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Abstract

Given two genomic map§& and H represented by a sequencerofiene markers, &rip
(syntenic block) is a sequence of distinct markers of lergtieast two which appear as sub-
sequences in the input maps, either directly or in reversetireegated form. The problem
Maximal Strip Recovery (MSR) is to find two subsequencé® and H' of G and H, respec-
tively, such that the total length of disjoint strips @f and H’ is maximized (or, conversely,
the number of markers hence deleted, is minimized). PreWoaeveral heuristic algorithms
which work well in practice, have been proposed. Theorbyicafactor4 polynomial-time ap-
proximation is known for the MSR problem. Moreover, sevetake variants of MSR, MSK-
(with d > 2 input maps), MSR-DU (with marker duplications) and MSR-Wilithi markers
weighted) have been proved to be NP-complete. Before thik,wloe complexity of the origi-
nal MSR problem was left open. In this paper, we solve the gpeblem by showing that both
MSR and its complement (minimization) version are NP-ca@tilusing a polynomial time
reduction from One-in-Three 3SAT. We also present some fpa@dmeter tractable algorithms
for the (complement of) MSR problem and its variants. k&e the minimum number of mark-
ers deleted in an optimal solution. The running times of dgoathms are0(23-5'%y, +n?2) for

2d+ 1)k
MSR,O(( ( Z ) ) dn + dn?) for MSR-d, andO(27-2%*n, + n?) for MSR-DU respec-
tively.
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1 Introduction

A well-known problem in comparative genomics is to decongpimgo given genomes into syntenic
blocks—segments of chromosomes which are deemed to be bgoud in the two input genomes.
Many methods have been proposed, but they are very vulmet@bmbiguities and errors. Recently,
two heuristic methods were proposed to eliminate noise amuguities in genomic maps, through
handling a problem called Maximal Strip Recovery (MSR — seloWw for the formal definition)
(Choi et al., 2007; Zheng et al., 2007). Chen et al. (2008p@sed a facto# polynomial-time
approximation algorithm for the problem, and several chemgants of the problem were shown to
be intractable. It was left as an open problem whether thielno can be solved in polynomial time
or is NP-complete. We first review some definitions.

A genomic map is represented by a sequence of gene markers, gene marker can appear
in several different genomic maps, in either positive orateg form. Astrip (syntenic block) is
a sequence of distinct markers that appears as subsequertegsor more maps, either directly
or in reversed and negated form. Given two genomic n@G@i@d H, the problemMaximal Strip
Recovery (MSR) (Choi et al., 2007; Zheng et al., 2007) is to find two sgpences’ and H'
of G and H, respectively, such that the total length of disjoint strip G’ and H’ is maximized.
Intuitively, those gene markers not includedGhand H' are noise and ambiguities.

We give a precise formulation of the generalized problem MSBivend signed permutations
(genomic mapsis; of (1,...,n),1 <14 < d, find ¢ sequences (stripsy); of length at least two, and
find d signed permutations; of (1,...,q), such that each sequen€g& = S, (... S, ) (here
S_; denotes the reversed and negated sequenSg) @ a subsequence 6f;, and the total length
of the stripsS; is maximized. Note that the problem Maximal Strip RecovaéWsR) (Choi et al.,
2007; Zheng et al., 2007) corresponds to the problem MSRe2iimew formulation. We refer to
Fig. 1 for an example. In this example, each integer reptesemarker.

Two heuristic methods based on Maximum Clique and its comelg Maximum Independent
Set were previously presented for the problem MSR (MSR-Bp{€t al., 2007; Zheng et al., 2007),
which do not guarantee finding the optimal solution but seemdrk well for practical datasets. It
was shown that these heuristic methods (Choi et al., 200&n@let al., 2007) can be modified to
achieve a facto# approximation for MSR-2 and, in general, a fackarapproximation for MSR4.
This was done by converting the problem to computing the makindependent set iftinterval
graphs, which admit a fact@t approximation (Bar-Yehuda et al., 2006).

In biological data, duplicate markers are possible in sogr@aqic maps, as the so-called par-
alogy set. We denote IMSR-DU the problem MSR with the following variation DU:

DU — Duplicate markers are allowed in the genomic maps and fareéifit strips.
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G = (1,2,3,4,5,6,7,8,9,10,11,12)

(
Gy = (-9,-4,-7,-6,8,1,3,2,—12, -11, 10, —5)
S = (1,2)
Sy = (6,7,9)
Sy = (10,11,12)
m = (1,2,3)
T = (=2,1,-3)
G, = (1,2,6,7,9,10,11,12)
Gy, = (-9,-7,-6,1,2,—12,—11,-10)

Figure 1: An example for the problem MSR, with solution sizénlg eight.

