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Matching two geometric objects in two-dimensional (2D) and three-dimensional (3D)
spaces is a central problem in computer vision, pattern recognition, and protein structure
prediction. In particular, the problem of aligning two polygonal chains under translation
and rotation to minimize their distance has been studied using various distance measures.
It is well known that the Hausdorff distance is useful for matching two point sets, and
that the Fréchet distance is a superior measure for matching two polygonal chains.
The discrete Fréchet distance closely approximates the (continuous) Fréchet distance,
and is a natural measure for the geometric similarity of the folded 3D structures of
biomolecules such as proteins. In this paper, we present new algorithms for matching
two polygonal chains in two dimensions to minimize their discrete Fréchet distance under
translation and rotation, and an effective heuristic for matching two polygonal chains
in three dimensions. We also describe our empirical results on the application of the
discrete Fréchet distance to protein structure–structure alignment.

Keywords: Protein structure–structure alignment; discrete Fréchet distance; geometric
pattern matching.

1. Introduction

Matching two geometric objects in two-dimensional (2D) and three-dimensional
(3D) spaces is a central problem in computer vision, pattern recognition, and protein
structure prediction. A lot of research has been done in this aspect using various
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distance measures. One of the most popular distance measures is the Hausdorff
distance dH. For arbitrary bounded sets A, B ⊆ R

2, it is defined as follows:

dH(A, B) = max
(

sup
a∈A

inf
b∈B

dist(a, b), sup
b∈B

inf
a∈A

dist(a, b)
)

,

where dist is the underlying metric in the plane, e.g. the Euclidean metric. Given
two point sets with m and n points, respectively, in the plane, their minimum Haus-
dorff distance under translation can be computed in O(mn(m + n)α(mn) log(mn))
time1 or, when both translation and rotation are allowed, in O((m + n)6 log(mn))
time.2 Given two polygonal chains with m and n vertices, respectively, in the
plane, their minimum Hausdorff distance under translation can be computed in
O((mn)2 log3(mn)) time3 or, when both translation and rotation are allowed, in
O((mn)4(m + n) log(m + n)) time.4

The Hausdorff distance is a good measure for the similarity of point sets, but
it is inadequate for the similarity of polygonal chains; one can easily come up with
examples of two polygonal chains with a small Hausdorff distance, but drastically
different geometric shapes. Alt and Godau5 proposed to use the Fréchet distance to
measure the similarity of two polygonal chains. The Fréchet distance δF between
two parametric curves, f : [0, 1] → R

2 and g : [0, 1] → R
2, is defined as follows:

δF(f, g) = inf
α,β

max
s∈[0,1]

dist(f(α(s)), g(β(s))),

where α and β range over all continuous nondecreasing real functions with α(0) =
β(0) = 0 and α(1) = β(1) = 1. Imagine that a person and a dog walk along two
different paths while connected by a leash; they always move forward, though at
different paces. The minimum possible length of the leash is the Fréchet distance
between the two paths. Given two polygonal chains with m and n vertices, respec-
tively, in the plane, their Fréchet distance at fixed positions can be computed in
O(mn log(m + n)) time6; and their minimum Fréchet distance under translation
can be computed in O((mn)3(m + n)2 log(m + n)) time7 or, when both translation
and rotation are allowed, in O((m + n)11 log(m + n)) time.8

The Fréchet distance is a superior measure for the similarity of polygonal curves,
but it is very difficult to handle. Eiter and Mannila9 introduced the discrete Fréchet
distance as a close approximation of the (continuous) Fréchet distance. We now
review their definition of the discrete Fréchet distance using our notations (but
with exactly the same ideaa).

Definition 1. Given a polygonal chain P = 〈p1, p2, . . . , pn〉 of n vertices, a k-walk
along P partitions the vertices of P into k disjoint nonempty subsets {Pi}i=1,2,...,k

such that Pi = 〈pni−1+1, . . . , pni〉 and 0 = n0 < n1 < · · · < nk = n.

aUnaware of the previous work by Eiter and Mannila,9 the authors of this paper had come up with
this idea independently. Indeed, the discrete Fréchet distance is such a natural concept that it has
been rediscovered many times. The recent work by Mosig and Clausen10 is another example.



