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ABSTRACT

Protein structure alignment is a fundamental problem in computational and structural

biology. While there has been lots of experimental/heuristic methods and empirical results,

very few results are known regarding the algorithmic/complexity aspects of the problem,

especially on protein local structure alignment. A well-known measure to characterize the

similarity of two polygonal chains is the famous Fréchet distance, and with the application

of protein-related research, a related discrete Fréchet distance has been used recently. In

this paper, following the recent work of Jiang et al. we investigate the protein local struc-

tural alignment problem using bounded discrete Fréchet distance. Given m proteins (or

protein backbones, which are 3D polygonal chains), each of length O.n/, our main results

are summarized as follows:

� If the number of proteins, m, is not part of the input, then the problem is NP-complete;

moreover, under bounded discrete Fréchet distance it is NP-hard to approximate the

maximum size common local structure within a factor of n1��. These results hold both

when all the proteins are static and when translation/rotation are allowed.
� If the number of proteins, m, is a constant, then there is a polynomial time solution for

the problem.

Key words: approximation, discrete Fréchet distance, Fréchet distance, NP-hardness, protein

structure alignment.

1. INTRODUCTION

AS A FAMOUS DISTANCE MEASURE in the field of abstract spaces, Fréchet distance was first defined by

Maurice Fréchet (1906) a century ago. Alt and Godau (1992) first used it in measuring the similarity

of polygonal chains in 1992. It is well known that the Fréchet distance between two two-dimensional

(2D) polygonal chains (polylines) can be computed in polynomial time (Alt and Godau, 1992, 1995), and

even under translation or rotation (though the running time is much higher) (Alt et al., 2001). In three-

dimensional space (3D), Wenk (2002) showed that, given two chains with sum of length N , the minimum
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1344 ZHU

Fréchet distance between them can be computed in O.N 3f C2 logN / time, where f is the degree of

freedom for moving the chains. So with translation alone, this minimum Fréchet distance can be computed

in O.N 11 log N / time, and when both translation and rotation are allowed, the corresponding minimum

Fréchet distance can be computed in O.N 20 log N / time. These results can be generalized to any fixed

dimensions (Wenk, 2002). While computing (approximating) Fréchet distance for surfaces is in general

NP-hard (Godau, 1998; Hui and Shaefer, 2004), it is polynomially solvable for restricted surfaces (Buchin

et al., 2006).

Eiter and Mannila (1994) defined the discrete Fréchet distance between two polygonal chains A and B

(in any fixed dimensions), and it turns out that this simplified distance is always realized by two vertices

in A and B . They also showed that, with dynamic programming, the discrete Fréchet distance between

them can be computed in O.jAjjBj/ time.

Recently, Jiang et al. (2007) applied the discrete Fréchet distance in (globally) aligning the backbones

of proteins (which is called the protein structure-structure alignment or more generally, the protein global

alignment problem). In fact, in this application, the discrete Fréchet distance makes more sense, as the

backbone of a protein is simply a polygonal chain in 3D, with each vertex being the alpha-carbon atom

of a residue. So if the (continuous) Fréchet distance is realized by an alpha-carbon atom and some other

point which does not represent an atom, it is not meaningful biologically. Jiang et al. (2007) showed that,

given two 2D (or 3D) polygonal chains, the minimum discrete Fréchet distance between them, under both

translation and rotation, can be computed in polynomial time. They also applied some ideas therein to

design an efficient heuristic for the original protein structure-structure alignment problem in 3D, and the

empirical results showed that their alignment is more accurate compared with some previously known

solutions.