It should be noted that while duplicate markers are allowethé genomic maps and different
strips in the variation MSR-DU, they cannot appear in anyiddal strip since each strip must be
composed of a sequence of distinct markers.

Sometimes, when building genomic maps, a priori infornratiddout the gene markers can be
derived from comparative analysis. For example, certaimegdhat are responsible for important
genetic functions in several closely related species cwndfe identified. It is reasonable to give
the corresponding gene markers larger weights. Denot®l8g-WT the problem MSR with the
following additional weight constraint WT:

WT — The total weight of markers in the strips is between two fpasintegersw; andws.

In this paper, we show that MSR is in fact NP-complete, vialgrmmmial time reduction from
One-in-Three 3SAT, which was shown to be NP-complete (Seha#978; Garey and Johnson,
1979). On the other hand, we show that (the complement of) M&}§ether with its close variants
MSR-+d and MSR-DU, is fixed-parameter tractable. More specifictlyk be the minimum number
of markers deleted in the optimal solutions of various \@rsiof MSR, the running times of our

2d + 1)k
algorithmsar@(23'6”“n+n2)f0rMSR,O((( Z ) )dn+dn2)forMSRd, andO (2722 +

n?) for MSR-DU respectively.

This paper is organized as follows. In Section 2, we show Nfateteness for MSR. In Sec-
tion 3, we present fixed-parameter algorithms for MSR andesoftits variants. In Section 4, we
conclude the paper with a few open questions.
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2 MSR isNP-complete

We prove MSR to be NP-complete in this section. It is clear B8R is in NP. We show that MSR
is NP-hard by a reduction from the NP-hard problem One-ine@€IBSAT (Schaefer, 1978).

Theorem 1 MSRis NP-complete.

Proof. We reduce from the NP-complete problem On-in-Three 3SAT &8RMLetp = f1 A fo A
... A\ fm be an One-in-Three 3SAT instance, i.e., a boolean formula afauses in conjunctive
normal form, withn variablesv,vo, ..., v,, Where each clausg; is the disjunction of exactly
three distinct literals, likgvy V v5 V ©7). The truth assignment satisfies another constraint that
exactly one literal in each clause is set to true. In the almaese,v, = false vs; = true, and
vy = true is a valid one-in-three truth assignment. We assunteéotithm, n > 2.

Our construction useklm + 4n + 30n?m + 15nm? distinct markers:

e 9m clause markers —, ., f7; ., andf?; ., if v; appears as theth literal in fi; £ 1, f2 4

andﬁ?jj,k, if ; appears as thgth literal in f;,, for1 <i<n,1<j <3,1<k<m,

2m clause markers; anda; for 1 < ¢ < m,

2n variable markers; andz; for1 < ¢ < mn,

2n variable markerg; andy; for 1 <i < n,

m peg strings (ofi5nm markers eachy, for 1 <k < m, with Z, = z; 1262 - - . 2k, 150m-

n peg strings (ofl 5nm markers each); for 1 < i < n, with U; = u; 1u; 2 . . . wi 150m.

n peg strings (ofl 5nm markers each)V; for 1 <i < n, with W; = w; 1w; 2 . .. ;i 15nm.-

Throughout this proof, all of the peg strings are used to mefthe truth assignment and, as will
be shown a bit later, no peg string is ever deleted to obtairotitimal solution for any converted
MSR instance.

For the ease of description, we simply say tHat . = f;'; /7 o 250 (FLinf2 007 .4) are the
associates of v; (v;) in fi and they always appear together in one of the input agnd in the
final optimal solution (— but not in the other input map, as will be explained a bit later). For
each variabley;, 1 < i < n, let F; and F}, respectively, be the two sequences of clause associates in

which the two literal); andv; appear:

1 2 3 1 2 3 1 2 3
E = fijmtinmFigmFigematijentijsns - FigpbnLigeky iy by

rl 2 3 rl 72 3 1 72 3
Foo= Figm g g By Ty i Ty - Figpg Figg Figga
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let

Xi = —&iFi—v; yiFyi.
Given three sequencé%l =b11b12... blp, By = by1bysy ... bgp, andBs = b31bs3y . .. bgp, let (Bl &
Bs ® Bs) be the sequence obtained by listing letter®in B, Bs alternately; i.e.B; ® Bo ® Bs =
b11b21b31b12b29b35 . . . blpbgpbgp. For each cIausﬁk, 1<k<m,let