February 26, 2008 11:51 WSPC/185-JBCB 00327

Protein Structure–Structure Alignment with Discrete Fréchet Distance 53

Given two polygonal chains A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉, a
paired walk along A and B is a k-walk {Ai}i=1,2,...,k along A and a k-walk
{Bi}i=1,2,...,k along B for some k such that, for 1 ≤ i ≤ k, either |Ai| = 1 or
|Bi| = 1 (that is, either Ai or Bi contains exactly one vertex). The cost of a paired
walk W = {(Ai, Bi)} along two chains A and B is

dW
F (A, B) = max

i
max

(a,b)∈Ai×Bi

dist(a, b).

The discrete Fréchet distance between two polygonal chains A and B is

dF (A, B) = min
W

dW
F (A, B).

The paired walk that achieves the discrete Fréchet distance between two polygonal
chains A and B is called the Fréchet alignment of A and B.

Let us consider again the scenario in which the person walks along A and the
dog along B. Intuitively, the definition of the paired walk is based on three cases:

(1) |Bi| > |Ai| = 1: the person stays and the dog moves forward;
(2) |Ai| > |Bi| = 1: the person moves forward and the dog stays;
(3) |Ai| = |Bi| = 1: both the person and the dog move forward.

Figure 1 shows the relationship between discrete and continuous Fréchet dis-
tances. In Fig. 1(a), we have two polygonal chains 〈a, b〉 and 〈c, d, e〉; their contin-
uous Fréchet distance is the distance from d to the segment ab, that is, dist(d, o).
The discrete Fréchet distance is dist(d, b). As we can see from the figure, the dis-
crete Fréchet distance could be arbitrarily larger than the continuous distance. On
the other hand, if we put enough sample points on the two polygonal chains, then
the resulting discrete Fréchet distance — that is, dist(d, f) in Fig. 1(b) — closely
approximates dist(d, o).

Given two polygonal chains of m and n vertices, respectively, their discrete
Fréchet distance can be computed in O(mn) time by a dynamic programming
algorithm.9,10 We now describe our algorithm based on the same idea.

Given two polygonal chains A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉, and
their two subchains A[1, 2, . . . , i] = 〈a1, a2, . . . , ai〉 and B[1, 2, . . . , j] = 〈b1, b2, . . . ,

bj〉, let d<(i, j) — respectively, d>(i, j) — denote the discrete Fréchet distance
between A[1, 2, . . . , i] and B[1, 2, . . . , j] such that ai — respectively, bj — belongs to

a b

c

d

e

o fa

c

d

b

e

o

(a) (b)

Fig. 1. The relationship between discrete and continuous Fréchet distances.
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a single-vertex subset in the paired walk, and define d(i, j) = min{d<(i, j), d>(i, j)}.
The discrete Fréchet distance dF (A, B) = min{d<(m, n), d>(m, n)} can be com-
puted in O(mn) time with the base conditions

d<(i, 0) = d<(0, j) = 0 and d>(i, 0) = d>(0, j) = 0 and d(i, 0) = d(0, j) = 0,

and the recurrences

d<(i, j) = max

{
dist(ai, bj)

min{d(i − 1, j − 1), d(i, j − 1)}

d>(i, j) = max

{
dist(ai, bj)

min{d(i − 1, j − 1), d(i − 1, j)}
d(i, j) = min{d<(i, j), d>(i, j)}.

In this paper, we present new algorithms that compute the minimum dis-
crete Fréchet distance of two polygonal chains in the plane under transla-
tion in O((mn)3 log(m + n)) time and, when both rotation and translation are
allowed, in O((mn)4 log(m + n)) time. These bounds are two or three orders of
magnitude smaller than the corresponding best bounds7,8 using the continuous
Fréchet distance measure. Our technique is not original: similar to the previous
algorithms1–4,7,8,11,12 on the Hausdorff and Fréchet distance measures, our algo-
rithms essentially enumerate all possible critical transformations determined by
some carefully chosen reference pairs of geometric objects. A major characteristic
of this approach is that the time complexity of the algorithm crucially depends on
the combinatorial complexity of the critical transformations, which in turn depends
on the intrinsic complexity of the underlying distance measure. Since the discrete
Fréchet distance measure does not consider the distances involving points in the
interior of the edges of the polygonal chains, the number of critical transformations
is drastically reduced, which, not surprisingly, leads to the reduced time complexi-
ties of our algorithms.

