
RNA multiple structural alignment with

longest common subsequences ?

Sergey Bereg a, Marcin Kubica b, Tomasz Waleń b,

Binhai Zhu c,∗,

aDepartment of Computer Science, University of Texas at Dallas, Richardson, TX
75083-0688, USA.

bInstitute of Informatics, Warsaw University, Banacha 2, 02-097 Warszawa,
Poland.

cDepartment of Computer Science, Montana State University, Bozeman, MT
59717-3880, USA.

Abstract

In this paper, we present a new model for RNA multiple sequence structural align-
ment based on the longest common subsequence. We consider both the off-line and
on-line cases. For the off-line case, i.e., when the longest common subsequence is
given as a linear graph with n vertices, we first present a polynomial O(n2) time
algorithm to compute its maximum nested loop. We then consider a slightly differ-
ent problem—the Maximum Loop Chain problem and present an algorithm which
runs in O(n5) time. For the on-line case, i.e., given m RNA sequences of lengths
n, compute the longest common subsequence of them such that this subsequence
either induces a maximum nested loop or the maximum number of matches, we
present efficient algorithms using dynamic programming when m is small.

Key words: RNA multiple structure alignment, longest common subsequence,
dynamic programming

? This research is partially supported by EPSCOR Visiting Scholar’s Program and
MSU Short-term Professional Development Program.
∗ Corresponding author: bhz@cs.montana.edu
Email: besp@utdallas.edu(Sergey Bereg), kubica@mimuw.edu.pl(Marcin

Kubica), walen@mimuw.edu.pl(Tomasz Waleń), bhz@cs.montana.edu(Binhai

Zhu)

Preprint submitted to Journal of Combinatorial Optimization 6 October 2006

1 Introduction

In the study of noncoding RNA (ncRNA), it is well known that the corre-
sponding nucleotides are very active among genomic DNA. There are four
such (polymers of) nucleotides: A, C, G and U. Different from regular genes,
ncRNAs are not translated into protein and they fold directly into secondary
and tertiary structures and the stability of the foldings are mainly determined
by A-U, C-G and G-U bonds [7].

However, it is still not completely known how such a ncRNA folds into sec-
ondary and tertiary structures. One of the methods is to take a multiple se-
quence of ncRNAs and investigate their common folding patterns or secondary
structures [22,23,5]. In [5], it is proposed that the largest common nested linear
subgraph of m given linear graphs (induced by m ncRNA sequences of length
n, such that the edges are those non-adjacent A-U, C-G, G-U bonds) presents
a solution for this problem. This problem is NP-complete [5], and there is a
factor-O(logn) approximation for this problem [13].

In this paper, we follow the general methodology of [5]. However, we think that
computing largest common nested linear subgraph cannot perfectly solve the
problem in many situations. For example, if we have two ncRNA sequences:
AGUU and CAGG, even though they induce the same largest common nested
linear subgraph, the corresponding bonds and letters are completely different.
(A letter cannot form a bond or match with a neighboring letter.)

The above idea forms the basis of our research. In this paper, we propose to
use the Longest Common Subsequence (LCS) of m given ncRNA sequences as
the basis to tackle this problem. We consider two general cases: off-line and
on-line cases. In the off-line case, the LCS is already given and we want to
find meaningful properties of such a LCS, namely, whether this LCS admits a
special kind of fold. In the on-line case, we want to compute the LCS which
admits certain kind of folding.

In general, the longest common subsequence of two sequences is not unique.
Rick [18] developed an algorithm for finding all longest common subsequences.
The number of longest common subsequences can be quite large. Greenberg
[9] proved an exponential lower bound for the maximum number of distinct
longest common subsequences of two sequences of length n. Therefore, finding
longest common subsequences suitable for various biological applications is
an important problem. The goal of this paper is to find a longest common
subsequence satisfying useful properties—to maximize the A-U, C-G and G-U
bonds in several different ways. A related work is on identifying a (sub)string
which is close to a set of given strings [14,15] and close to a set of ‘bad’
strings and far from a set of ‘good’ strings [6]. A constrained longest common

2

subsequence problem was studied recently by Tsai [21] and Chin et al.[1]. In
this problem three strings X, Y and P are given, one wants to find the longest
subsequence of X and Y such that P is its subsequence.