Yi = ap(Ap 1k ® Apy 2k @ Aky 3.5) 0k

4 9 3 . B . . b . B
where Ay, jr = g ; k0, i kO, ik With ag; s = fr; 5k I or; is thej-th literal in fi or ay; ;. =
Tk, I Uy, is thej-th literal in f, for 1 < j < 3 and for somd < k; < n. More precisely,

_ 1 1 1 2 2 2 3 3 3 .
Yi = akay, 1 10k, 2,k 0k, 3,k %y 1,k Ok, 2,k ks, 3,k Ok 1,k Vo, 2,k Vg 3,k Ve -
Construct two genomic maps

G = Wl...Wn X1U1...XnUn Zl...Zm amdm...agdgaldl,
H = xlylo'clylWl...xnynﬁcny'an lel---YmZm UlUn

Note thatG and H each contains thélm + 4n + 30n?m + 15nm? distinct markers exactly once.
We show that the one-in-three 3SAT formulais satisfiable if and only if7 has a subsequence
G’ and H has a subsequendé’ such that the total length of the strips @ and H' is exactly
3m + 2n + 30n%m + 15nm2.

We first prove the “only if” direction. Let be a truth assignment that satisfigs-or each, let

) Fividi if 7(v;) = true,
o\ —dew B if T(v) = false

In short, X/ is obtained fromX; by deleting the clause associatesupfin fj, if 7(v;) = true.
Symmetrically, X! is obtained fromX; by deleting the clause associatespin f; if 7(v;) = false.
We obtainY; from Y}, by first deletinga;, anday. Then, keep the associates of the (only) literal
which setsf}, to be true. In other words, if;; is satisfied, thefly)| = 3. (If f is not satisfied, then
[Y/| = 2; i.e., we will have to keefy}, = axa;, — that causes a much smaller solution for the MSR
instance.)

Formally, as a literal can only appear in a clause exactlyonc

y! = Fosgefi gt g i vk is theg-th literal in fi, andr (v, ) = true,
Fis gt i jue i Oy is thej-th literal in £y and7 (vy,;) = false

Then we have
G"=Wi.. W, XiUhX5Us... XUy Z1...Zpy,
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and
H” = l’lyli'lylWl e xnynxnann Y{Zl e Y?i"me U1 e Un.

G’ and H' are obtained fromG” and H” as follows. G’ and H' each contains exactly one of
each of the variable strips;z; andy;y; (with y;3; corresponding to true, ancz; to false), and
all of the peg strings (strips);, W;, and Z,. X/s are obtained by deleting the associates of all
literals which do not make;,, true and hence have been deleted fripn(i.e., not appearing in
Y/). The satisfying truth assignment also guarantees thait Bacontains exactly three associates
corresponding to the true literal in claugg. Hence, the total length of the strips @ and H' is
exactly (9m)/3 + (4n)/2 + 30n%m + 15nm? = 3m + 2n + 30n?m + 15nm?.

For example, an one-in-three 3SAT formula of the followingif clauses (over four variables)

fi= (2_11 V V2 \/’L_)g) fo = (’U1 \/UQ\/54) f3 = (’Ug \/’U3\/U4) fa= (2_11 \/52\/1_)4)
corresponds to the two genomic sequences

G=  WiW,WsW,
—i1f11,1,2f12,1,2f§,1,2—9€1 ylff,1,1f12,1,1ff’,1,1f11,1,4f12,1,4f13,1,4y'1U1
—562f21,2,1f22,2,1fg’,z,lf21,2,2f22,2,2fg’,z,zf%,1,3f22,1,3f§’,1,3—962 y2f21,274f22,2,4f5’,27492U2
—i3f3},2,3f3?,2,3f§’,2,3—$3 y3f?},371f??,3,1f§’,3,1y3U3

el g2 g3 B R S W B < S
—@afig3 133 03304 YafazolisafizalisalisafisayaUa

Z1 ZngZ4a4d4a3d3a2d2a1d1

H = myi1in Wi z2y22292Wa x3y3t3ysWs w4yst4ys Wy
ai f11,1,1f21,2,1f§,3,1f12,1,1f22,2,1f??,3,1ff’,1,1f§’,2,1f§,3,1 a1y
ag fliofaoofisaliiafonsfisafsoafiiofisg 22
as fa13f303 033 513 523 33513323 033 4373
as fliafaoafisaliialooalisafiafdeafisa @aZs

UUyUsUy.
The truth assignment
T(v1) =true 7(vy) =false 7(vs) =false 7(vq) = true
corresponds to
G = WiWoWsWy f11,1,2f12,1,2f§,1,2y1?/1U1 —j32—332f21,2,4f22,2,4f§,2,4U2
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—i3—23f33 10331 331Us fi33f333033v19aUs 2122737,
and
H' = yrin Wy wdoWs x3isWs yaguWa fas1fas153121 fiaofiiafiieZe
figalissfissZs fapafs24f50471 UnU2UsUs,
We do not listU;, W; and Z;, as they are just long sequences of distinct markers.