In essence, the result of Jiang et al. (2007) implies that the protein global alignment problem, which is

to find all proteins in a given set P similar to a query protein or some protein in P (under translation and

rotation), is polynomially solvable. However, very few algorithmic/complexity results are known regarding

the protein local structure alignment problem until very recently. Shatsky et al. (2005) showed that, under

the bottleneck metric (Akutsu, 1996; Efrat et al., 2001), the problem is NP-complete and the problem does

admit a polynomial time approximation. Most recently, Qian et al. (2007) showed that, under the RMSD

distance, the problem is NP-complete and the problem admits a PTAS. On the other hand, there have

been lots of experimental/heuristic methods with practical systems since 1989, for example, SSAP (Taylor

and Orengo, 1989), DALI (Holm and Sander, 1993; Holm and Park, 2000), CATH (Orengo et al., 1997),

CE (Shindyalov and Bourne, 1998), SCOP (Conte et al., 2000), MAMMOTH (Oritz et al., 2002), and

TALI (Miao et al., 2008). In this paper, we show that if many proteins are given then the local structure

alignment problem, under the discrete Fréchet distance, is very hard; on the other hand, if only a small

number of proteins are given, then there is a polynomial time solution for the problem.

The paper is organized as follows. In Section 2, we introduce some basic definitions regarding Fréchet

distance and review some known results. In Section 3, we show the hardness result for the protein local

structure alignment problem. In Section 4, we show how to solve the problem when m is a constant. In

Section 5, we conclude the paper with several open problems.

2. PRELIMINARIES

Given two 3D polygonal chains A; B with jAj D k and jBj D l vertices, respectively, we aim at

measuring the similarity of A and B (possibly under translation and rotation) such that their distance is

minimized under certain measure. Among the various distance measures, the Hausdorff distance is known

to be better suited for matching two point sets than for matching two polygonal chains; the (continuous)

Fréchet distance is a superior measure for matching two polygonal chains, but it is not quite easy to

compute (Alt and Godau, 1992).

Let X be the Euclidean space R
3; let d.a; b/ denote the Euclidean distance between two points a; b 2 X .

The (continuous) Fréchet distance between two parametric curves f W Œ0; 1� ! X and g W Œ0; 1� ! X is

ıF .f; g/ D inf
˛;ˇ

max
s2Œ0;1�

d.f .˛.s//; g.ˇ.s///;
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PROTEIN LOCAL STRUCTURE ALIGNMENT 1345

where ˛ and ˇ range over all continuous non-decreasing real functions with ˛.0/ D ˇ.0/ D 0 and

˛.1/ D ˇ.1/ D 1.1

Imagine that a person and a dog walk along two different paths while connected by a leash; moreover,

they always move forward, possibly at different paces. Intuitively, the minimum possible length of the leash

is the Fréchet distance between the two paths. To compute the Fréchet distance between two polygonal

curves A and B (in the Euclidean plane) of jAj and jBj vertices, respectively, Alt and Godau (1992) pre-

sented an O.jAjjBj log2.jAjjBj// time algorithm. Later, this bound was reduced to O.jAjjBj log.jAjjBj//

time (Alt and Godau, 1995).

We now define the discrete Fréchet distance following (Eiter and Mannila, 1994).

Definition 2.1. Given a polygonal chain (polyline) in 3D, P D hp1; : : : ; pki of k vertices, a q-walk

along P partitions the path into q disjoint non-empty subchains fPigiD1::q such that Pi D hpki�1C1; : : : ;

pki i and 0 D k0 < k1 < � � � < kq D k.

Given two 3D polylines A D ha1; : : : ; aki and B D hb1; : : : ; bli, a paired walk along A and B is

a q-walk fAi giD1::q along A and a q-walk fBi giD1::q along B for some q, such that, for 1 � i � q,

either jAi j D 1 or jBi j D 1 (that is, Ai or Bi contains exactly one vertex). The cost of a paired walk

W D f.Ai ;Bi /g along two paths A and B is

d W
F .A; B/ D max

i
max

.a;b/2Ai�Bi

d.a; b/:

The discrete Fréchet distance between two polylines A and B is

dF .A; B/ D min
W

d W
F .A; B/:

The paired walk that achieves the discrete Fréchet distance between two paths A and B is also called the

Fréchet alignment of A and B .

Consider the scenario in which the person walks (jumps) along A and the dog along B . Intuitively, the

definition of the paired walk is based on three cases:

1. jBi j > jAi j D 1: the person stays and the dog moves (jumps) forward;

2. jAi j > jBi j D 1: the person moves (jumps) forward and the dog stays;

3. jAi j D jBi j D 1: both the person and the dog move (jump) forward.