Admittedly, our algorithms only solve a special case of the more difficult problem
for the continuous Fréchet distance measure using essentially the same standard
technique; the more general solution for the continuous Fréchet distance7,8 may be
simplified to a solution for the discrete Fréchet distance. However, we recognize (as
Eiter and Mannila9 also did) that the discrete Fréchet distance is a very important
special case of the (continuous) Fréchet distance. We believe, especially in light of
the biological applications of the discrete Fréchet distance, that it deserves special
treatment.

Our interest in matching two polygonal chains in 2D and 3D spaces is motivated
by the application of protein structure–structure alignment. The discrete Fréchet
distance is a very natural measure in this application because a protein can be
viewed essentially as a chain of discrete amino acids in three dimensions. We design
a heuristic method for aligning two polygonal chains in three dimensions based on
the intuition behind our theoretical results for the 2D case, and use it to measure
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the geometric similarity of protein tertiary structures with real protein data drawn
from the Protein Data Bank (PDB) hosted at http://www.rcsb.org/pdb/.

The paper is organized as follows. In Sec. 2, we present our algorithms for
matching two polygonal chains in two dimensions under translation and rotation.
In Sec. 3, we describe our heuristic method for matching two polygonal chains in
three dimensions under translation and rotation, and present our empirical results
on protein structure–structure alignment with the discrete Fréchet distance. In
Sec. 4, we conclude the paper.

2. Matching 2D Polygonal Chains Under Translation and Rotation

Definition 2. (Optimization Problem) Given two polygonal chains A and B, a
transformation class T , and a distance measure d, find a transformation τ ∈ T such
that d(A, τ(B)) is minimized.

Definition 3. (Decision Problem) Given two polygonal chains A and B, a trans-
formation class T , a distance measure d, and a real number ε ≥ 0, decide whether
there is a transformation τ ∈ T such that d(A, τ(B)) ≤ ε.

Observation 1. Given two polygonal chains A and B, if there is a transformation
τ such that dF(A, τ(B)) = ε, then there are two vertices a ∈ A and b ∈ B such
that dist(a, τ(b)) = ε.

2.1. Matching under translation

We first consider the transformation class Tt of all translations.

Lemma 1. Given two 2D polygonal chains A and B, if there is a translation
τ ∈ Tt such that dF (A, τ(B)) = ε > 0, then one of the following four cases is true:

(1) there are vertices a ∈ A and b ∈ B such that, for any translation τ ′ ∈ Tt,

dist(a, τ ′(b)) = ε ⇒ dF (A, τ ′(B)) ≤ ε;
(2) there are two vertices a, c ∈ A, a vertex b ∈ B, and a translation τ ′ ∈ Tt such

that dist(a, τ ′(b)) = dist(c, τ ′(b)) = ε and dF (A, τ ′(B)) ≤ ε;
(3) there are a vertex a ∈ A, two vertices b, d ∈ B, and a translation τ ′ ∈ Tt such

that dist(a, τ ′(b)) = dist(a, τ ′(d)) = ε and dF (A, τ ′(B)) ≤ ε; or
(4) there are two vertices a, c ∈ A, two vertices b, d ∈ B, and a translation τ ′ ∈ Tt

such that −→ac 	= −→
bd (that is, either |ac| 	= |bd| or −→ac and −→

bd have different
directions), dist(a, τ ′(b)) = dist(c, τ ′(d)) = ε, and dF (A, τ ′(B)) ≤ ε.

Proof. Let a ∈ A and b ∈ B be the two vertices such that dist(a, τ(b)) = ε, the
existence of which is guaranteed by Observation 1. Let W = {(Ai, Bi)} be the
Fréchet alignment of A and τ(B) such that dW

F (A, τ(B)) = ε. We translate B with
τ ′ (starting at τ) such that the distance between the two vertices a and b remains
at exactly ε, that is, dist(a, τ ′(b)) = ε. We consider the distance dW

F (A, τ ′(B)) =
max

i
max

(p,q)∈Ai×Bi

dist(p, τ ′(q)) as τ ′ changes continuously.
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As τ ′ changes continuously, τ ′(b) rotates around a in a circle of radius ε. If
dW
F (A, τ ′(B)) always remains at ε, we have case 1; otherwise, there are two vertices

c ∈ Ai and d ∈ Bi for some i such that the distance dist(c, τ ′(d)) crosses the
threshold ε. We cannot have both a = c and b = d because the distance dist(a, τ ′(b))
always remains at ε; for the same reason, we cannot have −→ac = −→

bd. There are three
possible cases: if a 	= c and b = d, we have case 2; if a = c and b 	= d, we have case
3; and if a 	= c and b 	= d, we have case 4.