In this paper, we mainly focus on three kinds of folding: maximum nested
loop, maximum loop chains and maximum number of total matches. For the
off-line case the problem is more of a graph theoretical one and we present
polynomial time solutions. For the on-line case, the problem is NP-complete
in general as computing LCS of multiple sequences, even without any other
constraint, is NP-complete [16]. We try to present efficient algorithms for cases
when m is relatively small.

2 Preliminaries

In this section we first present necessary definitions.

Throughout this paper, in a given sequence over {A, C, G, U}, two non-adjacent
characters (letters) a, b ∈ {A, C, G, U}match or form a bond if {a, b} = {A, U},
or {a, b} = {C, G}, or {a, b} = {G, U}. Given a sequence t = a1a2...an,
ai ∈ {A, C, G, U}, the corresponding linear graph G(t) is defined as follows.
The vertices of G(t) are integers 1, 2, ..., n and there is an edge between i and
j (j > i + 1) if ai and aj match each other. For the obvious reason ai cannot
match ai+1 for i = 1, 2, ..., n − 1. In other words, there is no edge between i

and i + 1 for i = 1, 2, ..., n − 1. This linear graph certainly characterizes the
general folding possibilities of all the letters in t. In [8], a similar graph called
contact map graph is also used for identifying protein structure similarity.

Given two edges e1, e2 in G(t) and the intervals I1 = [a, b], I2 = [c, d] spanned
by them, we say e1 intersects e2 if exactly one of a, b lies on [c, d] and vice
versa. Therefore, if e1 does not intersect e2, then either I1 and I2 are disjoint
or I1 is contained in I2 (assuming I2 is longer). Moreover, if c < a and b < d,
then we say that I2 surrounds I1. A set of edges e1, e2, ..., ep in G(t) form a
nested loop with depth (or just loop) p if the intervals I1, I2, ..., Ip spanned by
e1, e2, ...ep surround one another, i.e., Ij+1 surrounds Ij, for j = 1, . . . , p − 1
(Figure 1(1)).

Given a linear graph G(t), two loops overlap if all the edges in one loop L1

intersect all the edges in the other loop L2. Such an overlap is legal if no two
edges from L1, L2 share the same vertex in G(t). We say that L1 and L2 are
disjoint if the edges from L1 and L2 are pairwise disjoint. We define a chain

of loops (or loop chains) as a set of loops L1, L2, ..., Lw such that Li legally
overlaps with Li+1, and moreover Li and Li+x are disjoint, for i ≤ w−1, x > 1.
The motivation behind this is that a chain of (relatively deep) loops provide

3

A A U UC GC A C U UA G G UA A U U

A

A

C

G

U

U

C

A

A

G

C

U

U A
A

G

U

U
U

(1) (2)

Fig. 1. An illustration of ncRNA folding with maximum loop and maximum loop
chains.

a special kind of stable folding, also known as pseudoknot [19], for a given
ncRNA sequence (Figure 1(2)).

In this paper, we propose to study several problems based on the Longest
Common Subsequence (LCS). The LCS problem has been thoroughly studied
in Hirschberg’s PhD thesis [10]. Its application in computational biology dated
back to 1960s [3,4]. Some other applications of LCS in computational biology
can be found in [20,11]. Basically, for a set of m (m being a constant) sequences
of length n, the corresponding LCS can be computed in O(nm) time. If m is
not a constant, then the problem is NP-complete; moreover, if the alphabet is
unbounded then it is difficult to find an approximation solution (in fact, it is
as hard as approximating the Maximum Clique problem) [12].