Eiter and Mannila (1994) presented a simple dynamic programming algorithm to compute dF .A; B/

in O.jAjjBj/ D O.kl/ time. Recently, Jiang et al. (2007) showed that the minimum discrete Fréchet

distance between two chains in 2D, A and B , under translation can be computed in O.k3l3 log.k C l//

time, and under both translation and rotation it can be computed in O.k4l4 log.k C l// time. For 3D chains

these bounds are O.k4l4 log.k C l// and O.k7l7 log.k C l// respectively (Jiang et al., 2007). They are

significantly faster than the corresponding bounds for the continuous Fréchet distance (certainly due to a

simpler distance structure), which are O..k C l/11 log.k C l// and O..k C l/20 log.k C l// respectively for

3D chains (Wenk, 2002).

We comment that, while the discrete Fréchet distance could be arbitrarily larger than the corresponding

continuous Fréchet distance (e.g., in Fig. 1—I, they are d.a2; b2/ and d.a2; o/ respectively), by adding

sample points on the polylines, one can easily obtain a close approximation of the continuous Fréchet

distance using the discrete Fréchet distance (e.g., one can use d.a2; b/ in Fig. 1—II to approximate

d.a2; o/). This fact was pointed to before in Eiter and Mannila (1994) and Indyk (2002) and is supported

by the fact that the segments in protein backbones are mostly of similar lengths. Moreover, the discrete

Fréchet distance is a more natural measure for matching the geometric shapes of biological sequences

such as proteins. As we mentioned in the Introduction, in such an application, continuous Fréchet does

not make much sense to biologists.

1This definition holds in any fixed dimensions.
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1346 ZHU

FIG. 1. Relationship between discrete and continuous Fréchet distances.

In the remaining part of this paper, for the first time, we investigate the locally aligning a set of polygonal

chains (proteins or protein backbones) in 3D, under the discrete Fréchet distance. We assume that the readers

are familiar with the standard terminologies on algorithms, NP-completeness and approximation algorithms

which can be found in a textbook on algorithms (Cormen et al., 2001).

3. PROTEIN LOCAL STRUCTURE ALIGNMENT IS HARD

Given a set of proteins modeled as simple 3D polygonal chains, the protein local structure alignment

(PLSA) problem is defined as follows:

Instance: Given a set m of proteins P1; P2; : : : ; Pm in 3D, each with length O.n/, and a real number D.

Problem: Does there exist a chain C of k vertices such that the vertices of C are from Pi ’s, and C and a

subsequence of Pi (1 � i � m) has discrete Fréchet distance at most D (under translation and rotation)?

If no translation and rotation is allowed, we call the corresponding problem static PLSA. For the

optimization version of the problem, we wish to maximize k when D is given. The (polynomial-time)

approximation solution will also be referred to as approximating the optimal solution value k� when it is

hard to compute exactly. We will see that it is also hard to approximate k� even for static PLSA. We first

prove the following theorem.

Theorem 3.1. Given D D ı, the static PLSA problem does not admit any approximation of factor

n1�� unless P=NP.

Proof. It is easy to see that PLSA belongs to NP. We use a reduction from Independent Set to the

Protein Local Structure Alignment Problem. Independent Set is a well-known NP-complete problem, which

cannot be approximated within a factor of n1�� (Hästad, 1999). The general idea is similar to that of the

longest common subsequence problem for multiple sequences (Jiang and Li, 1995), but our details are

more involved due to the geometric properties of the problem.

Given a graph G D .V; E/; V D fv1; v2; : : : ; vN g; E D fe1; e2; : : : ; eM g, we construct M C 1 3D

chains P0; P1; P2; : : : ; PM as follows. (We assume that the vertices and edges in G are sorted by their

corresponding indices.)

The overall reduction is as follows: P D fP0; P1; P2; : : : ; PM g, and

P0 D hv0
1; v0

2; : : : ; v0
ni;

where v0
i D .i; i2; 0/ is a 3D point for i D 1; : : : ; n.