The previous lemma implies the following algorithm that checks the four cases:

(1) For every two vertices a ∈ A and b ∈ B, compute an arbitrary translation τ ′

such that dist(a, τ ′(b)) = ε, and check whether dF (A, τ ′(B)) ≤ ε.
(2) For every three vertices a, c ∈ A and b ∈ B, compute all possible trans-

lations τ ′ such that dist(a, τ ′(b)) = dist(c, τ ′(b)) = ε, and check whether
dF (A, τ ′(B)) ≤ ε.

(3) For every three vertices a ∈ A and b, d ∈ B, compute all possible trans-
lations τ ′ such that dist(a, τ ′(b)) = dist(a, τ ′(d)) = ε, and check whether
dF (A, τ ′(B)) ≤ ε.

(4) For every four vertices a, c ∈ A and b, d ∈ B such that −→ac 	= −→
bd, compute all

possible translations τ ′ such that dist(a, τ ′(b)) = dist(c, τ ′(d)) = ε, and check
whether dF (A, τ ′(B)) ≤ ε.

The algorithm answers yes if it finds at least one translation τ ′ such that
dF (A, τ ′(B)) ≤ ε; otherwise, it answers no. As we can see from the following lemma,
this algorithm solves the decision problem.

Lemma 2. If there is a translation τ ′ such that dF (A, τ ′(B)) = ε′, then, for any
distance ε ≥ ε′, there exists a translation τ such that dF (A, τ(B)) = ε.

Proof. As we translate B from τ ′(B) to infinity, the discrete Fréchet distance
between A and the translated B changes continuously (since it is a composite func-
tion based on the continuous Euclidean distance functions) from dF (A, τ ′(B)) = ε′

to infinity. The continuity implies that, for any ε ≥ ε′, there exists a translation τ

such that dF (A, τ(B)) = ε.

We now analyze the algorithm. In cases 2 and 3, given two points p and q such
that p 	= q, the two equations dist(x, p) = ε and dist(x, q) = ε together determine
x (there are at most two solutions for x), since the 2D point x has two variable
components. In case 4, given two points p and q, and a vector �v 	= −→pq, the two
equations dist(x, p) = ε and dist(x + �v, q) = ε are independent and determine x

(there are at most a constant number of solutions for x). Given a translation τ ′, to
check whether dF (A, τ ′(B)) ≤ ε takes O(mn) time. The overall time complexity is
O(mn · m2n2) = O(m3n3).

With binary search, our algorithm for the decision problem implies an
O(m3n3 log(1/ε)) time 1 + ε approximation for the optimization problem.
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Alternatively, we can use parametric search with Cole’s sorting trick7,13 to obtain
an O(m3n3 log(m + n)) time exact algorithm. This can be roughly done as fol-
lows. The optimization problem can be solved by at most O(m2n2) independent
binary searches, each on a set of at most mn items. The comparison in the binary
searches is exactly the decision procedure which we have just described, which takes
O(m3n3) time. When a group of comparisons is performed, Cole’s “batching rule”
obviously holds in this case. It then follows from Lemma 4 in Cole’s paper13 that the
parametric search procedure can be done in O(log m2n2 +log mn) = O(log(m+n))
steps. The overall running time for solving the optimization problem is therefore
O(m3n3 log(m + n)). We have the following theorem.

Theorem 1. For minimizing the discrete Fréchet distance between two 2D polygo-
nal chains under translation, we have an O(m3n3 log(1/ε)) time 1 + ε approximation
algorithm and an O(m3n3 log(m + n)) time exact algorithm.

2.2. Matching under translation and rotation

We next consider the transformation class Ttr that includes both translations and
rotations.

