InProceedings of the 41th IEEE Symp on
Foundation of Computer Science, 2000.

[5] S. Arya, T. Malamatos and D. Mount. A simple entropy-based algorithm
for planar point location. InProceedings of the 12th ACM/SIAM Symp
on Discrete Algorithms, Jan, 2001.

[6] S. Arya, T. Malamatos and D. Mount. Entropy-preserving cuttings
and space-efficient planar point location. InProceedings of the 12th
ACM/SIAM Symp on Discrete Algorithms, Jan, 2001.

[7] M. Bern, D. Eppstein, and F. Yao. The expected extremes ina Delaunay
triangulation. International Journal of Computational Geometry &
Applications, 1:79–91, 1991.

[8] P. Bose and L. Devroye. Intersections with random geometric objects.
Comp. Geom. Theory and Appl., 10:139–154, 1998.

[9] A. Bowyer. Computing Dirichlet tessellations.The Computer Journal,
24:162–166, 1981.

[10] E. Brisson. Representing geometric structures ind dimensions: Topology
and Order.Discrete & Computational Geometry, 9(4):387–426, 1993.

[11] P. de Castro and O. Devillers. A pedagogic JavaScript program for
point location strategies. InProceedings of the 27th Symposium on
Computational Geometry, pages 295-296, 2011.

[12] J-L. De Carufel, C. Dillabaugh and A. Maheshwari. Pointlocation in
well-shaped meshes using Jump and Walk. InProceedings of the 23rd
Canadian Conf. on Computational Geometry (CCCG’11), August, 2011.

[13] O. Devillers. Improved incremental randomized Delaunay triangulation.
In Proceedings of the 14th Symposium on Computational Geometry,
pages 106–115, 1998.

[14] L. Devroye, C. Lemaire and J-M. Moreau. Fast Delaunay point location
with search structures. InProceedings of the 11th Canadian Conf on
Computational Geometry, pages 136–141, 1999.

[15] L. Devroye, C. Lemaire and J-M. Moreau. Expected time analysis for
Delaunay point location.Comp. Geom. Theory and Appl., 29(2):61-89,
2004.

[16] L. Devroye, E. P. Mücke, and B. Zhu. A note on point location in
Delaunay triangulations of random points.Algorithmica, Special Issue
on Average Case Analysis of Algorithms, 22(4):477-482, 1998.

6

[17] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-
dimensional subdivisions.Algorithmica, 4(1):3–32, 1989.

[18] M. T. Goodrich, M. Orletsky, and K. Ramaiyer. Methods for achieving
fast query times in point location data structures. InProceedings of
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’97), pages 757–766, 1997.

[19] P. J. Green and R. Sibson. Computing Dirichlet tessellations in the
plane. The Computer Journal, 21:168–173, 1978.

[20] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi diagrams.ACM Transactions
on Graphics, 4(2):74–123, 1985.

[21] J. Hershberger and S. Suri. A pedestrian approach to rayshootings:
shoot a ray, take a walk.J. Algorithms, 18:403–431, 1995.

[22] E. P. Mücke. Shapes and Implementations in Three-Dimensional Geom-
etry. Ph.D. thesis. Technical Report UIUCDCS-R-93-1836. Department
of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, Illinois, 1993.

[23] E. P. Mücke, I. Saias and B. Zhu. Fast randomized point location without
preprocessing in two and three-dimensional Delaunay triangulations.
Comp. Geom. Theory and Appl., Special Issue for SoCG’96, 12(1/2):63-
83, 1999.

[24] F. P. Preparata and M.I. Shamos.Computational Geometry: An Intro-
duction. Springer-Verlag, 1985.

[25] J. R. Shewchuk. Triangle: Engineering a 2D quality meshgenerator and
Delaunay triangulator. InProceedings of the First ACM Workshop on
Applied Computational Geometry, pages 124–133, 1996.

[26] J. Snoeyink. Point location. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, pages 559–574.
CRC Press, Boca Raton, 1997.

[27] H. Trease, D. George, C. Gable, J. Fowler, E. Linnbur, A.Kuprat and
A. Khamayseh. The X3D Grid Generation System. In Proceedings
of the 5th International Conference on Numerical Grid Generation in
Computational Field Simulations, 239–244, 1996.