We next prove the “if” direction. Le€’, H' be a subsequence 6f H respectively such that the
total length of the strips iG” and H' is exactly3m+2n+30n2m-+15nm?. Itis clear that all the peg
strings (strips)U;, W; and Z; must be in the optimal solution for the corresponding MSRanee.
The reason is that if we break any striplf, W; or Z;,, say we want to use strify y» by deleting
W1 andUy, even if we somehow put all thelm + 4n non-peg markers in the optimal solution, the
optimal solution size hence obtained would be less 8tatm + 15nm? < 3m + 2n + 30n°m +
15nm?2. In fact, breaking any one &f;, V; or Z;,, which is of lengthl 5n.m, will decrease the optimal
solution size to belov80n?m + 15nm?. This is becausélm + 4n < 15m + 15n < 15mn, when
m,n > 2.

The alternating pattern of the clause marker§jrand F;, F; ensures that there is at most one
common strip of length at most three between &pyand £}, F;. If no strip of length three irY;,
is selected, them,a; will be a strip of length two. Hence the length of the clausgstin the
optimal solution will be less tha®m. So, in the optimal solution for this MSR instance, if we have
3m of clause strips then we must have exactly one strip of lettgite from eacly), and the three
markers must belong to some clause associates to match lesganding ones in somg, F;.
Similarly, the alternating pattern of the variable markansl the corresponding peg markersGn
and H ensures that in the optimal solution there areariable strips of length two iz’ and H’,
that is, eitherr;x; or y;1; for 1 < i < n.

Therefore, in the optimal solution for this MSR instance, veee a valid truth assignment for
¢: if clause markers inF; are in the solution, we satf; as true; if clause markers if; are in
the solution, we set; as false. Obviously, this assignment will satisfy each s#aexactly once.
Therefore, the one-in-three 3SAT formugas satisfied by this truth assignment.

The reduction time is clearl§((m + n)3) time. This completes the proof of Theorem 1.0

It should be noted that; - - - — x; in F; and F; could be changed te; - - - &:; and the proof still
works. So MSR is in fact NP-complete even when all the mar&ezof positive signs. Moreover,
it is clear that the complement of MSR is NP-complete as wbk: above proof implies that the
one-in-three 3SAT formula is satisfiable if and only if we have to dele@e: + 2n markers inG
(resp. H) to obtain the subsequenc (resp.H'). Therefore we have the following corollary.

Corollary 1 The minimization (or the complement) version of MSR is NP-complete.



3 FPT Algorithmsfor MSR and Its Variants

In this section, we consider solving (the complement of) M@R an FPT algorithm. Basically, an
FPT algorithm for an optimization probleid with optimal solution valué: is an algorithm which
solves the problem i®( f (k)n®) time, wheref is any function only ork, n is the input size andis
some fixed constant not relateditoMore details on FPT algorithms can be found in the monograph
on parameterized complexity (Downey and Fellows, 1999) figeprove the following lemma.

Lemmal Before any marker is deleted, if xy or —y — x appears in both G; and G4 (or, if zy
appears in G; and —y — z appears in G», and vice versa), then there is an optimal solution for
MSRwhich has zy or —y — = asa strip.

Proof. Wlog, we only consider the case whepappears iz, and—y— appears irizo. The cases
whenzy (—y—x) appears in botli7; andGs are similar. Let the length-4 substringd# containing
xy bep; (z)zys1(y), and let the length-4 substring @, containingzy beps(y) — y — zsa(z). We
assume that; (x) # —sa(x) andsy(y) # —p2(y), as otherwise the lemma is obviously true.

If z is deleted to obtain any optimal solution, ther{z)y in G; is a breakpoint. The reason is
thatpo(y) — y and—ysa(x) in G2 cannot be equal tp; (x)y or its signed reversal — the former is
due to the positive sign onin p;(z)y, and the latter is due to;(y) # —p2(y). Similarly, ys1(y)
in G is a breakpoint (ap2(y) — y and —ysa(x) in G2 cannot be equal tp; (z)y or its signed
reversal). Therefore, whenis deleted the stripy is destroyed, which is a contradiction. gffis
deleted, the same argument follows.