Lemma 3. Given two 2D polygonal chains A and B, if there is a transformation
τ ∈ Ttr such that dF (A, τ(B)) = ε > 0, then one of the following seven cases is
true:

(1) there are two vertices a ∈ A and b ∈ B such that, for any transformation
τ ′ ∈ Ttr, dist(a, τ ′(b)) = ε ⇒ dF (A, τ ′(B)) ≤ ε;

(2) there are two vertices a, c ∈ A and two vertices b, d ∈ B such that, for any
transformation τ ′ ∈ Ttr, dist(a, τ ′(b)) = dist(c, τ ′(d)) = ε ⇒ dF(A, τ ′(B)) ≤ ε;

(3) there are two vertices a, c ∈ A, three vertices b, d, f ∈ B, and a transforma-
tion τ ′ ∈ Ttr such that dist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(c, τ ′(f)) = ε and
dF (A, τ ′(B)) ≤ ε;

(4) there are three vertices a, c, e ∈ A, two vertices b, d ∈ B, and a transforma-
tion τ ′ ∈ Ttr such that dist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(d)) = ε and
dF (A, τ ′(B)) ≤ ε;

(5) there are three vertices a, c, e ∈ A, three vertices b, d, f ∈ B (
ace and 
bdf

are not congruent), and a transformation τ ′ ∈ Ttr such that dist(a, τ ′(b)) =
dist(c, τ ′(d)) = dist(e, τ ′(f)) = ε and dF (A, τ ′(B)) ≤ ε;

(6) there are three vertices a, c, e ∈ A, three vertices b, d, f ∈ B (
ace and 
bdf

are congruent), and a transformation τ ′ ∈ Ttr such that the two triangles

ace and τ ′(
bdf) are not parallel (their corresponding edges are not parallel),
dist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(f)) = ε, and dF(A, τ ′(B)) ≤ ε; or

(7) there are three vertices a, c, e ∈ A and three vertices b, d, f ∈ B (
ace and

bdf are congruent) such that, for any transformation τ ′ ∈ Ttr, if 
ace and
τ ′(
bdf) are parallel and if dist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(f)) = ε,

then dF (A, τ ′(B)) ≤ ε.
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Proof. Let a ∈ A and b ∈ B be the two vertices such that dist(a, τ(b)) = ε,
the existence of which is guaranteed by Observation 1. Let W = {(Ai, Bi)} be
the Fréchet alignment of A and τ(B) such that dW

F (A, τ(B)) = ε. Without loss of
generality, we assume that a ∈ Ai, b ∈ Bi, and b is the only vertex in Bi.

Starting with τ ′ = τ , we rotate B around the vertex b. During the rota-
tion, the distance between the two vertices a and b remains at exactly ε, that
is, dist(a, τ ′(b)) = ε. If dW

F (A, τ ′(B)) always remains at ε, we have case 1.
Otherwise, there are two vertices c ∈ Aj and d ∈ Bj for some j such that the

distance dist(c, τ ′(d)) crosses the threshold ε. We must have i 	= j because b is
the only vertex in Bi and the positions of the vertices in Ai are fixed as we rotate
B around b. It follows that a 	= c and b 	= d. Now, we continue to transform B

while keeping the two constraints dist(a, τ ′(b)) = ε and dist(c, τ ′(d)) = ε satisfied.
If dW

F (A, τ ′(B)) always remains at ε, we have case 2.
Otherwise, there are two vertices e ∈ Ak and f ∈ Bk for some k such that the

distance dist(e, τ ′(f)) crosses the threshold ε. We must have k 	= i for the same
reason that j 	= i. We consider two possibilities: either k = j or k 	= j.

If k = j, then we must have either e = c or f = d because either Aj or Bj

contains a single vertex. We cannot have both e = c and f = d because we keep the
constraint dist(c, τ ′(d)) = ε satisfied during the transformation. If e = c, we have
case 3; if f = d, we have case 4.

If k 	= j, then we consider the two triangles 
ace and τ ′(
bdf):

(1) If they are not congruent, we have case 5.
(2) If they are congruent but not parallel, we have case 6.
(3) If they are both congruent and parallel, then we translate B continuously while

keeping the three constraints dist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(f)) = ε

satisfied. During the translation, we either encounter another pair of vertices e′

and f ′ whose distance crosses the threshold ε or not. If we encounter e′ and f ′,
then the two triangles 
ace′ and 
bdf ′ must not be congruent, and we have
case 5; otherwise, we have case 7.

As before, the previous lemma implies an algorithm for the decision problem.
We now analyze the running time. In cases 1, 2, and 7, we only need to find one
transformation τ ′. In cases 3 and 4, there are at most four transformations for τ ′.
In case 5, the transformation for τ ′ can be specified by six variables: the x and y

coordinates of the three vertices b, d, and f ; we also have six constraints for the
lengths of the six segments ab, cd, ef , bd, df , and bf . Each constraint is specified by
a quadratic equation. There are at most a constant number of solutions for these
equations.