3 The off-line case: when the LCS is already given

For the ncRNA multiple structural alignment problem, in general we want to
compute a LCS with some additional constraints. In this section, we consider
the off-line case when a LCS of some ncRNA sequences is already computed.
The first problem is based on the idea that the (maximum) deepest nested
loop is likely to occur in ncRNA folding (Fig. 1(1)). The second problem is
based on the idea that a chain of loops is likely to fold compactly within some
specified regions (Fig. 1(2)).

4

3.1 The Maximum Nested Loop problem

Given a sequence (which is the LCS of some ncRNA sequences) t = a1a2...an, ai ∈
{A, C, G, U}, and the corresponding linear graph G(t), compute the maximum
or the deepest nested loop (MNL) in G(t). We have the following theorem.

Theorem 1 Given a sequence t = a1a2...an, ai ∈ {A, C, G, U}, and the cor-

responding linear graph G(t), the maximum nested loop can be computed in

O(n2) time.

PROOF. For 1 ≤ i ≤ j ≤ n, let ti,j denote the sequence aiai+1 . . . aj. Let S

be a two-dimensional array where S[i, j] is the maximum depth of a nested
loop in the sequence ti,j. The values of the array S can be computed as follows.
For any 1 ≤ i ≤ n, S[i, i] = 0.

Suppose that, for 1 ≤ i < j ≤ n, ai and aj match (which implies that j > i+1).
Then there is a maximum nested loop of ti,j that contains the edge (ai, aj).
Thus S[i, j] = S[i + 1, j − 1] + 1.

Suppose that ai and aj do not match. Then either ai or aj is not an endpoint of
the outermost edge of a maximum nested loop of ti,j. Thus, S[i, j] = max(S[i+
1, j], S[i, j−1]). We summarize all the cases in pseudo-code (Algorithm MNL).

The depth of maximum nested loop in the input sequence is S[1, n]. In order
to compute the nested loop we store auxiliary arrays A and B such that
(A[i, j], B[i, j]) is the outermost edge of a maximum nested loop of ti,j. The
values A[i, j] and B[i, j] can be updated at the time when S[i, j] is updated.

The algorithm clearly takes O(n2) in the worst case. 2

A slightly different O(n3) time result on loop matching in programming lan-
guage research was known long time ago [17]. That result has been used in
RNA folding [5]. Although the Maximum Nested Loop problem is slightly
more easier to solve, in biology it could be a very important subroutine. In
ncRNAs, A-U, C-G and G-U bonds almost always occur in a nested fashion
[5]; so finding such maximum nested loop is very meaningful, at least it will
allow biologists to try different alternatives in folding.

5

Algorithm MNL

for l = 1 to n

for i = 1 to n − l + 1
j := i + l − 1
if l = 1 then

S[l, l] := 0
elseif ai and aj match then

if j − i > 1 then S[i, j] := S[i + 1, j − 1] + 1
else S[i, j] := 1
A[i, j] := i

B[i, j] := j

elseif S[i + 1, j] > S[i, j − 1] then

S[i, j] := S[i + 1, j]
A[i, j] := A[i + 1, j]
B[i, j] := B[i + 1, j]

else

S[i, j] := S[i, j − 1]
A[i, j] := A[i, j − 1]
B[i, j] := B[i, j − 1]

3.2 The Maximum Loop Chain problem

In this subsection we investigate a slightly different problem. When a ncRNA
sequence (with its corresponding linear graph) and a set of nested loops are
given, we have the following problem of computing the maximum loop chain.

The Maximum Loop Chain (MLC) problem: Given a ncRNA sequence
t = a1a2 . . . an, ai ∈ {A, C, G, U}, the corresponding linear graph G(t) and a
set N of nested loops in G(t), compute a loop chain out of these loops such
that its size is maximized. The size of a loop chain is the sum of depths of its
loops.

We assume that the input nested loops are given together with its depth. As
we will discuss a bit later, there could be at most O(n4) number of nested
loops following our setting, so N is at most O(n4). Alternatively, if the loops
are not given in advance then we can generate the set of all possible nested
loops in O(n4) time. We have the following theorem.

Theorem 2 The Maximum Loop Chain problem can be solved in O(n5) time.