If both x, y are deleted to obtain any optimal solution, we considereticeeses.

1. If a maximal substring; of G; ending atp; () and a maximal substring; of G; starting
atsi(y) are strips of length at least two, then we canpuj back, and deletg; (x), s1(y) to
obtain a solution of larger size.

2. If one of 51, S (say,S1, which must be equal tp; (z)) has length one, then we can delete
S1, putzx, y back to obtain a solution of larger size.

3. If both of 51, S7 have length one, then we can delgt€z), s1(y), putz,y back to obtain a
solution which is of the same size as the current optimaltesiu

Hence, the lemma is proven. O
We note that the above lemma also holds when a strip is ofHegrgiater than two.
Let X be the alphabet for the input ma@s andG,. The above lemma gives us a kernelization
procedure.



1. Identify a set of strips from the two sequences, witholgttley any gene marker.

2. For each strip identified, change it to a new letteEin with X1 N X = (). Let the resulting
sequences b@’, G,.

Let 3, be the set of new letters used in the kernelization procets, Xy N X = (. We have
the following lemmas.

Lemma2 Thereisan optimal MSR solution of size k for G; and G if and only if the solution can
be obtained by deleting k£ markersin X from G and GY respectively.

Proof. In the kernelization process, without deleting any genekeramwe change each (existing)
strip into a letter inX; — X. Following Lemma 1, these letters ¥y — X do not have to be deleted
to obtain an optimal solution for MSR. O

Lemma3 In G/ (resp. GS), there are at most 5% letters (markers) in 3.

Proof. Following Lemma 2, the optimal solution for MSR can obtaitgdleleting markers (letters)

only in X from G} (resp. G%). For each letter: deleted inG, there are at most two other letters

y1 andz; in X, preceding and succeeding (In this casey;xz; is a substring inG;.) The same

claim holds for the letter: deleted inGY5, i.e., for each letter: deleted inG%, there are at most two

other lettersy, andz; in X, preceding and succeeding Therefore,r is associated with at most

five letters in%, e.g.,{z,y1, 21, y2, 22}. Consequently, we have at magt letters inX in G (resp.
5)- O

Theorem 2 Thereisan FPT algorithm for MSR which runsin O(236%n, 4-n?2) time.

Proof. Following Lemma 2 and Lemma 3, we can choédetters inX from G, G5. The number

5k ~ 23.61k
k )

using Stirling’s formula. For each choice, we can check Wweett is valid, i.e., whether all remain-

of choices, is hence bounded by

ing markers are in some strip @&, andG%. This can be done in linear time if we spefign?) time
in advance, i.e., building a correspondence between aliefdentical markers i1, G. So the
overall running time of the algorithm ©(23%1%n + n?) time. Note that the algorithm will report
‘no solution of sizet’, if none of the choices leads to a valid solution. O

It is obvious that the algorithm also works for MSR-except that the kernel size becomes

5k
(2d + 1)k. For MSR-DU, the algorithm is similar. But we need to m kek ) choices of letters

in ¥ from each ofG’} andGY. So the running time will b&(272%%n, 4 n?) time.
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2d + 1)k
Corollary 2 MSR-d can be solved in O(( ( Jl; ) ) dn + dn?) time and MSR-DU can be

solved in O(27-2%¢n, + n?) time.

For MSR-WT, if the weights for markers are arbitrary then iogly Lemma 1 does not hold
anymore and the above algorithm will not work. But if the wdigare set so that Lemma 1 still
holds, e.g., the weights must be one or two, then we will lsélable to obtain a similar result.

4 Concluding Remarks

We note that (the minimization version of) the MSR problem ba thought of as the complement
of the problem MWIS in 2-interval graphs, also known as thebfgm2-Interval Pattern (Vialette,
2004), which has been extensively studied because of it&cappn to RNA secondary structure
prediction (Ber-Yehuda et al., 2006; Blin et al., 2007; Cle¢ml., 2007; Crochemore et al., 2008;
Jiang, 2007). This probably explains why there is an FPTralgu for the minimization version,
or the complement, of MSR.

It would be interesting to know whether our FPT algorithms ¢e further improved. The
running times we have obtained for the complements of MSR itndariants are not efficient
enough to make them truly useful in practice. To make suchRih &gorithm practical for MSR
datasets, which usually hasetween 50 to 150, it must be more efficient.
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