In case 6, we have two congruent triangles 
ace and 
b′d′f ′ (
b′d′f ′ =
τ ′(
bdf)). If the two triangles have the same enclosing circle, then there are at
most two transformations such that |ab′| = |cd′| = |ef ′| = ε. If the two triangles do
not have the same enclosing circle, then we can always translate 
ace to 
a′c′e′
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such that 
a′c′e′ and 
b′d′f ′ have the same enclosing circle, then rotate 
a′c′e′

to 
b′d′f ′. We have |ab′| = |cd′| = |ef ′| = ε > 0, |a′b′| = |c′d′| = |e′f ′| = x > 0
(since they are not parallel), and

−→
ab′ =

−→
a′b′ + �v,

−→
cd′ =

−→
c′d′ + �v,

−→
ef ′ =

−−→
e′f ′ + �v.

Given a fixed vector �v, the equation �w = �u + �v, subject to the two constraints
|�w| = ε > 0 and |�u| = x > 0, has at most two solutions for �w and �u. On the other
hand, the three vectors

−→
a′b′,

−→
c′d′, and

−−→
e′f ′ are distinct, which is a contradiction.

Therefore, the two triangles 
ace and 
b′d′f ′ must have the same enclosing circle.

Theorem 2. For minimizing the discrete Fréchet distance between two 2D polyg-
onal chains under translation and rotation, we have an O(m4n4 log(1/ε)) time 1+ ε

approximation algorithm and an O(m4n4 log(m + n)) time exact algorithm.

3. Protein Structure–Structure Alignment

The discrete Fréchet distance between two polygonal chains is a natural measure
for comparing the geometric similarity of protein tertiary structures because the
alpha-carbon atoms along the backbone of a protein essentially form a 3D polygonal
chain.

Generalizing the theoretical results in the previous section, it is possible to match
two polygonal chains with m and n vertices in three dimensions in roughly O((mn)7)
time (ignoring the log factors) under both translation and rotation. (Instead of
using only three pairs of reference vertices as in the 2D case, six pairs of reference
vertices are necessary for the six degrees of freedom in the 3D case.) Although this
O((mn)7) running time for the discrete Fréchet distance is far less than the current
best O((m + n)20 log(m + n)) running time for the continuous Fréchet distance,8

it is still too slow for our target application of protein structure–structure alignment,
where a typical protein corresponds to a 3D polygonal chain with 300–500 amino
acids. Instead of an exact algorithm, we propose an intuitive heuristic and present
our empirical results showing its effectiveness in matching two similar polygonal
chains.

3.1. A heuristic for matching 3D polygonal chains under

translation and rotation

Given a 3D chain C of n vertices, the coordinates of each vertex ci of C can be
represented by a 3D vector �ci. The center c of the chain C corresponds to the
vector �c =

P
i �ci

n . We observe that, given two polygonal chains A = 〈a1, a2, . . . , am〉
and B = 〈b1, b2, . . . , bn〉, if dF(A, B) = ε, then we must have both dist(a1, b1) ≤ ε

and dist(am, bn) ≤ ε. If ε is smaller than half the minimum distance between two
consecutive vertices in either A or B, then the Fréchet alignment of A and B must
contain only one-to-one matches between vertices of A and B. That is, we must
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have m = n and, for 1 ≤ i ≤ n, dist(ai, bi) ≤ ε. It follows that dist(a, b) ≤ ε, where
a and b are the centers of A and B, respectively.

The observation above suggests that we can use the three points, the two end-
vertices and the center, as the reference points for each chain. We note that the use
of reference points in geometric pattern matching has been studied by Aichholzer
et al.11; there are also related works on reference points for matching by using
the Fréchet distance measure.7,12 For two polygonal chains with a small discrete
Fréchet distance, their corresponding reference points must be close. In general, the
position and orientation of each polygonal chain is determined by the positions of
its three reference points. We have the following heuristic for matching A and B

under translation and rotation:

(1) Translate B such that the center a of A and the center b of B coincide.
(2) Rotate B around b such that the two triangles 
aa1am and 
bb1bn are copla-

nar, and such that the two vectors �a1+ �am

2 − �a and �b1+ �bn

2 − �b have the same
direction.