PROOF. The algorithm is divided into two phases. In the first phase we
calculate an array P describing maximum depths of nested loops binding given

6

parts of the ncRNA sequence. We define P [i, j, k, l] as the maximum depth of
a nested loop of edges e such that the left endpoint of e is in [i, j] and the
right endpoint of e is in [k, l], see Fig. 2 for an example. The values of the
4-dimensional array P [..] can be computed using dynamic programming as
follows.

P [i, j, k, l] =



























0 if i > j or k > l

1 + P [i, j − 1, k + 1, l] if aj matches ak

max(P [i, j − 1, k, l], P [i, j, k + 1, l]) otherwise.

The running time for computing P [..] is O(n4) time.

i j k l

Fig. 2. A loop of P [i, j, k, l].

In the second phase we compute an array C containing the maximum sizes of
loop chains of different shapes. We define C[k, l, m] as the maximum size of a
loop chain C1, C2, . . . , Ct such that (i) the last loop contains at least one edge
with |Ct| ≥ 1 if C[k, l, m] > 0, and (ii) for every edge (a, b) of the last loop Ct,
a ≤ k and l ≤ b ≤ m, and (iii) for every edge (a, b) of loops C1, C2, . . . , Ct−1,
b < k. Refer to Fig. 3 for an example.

k l mi j

Fig. 3. A loop chain of C[k, l,m].

Let k, l, m be integers such that 1 ≤ k ≤ l ≤ m ≤ n. Let L1, L2, . . . , Lt be a
loop chain of size C[k, l, m] satisfying the conditions (i), (ii) and (iii) above.
Suppose that the edges of the loop Lt have left endpoints in [i + 1, j − 1] and
right endpoints in [l, m]. Then the number of edges in Lt is P [i+1, j−1, l, m].
The total size of loops L1, L2, . . . , Lt−1 is C[i, j, k]. Therefore C[k, l, m] can
be computed in O(n2) time for the triple (k, l, m). The following pseudo-code
shows the computation of all values of the array C[..].

7

for k = 1 to n − 1 do

for l = k + 1 to n do

for m = l to n do begin

C[k, l, m] := P [1, k, l, m];
for i = 1 to k − 1 do

for j = i + 1 to k do

C[k, l, m] := max(C[k, l, m], C[i, j, k] + P [i + 1, j − 1, l, m])

The maximum integer stored in array C is the size of MLC. The actual nested
loop chain can be reconstructed from arrays C and P in O(n3) time. So, MLC
problem can be solved in O(n5) total time complexity. 2

Please note, that in the above algorithm we do not exploit the fact that the
linear graph is generated by a ncRNA sequence. Therefore, this algorithm
works for arbitrary linear graphs.

Presented algorithm works for a given set of nested loops. However, it can be
easily adapted to solve MLC problem for the set of all possible nested loops.
The following procedure calculates array P for all nested loops.

for j = 1 to n − 1 do

for k = j + 1 to n do

for i = j downto 1 do

for l = k to n do

if there is an edge (i, l) then

P [i, j, k, l] := P [i + 1, j, k, l − 1] + 1
else

P [i, j, k, l] := max(P [i + 1, j, k, l], P [i, j, k, l − 1]);

Clearly, it is running in O(n4) time, so the overall time complexity of the
algorithm remains O(n5).

4 The on-line case: when the LCS is not given

In this section, we study the problem when the LCS of a set of m ncRNA
sequences is not given in advance. We study two versions of this general prob-
lem: LCSMNL and LCSBM. As computing LCS for multiple sequences is in
general NP-complete, both of these problems are NP-complete. We are inter-
ested in efficient solutions when m is relatively small. Recall that there might
be too many LCS’s for some given sequences, our goal is to identify a LCS
with some useful property.

8

4.1 LCSMNL

We first consider the problem of computing the longest common subsequence

with maximum nested loop (LCSMNL).

LCSMNL problem. Given a set S of strings s1, s2, . . . , sm, each of length n,
where si = ai1ai2 . . . ain and aij ∈ {A, C, G, U}, compute the longest common
subsequence s = g1g2 . . . gK of s1, s2, ..., sm such that the maximum nested
loop induced by (i.e., reconstructed from) s is maximized.