For each er D .vi ; vj / in G, we have a corresponding sequence (3D chain)

Pr D hv0
1; v0

2; : : : ; v0
i�1; v0

iC1; : : : ; v0
n; v00

1 ; v00
2 ; : : : ; v00

j �1; v00
j C1; : : : ; v00

ni;

where v0
i D .i; i2; 0/ and v00

i D .i; i2; ı/ are 3D points for i D 1; : : : ; n and ı is an arbitrarily small positive

real number less than 0.1.
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PROTEIN LOCAL STRUCTURE ALIGNMENT 1347

We claim that G has an independent set of size k if and only if there is a chain C of k vertices such that

the discrete Fréchet distance between C and a subsequence of Pr , Sr , is at most ı (i.e., dF .C; Sr / � ı).

The following claims are made with the detailed proofs omitted.

Claim A. Pr is a simple polygonal chain in 3D.

Claim B. Sr is a simple polygonal chain in 3D with jSr j D k.

If G has an independent set of size k, then the chain C can be constructed as follows. Let the independent

set of G be ordered as I D hvi1 ; vi2 ; : : : ; vik i with i1 < i2 < � � � < ik . For r D 0; 1; � � � ; M , we scan Pr in

a greedy fashion to obtain the first v0
j or v00

j such that the first component of its coordinate is i1. Repeat this

process to obtain Sr . Then let any Sr be C . Obviously, C has k vertices and jSr j D k for r D 0; 1 : : : ; M .

If there is a chain C of k vertices such that the discrete Fréchet distance between C and a subsequence

of Pr , Sr , is at most ı (i.e., dF .C; Sr / � ı/, then we can see the following:

Property a. Let Pr D hv0
1; v0

2; : : : ; v0
i�1; v0

iC1; : : : ; v0
n; v00

1 ; v00
2 ; : : : ; v00

j �1; v00
j C1; : : : ; v00

ni, then d.v0
p ; v00

q / >

3 for all p ¤ q.

Property b. Let Pr D hv0
1; v0

2; : : : ; v0
i�1; v0

iC1; : : : ; v0
n; v00

1 ; v00
2 ; : : : ; v00

j �1; v00
j C1; : : : ; v00

ni, then d.v0
p ; v00

p/ �

ı for all p ¤ i; p ¤ j .

Property c. Let Pr D hu1; u2; : : : ; uO.n/i, then jd.up ; uq/ � d.up0 ; uq0/j >> ı as long as the first

components of the 4 coordinates of up ; uq; up0 ; uq0 are all different.

As ı is very small, when dF .C; Sr / � ı, the vertices of C and Sr must be matched orderly in a

one-to-one fashion. (In other words, the man walking on C and the dog walking on Sr must move/jump

together at each vertex; otherwise, dF .C; Sr/ > 3 >> ı.) We now claim that the (ordered) vertices of

C correspond to an independent set I of G; moreover, if C D hC1; C2; : : : ; Cki and Cp D .xp ; yp; zp/,

then vxp 2 I . Suppose that Cp D .xp; yp; zp/, Cq D .xq; yq; zq/ and vxp ; vxq 2 I but there is an edge

et D .vxp ; vxq/ 2 E . By our construction of Pt (from et ), v0
xp

and v00
xq

are not included in Pt and v0
xq

precedes v00
xp

in Pt . This is a contradiction.

To conclude the proof of this theorem, notice that the reduction take O.MN / time.

In the example shown in Figure 2, we have

P1 D hv0
1; v0

3; v0
4; v0

5; v00
1 ; v00

2 ; v00
4 ; v00

5 i;

P2 D hv0
1; v0

3; v0
4; v0

5; v00
1 ; v00

2 ; v00
3 ; v00

5 i;

P3 D hv0

2; v0

3; v0

4; v0

5; v00

1 ; v00

3 ; v00

4 ; v00

5 i;

P4 D hv0
2; v0

3; v0
4; v0

5; v00
1 ; v00

2 ; v00
3 ; v00

5 i;