(3) Rotate B for a small angle around the axis through its two randomly chosen
vertices. If this does not decrease the discrete Fréchet distance between A and
B, rotate back.

(4) Repeat the previous tuning step for a number of times.

3.2. The experiment

We implemented our protein structure–structure alignment heuristic and a protein
visualization softwareb in Java. The experiment was conducted on an Apple iMac
with a 2GHz PowerPC G5 processor and 2GB DDR SDRAM memory running Mac
OS 10.4.3 and Java 1.4.2.

In the experiment, we align the protein chain 1o7j.a (PDB ID 1o7j; chain A)
with seven other protein chains 1hfj.c, 1qd1.b, 1toh, 4eca.c, 1d9q.d, 4eca.b, and
4eca.d. Each of these eight chains contains exactly 325 vertices, where each vertex
represents an alpha-carbon atom on the protein backbone. When the number of
tuning steps is set to 20, our program takes less than 1 second to align two chains
of lengths 325 on our test machine. Figure 2 shows two screenshots of our program,
before (left) and after (right) aligning the two protein chains 1o7j.a and 1hfj.c.

We compare our heuristic with ProteinDBS,14 an online protein database
search engine hosted at http://proteindbs.rnet.missouri.edu/ that supports pro-
tein structure–structure alignment. ProteinDBS uses computer vision techniques
to align two protein chains based on the 2D distance matrix generated from the 3D
coordinates of the alpha-carbon atoms on the protein backbones. The two chains
1o7j.a and 1hfj.c are examples given in the ProteinDBS paper.14 According to the

bThe program is hosted on the web at http://www.cs.usu.edu/∼mjiang/frechet.html/
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Fig. 2. The alignment of 1o7j.a and 1hfj.c by our heuristic.

Table 1. The characteristics of the seven chains with the highest similarity ranking by
ProteinDBS.

RMSDa Discrete Fréchet
Protein chain Alignment length (in angstrom) distance (in angstrom)

1hfj.c 325 0.27 1.01
1qd1.b 85 2.81 22.90
1toh 55 2.91 35.09
4eca.c 317 1.10 6.01
1d9q.d 81 2.88 22.18
4eca.b 317 1.09 5.76
4eca.d 318 1.45 5.92

aRMSD: root mean square deviation.

query result from the ProteinDBS website, the seven chains (1hfj.c, 1qd1.b, 1toh,
4eca.c, 1d9q.d, 4eca.b, 4eca.d) have global tertiary structures most similar to 1o7j.a.

By comparing the image patterns in the distance matrices instead of aligning the
tertiary structures geometrically, ProteinDBS is very efficient but not so accurate.
We refer to Table 1, which lists the characteristics of the alignments generated by
ProteinDBS. The three protein chains 1qd1.b, 1toh, and 1d9q.d have global tertiary
structures dissimilar to that of the chain 1o7j.a, but they are incorrectly ranked
among the top by ProteinDBS. The discrete Fréchet distances of these chains and
the query chain computed by our heuristic correctly identify the three dissimilar
protein chains.

Instead of using the unweighted centers as the reference points in our heuristic, a
possible alternative (as pointed out by the anonymous referees of an earlier version
of this paper) is to use the Steiner points7,11,12 (which can be considered as the
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weighted centers of the protein chains) to achieve protein structure–structure align-
ments with certain provable qualities. We defer the exploration of this interesting
idea to our future work.

4. Conclusion

In this paper, we presented the first algorithms for matching two polygonal chains
in two dimensions to minimize their discrete Fréchet distance under translation and
rotation. Our algorithms are two or three orders of magnitude faster than the fastest
algorithms using the continuous Fréchet distance, and can be readily generalized
to higher dimensions.

The discrete Fréchet distance is a natural measure for comparing the folded
3D structures of biomolecules such as proteins. Our experiment shows that our
heuristic for aligning protein tertiary structures using the discrete Fréchet distance
is more accurate than ProteinDBS’s structure-aligning algorithm, which is based
on computer vision techniques. We are currently conducting more empirical studies
and refining our protein structure–structure alignment algorithm with additional
ideas from some other popular algorithms such as DALI15 and CE.16 We see great
potential for using the discrete Fréchet distance in the local alignment,17 the feature
identification, and the consensus shape construction18 of multiple proteins.
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