Theorem 3 The LCSMNL problem can be solved in O(n2m) time. When

m = 2, the problem can be solved in O(n4) time.

PROOF. We show the algorithm for m = 2 only. It is straightforward to
extend it to general m ≥ 2. We use a simplified notation s1 = a1a2 . . . an

and s2 = b1b2 . . . bn. Let ai,j, resp. bi,j, denote the substring aiai+1 . . . aj, resp.
bibi+1 . . . bj. We store four four-dimensional arrays L, D, A, B defined as fol-
lows. For 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ n, let Ξ(i, j, k, l) denote the set of
all longest common subsequences of ai,j and bk,l. Then

• L[i, j, k, l] is the length of the longest common subsequence of ai,j and bk,l,
• D[i, j, k, l] is the maximum depth of the maximum nested loop induced by

a sequence ξ ∈ Ξ(i, j, k, l),
• (A[i, j, k, l], B[i, j, k, l]) is an outermost edge of a maximum nested loop

induced by a sequence ξ ∈ Ξ(i, j, k, l).

A, B are used to retrieve the actual loop edges and the update of A, B is
obvious from the following algorithm and is omitted. The items of the array
L[..] can be computed in the same way as the computation of longest common
subsequences. The value of D[i, j, k, l] can be computed as in the pseudo-code
shown in Algorithm LCSMNL. Notice that we need to use the values of L[..]
in the algorithm to guarantee that only the nested loops among some longest
common subsequence can be computed. The theorem follows. 2

The optimal solution (depth of the maximum nested loop of a LCS of s1, s2)
is found in D[1, n, 1, n]. It is easy to see that we can in fact allow s1 and s2 to
have different lengths.

9

Algorithm LCSMNL

Compute L[−,−,−,−]
// Compute D[..]
for l1 = 1 to n

for i = 1 to n − l1 + 1
j := i + l1 − 1
for l2 = 1 to n

for k = 1 to n

l := k + l2 − 1; d := 0
if L[i, j, k, l] = L[i, j − 1, k, l] then

d := max(d, D[i, j − 1, k, l]);
if L[i, j, k, l] = L[i, j, k, l − 1] then

d := max(d, D[i, j, k, l − 1]);
if L[i, j, k, l] = L[i + 1, j, k, l] then

d := max(d, D[i + 1, j, k, l]);
if L[i, j, k, l] = L[i, j, k + 1, l] then

d := max(d, D[i, j, k + 1, l]);
if (aj = bl and L[i, j, k, l] = L[i, j − 1, k, l − 1] + 1) then

d := max(d, D[i, j − 1, k, l − 1]);
if (ai = bk and L[i, j, k, l] = L[i + 1, j, k + 1, l] + 1) then

d := max(d, D[i + 1, j, k + 1, l]);
if (ai = bk and aj = bl and ai matches aj

and L[i, j, k, l] = L[i + 1, j − 1, k + 1, l − 1] + 2) then

d := max(d, D[i + 1, j − 1, k + 1, l − 1] + 1);
D[i, j, k, l] := d;

4.2 LCSBM

Finally, we study the problem of computing a LCS which induces the maxi-
mum number of total matches, or longest common subsequence with bounded

matches (LCSBM).

LCSBM problem. Given a set S of strings s1, s2, . . . , sm, each of length n,
where si = ai1ai2 . . . ain and aij ∈ {A, C, G, U}, compute the longest common
subsequence s = g1g2 . . . gK of s1, s2, ..., sm such that the total number of
matches among non-adjacent gi and gj is maximized.

We assume that m = 2, and the algorithm can be easily extended to m ≥
3. We use a simplified notation s1 = a1a2 . . . an and s2 = b1b2 . . . bn. Let
b : {A, C, G, U} → {A, C, G, U} be the mapping between a character and
another one such that they form a bond. Then, b(A) = U, b(C) = G, b(G) =
U, b(U) = A or G, and vice versa. Adding another character x ∈ {A, C, G, U}

10

to the end of a string, x induces a number of matches to its non-adjacent
characters following the above setting.