P5 D hv0
1; v0

2; v0
4; v0

5; v00
1 ; v00

2 ; v00
3 ; v00

5 i; and

P6 D hv0

1; v0

2; v0

3; v0

5; v00

1 ; v00

2 ; v00

3 ; v00

4 i:

An example of P3 is shown in Figure 1 as well, in which case black nodes are on the Z D 0 plane and

white nodes are on the Z D ı plane (apparently for the visualization reason, the XY-plane is slanted). The

solid segments are on the Z D 0 plane, the dotted segments are on the Z D ı plane and the only dashed

segment connects two points on different planes. Corresponding to the optimal independent set fv1; v3; v5g

in G, the optimal local alignment C D hv0
1; v0

3; v0
5i matches P3 at its subsequence S3 D hv00

1 ; v00
3 ; v00

5 i.
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FIG. 2. Illustration of a simple graph for the reduction.

Corollary 3.1. Given D D ı and when both translation and rotation are allowed, the (maximization

version of) PLSA problem does not admit any approximation of factor n1�� unless P=NP.

Proof. Due to Property a, b, and c, translation/rotation will not be able to generate another C 0 which

is topologically different from C .

Notice that in our proof all the adjacent vertices in C could be non-adjacent in Pi , for i D 0; 1; : : : ; m.

Biologically, this might be a problem as one residue alone sometimes cannot carry out any biological

function. Define a c-substring or a c-subchain of Pi as a continuous subchain of Pi with at least c

vertices. Unfortunately, even if we introduce this condition by forcing that C is composed of k ordered

c-substrings of each Pi , for some constant c, the above proof can be modified to maintain a valid reduction

from Independent Set. Call this corresponding problem Protein c-Local Structure Alignment (PcLSA), in

which C must be composed of k ordered c-subchains of each Pi . We have the following corollary.

Corollary 3.2. The maximization version of PcLSA does not admit any approximation of factor n1��

unless P=NP.

4. POLYNOMIAL TIME SOLUTIONS FOR PLSA WHEN m IS SMALL

In this section, we present a polynomial time solution for the PLSA problem when m is a constant. We

first show a dynamic programming solution for the static PLSA and then we show how to use that as a

subroutine for the general PLSA problem, when m is small.

4.1. A dynamic programming solution for the static PLSA when m is small

In this subsection, we present a dynamic programming solution for the static PLSA problem when m is

small. Such a solution can be used as a subroutine for the general PLSA problem. We first consider the

case when m D 2. Besides C , we try to maximize the length of the aligned subsequences in P1 D A and

P2 D B with jAj D n1; jBj D n2. For ease of description, we only show how to obtain these lengths that

are stored in DŒ�; �; �; �� and MŒ�; �; �; ��, respectively. It is easy to reconstruct C from these arrays.

Let AŒi1; i2� be a subchain of A starting from the index i1 and ending at the index i2. Let BŒj1; j2� be

a subchain of B starting from the index j1 and ending at the index j2. DŒi1; i2; j1; j2� stores the length

of the aligned subsequences of AŒi1; i2� as a consequence of the alignment of C and AŒi1; i2�, and C and

BŒj1; j2�. MŒi1; i2; j1; j2� is defined symmetrically.

Intuitively DŒ�; �; �; �� stores the length of aligned subsequences from chain A (dog’s route) and

MŒ�; �; �; �� stores the length of aligned subsequences from chain B (man’s route). Define TF .i1; i2; j1; j2/

as the sum of aligned subsequences in both AŒi1; i2� and BŒj1; j2�. Writing AŒi� as ai and BŒj � as bj , we

have the dynamic programming solution as follows.

TF .i1; i2; j1; j2/ D D.i1; i2; j1; j2/ C M.i1; i2; j1; j2/;
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PROTEIN LOCAL STRUCTURE ALIGNMENT 1349

where

D.i1; i2; j1; j2/ D max

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

max
i1�k1<i2

fD.i1; k1; j1; j2/ C 1g if d.ai2 ; bj2/ � ı; nn dog moves

max
i1�k1<i2;j1�k2<j2

fD.i1; k1; j1; k2/ C 1g if d.ai2 ; bj2/ � ı; nn both move

max
j1�k2<j2

fD.i1; i2; j1; k2/g if d.ai2 ; bj2/ � ı; nn dog stays

(1)

and

M.i1; i2; j1; j2/ D max

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

max
i1�k1<i2

fM.i1; k1; j1; j2/g if d.ai2 ; bj2/ � ı; nn man stays

max
i1�k1<i2;j1�k2<j2

fM.i1; k1; j1; k2/ C 1g if d.ai2 ; bj2/ � ı; nn both move

max
j1�k2<j2

fM.i1; i2; j1; k2/ C 1g if d.ai2 ; bj2/ � ı; nn man moves

(2)

The boundary cases are handled as follows.

D.i1; i1; j1; j1/ D M.i1; i1; j1; j1/ D

8

<

:

1 if d.ai1 ; bj1/ � ı,

0 if d.ai1 ; bj1/ > ı.

(3)

The final solution value is stored in TF Œ1; n1; 1; n2�. We have the following theorem.

Theorem 4.1. When m D 2, the static PLSA problem can be solved in O.n4/ time and space.

It is easy to generalize this algorithm to the more general case when m is some constant. We thus have

the following corollary.

Corollary 4.1. When m is a constant, the static PLSA problem can be solved in O.m3n2m/ time and

O.mn2m/ space.

4.2. A polynomial time solution for PLSA when m is small

Apparently, for any solution for PLSA, we should allow translation and rotation. When m D 2 and

when both translation and rotation are allowed, we can use a method similar to that in Jiang et al.

(2007) to compute the optimal local alignment with fixed ı. The idea is as follows. Without loss of

generality, we assume that A is static and we translate/rotate B and let �.B/ be the copy of B after some

translation/rotation. Let jAj D n1; jBj D n2 and let f be the degree of freedom for moving B . As we

are in 3D and both translation and rotation are allowed, we have f D 6. We can enumerate all possible

configurations for A and �.B/ to realize a discrete Fréchet distance of ı. There are O..n1n2/f / D O.n12/

number of such configurations, following an argument similar to Wenk (2002) and Jiang et al. (2007).

Then for each configuration, we can use the above Theorem 4.1 to obtain the optimal local alignment for

each configuration and finally we simply return the overall optimal solution.

Corollary 4.2. When m D 2 and when both translation and rotation are allowed, the PLSA problem

can be solved in O.n16/ time and O.n4/ space.

Notice that, for a similar problem in 3D, namely, computing the largest common point sets under the

bottleneck metric between two sets with at most n points, the running time is O.n32:5/ (Ambuhl et al.,

2000). So the high running time of our solution is not really surprising.

We comment that, when m is larger, but still a constant, the above idea can be carried over so that we

will still be able to solve PLSA in polynomial time. It follows from Wenk (2002) and Jiang et al. (2007)
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that we have O.nmf / D O.n6m/ number of configurations between the m chains. Then we can again

use Corollary 4.1 to obtain the optimal local alignment for each configuration. The overall complexity

would be O.n6m � m3n2m/ D O.m3n8m/ time and O.mn2m/ space. Certainly, such an algorithm is only

meaningful in theory.

Corollary 4.3. When m is a constant and when both translation and rotation are allowed, the PLSA

problem can be solved in O.m3n8m/ time and O.mn2m/ space.

5. CONCLUSION

In this paper, for the first time, we study the complexity/algorithmic aspects of the famous protein local

structure alignment problem under the discrete Fréchet distance. We show that the general problem is

NP-complete; in fact, it is even NP-hard to approximate within a factor of n1��. On the other hand, when

a constant number of proteins are given then the problem can be solved in polynomial time. It would

be interesting to see the empirical comparisons of protein local structure alignment under the discrete

Fréchet distance (for a small number of protein backbones and possibly with some heuristic components,

as done in Jiang et al. [2007]) with the existing methods. Another open problem, obviously, is whether it

is possible to improve the running time of the dynamic programming algorithms in Section 4. We feel that

when suitable scoring functions are given, as in Shatsky et al. (2005), it might be possible to speed up the

dynamic programming algorithm.
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