Let LCS[i, j] be the length of the longest common subsequence of the se-
quences a1a2 . . . ai and b1b2 . . . bj. The array LCS[i, j] can be computed in
O(n2) time [2].

Let a, c, g and u be integers and x be any letter from {A, C, G, U}. A sequence
s is called (a, c, g, u, x)-sequence if s contains a letters A, c letters C, g letters
G, u letters U and the last letter of s is x.

We use 6-dimensional array M [n, n, n, n, n, 4] whose elements are defined as
follows. Let 1 ≤ i, j, k ≤ n and x ∈ {A, C, G, U} and l = LCS[i, j]. Let
0 ≤ a, c, g ≤ l be any integers such that u = l − a − c − g ∈ [0, l]. The value
M [i, j, a, c, g, x] is −1 if there is no (a, c, g, u, x)-sequence s of length l that is
the common subsequence of a1a2 . . . ai and b1b2 . . . bj such that the last letter
of s is x. If such a (a, c, g, u, x)-sequence s, which is a common subsequence
of a1a2 . . . ai and b1b2 . . . bj, exists, then M [i, j, a, c, g, x] stores the maximum
number of matches in s. The pseudo-code, which is a straightforward imple-
mentation of the above idea, is listed as Algorithm LCSBM.

Eventually, the optimal solution (i.e., the maximum number of matches of
a LCS of s1 and s2) can be searched in all the cells M [n, n,−,−,−,−]. (In
fact, by searching M [n, n,−,−,−,−] we can also find many ‘close to optimal’
matches, which might be useful as well.) The actual LCS realizing the corre-
sponding maximum matches can be reconstructed using standard methods.

11

Algorithm LCSBM

Initialize M [i, j, i1, j1, k1, x] to -1 if i ≥ 1 or j ≥ 1 and to 0 if i = 0 or j = 0.
Compute LCS[−,−]
for i = 1 to n

for j = 1 to n

l := LCS[i, j]
for a = 0 to l // a is the number of A in LCS

for c = 0 to l − a // c is the number of C in LCS
for g = 0 to l − a − c // g is the number of U in LCS

u := l − a − c − g // u is the numbers of U in LCS
if ai = bj and ai is counted at least one time in (a, c, g, u) then

Let (a′, c′, g′, u′) be the the same numbers as (a, c, g, u)
with one letter ai removed

for each x ∈ {A, C, G, U}
if M [i, j, a′, c′, g′, x] ≥ 0 then

Let z be the total matches induced by ai

if added to a (a′, c′, g′, u′, x)-sequence
M [i, j, a, c, g, ai] := max(M [i, j, a, c, g, ai], M [i − 1, j − 1, a′, c′, g′, x] + z)

if ai 6= bj then

for each x ∈ {A, C, G, U}
M [i, j, a, c, g, x] := max(M [i − 1, j, a, c, g, x], M [i, j − 1, a, c, g, x])

Theorem 4 The LCSBM problem can be solved in O(nm+3) time. When

m = 2, the problem can be solved in O(n5) time.

5 Concluding Remarks

In this paper, we study several versions of the problem for RNA multiple
structural alignment using a LCS model. Under this new model, we can solve
a list of fundamental problems in polynomial time. We hope that these results
and some similar ideas can be incorporated with known methods to enhance
research in RNA multiple structural alignment. There are several interesting
open problems related to this work: (1) Can the bounds in this paper be
further improved? In RNA based biological applications, n could be around
1000. In that case, reducing the running time is important. (2) In [5], given a
multiple number of linear graphs, each with n vertices, computing the maxi-
mum common non-intersecting subgraph was shown to be NP-complete. But
the best O(log n) approximation factor in [13] is too high to make the result
practically meaningful. Can it be further reduced?

12

References

[1] F. Y. L. Chin, A. De Santis, A. L. Ferrara, N. L. Ho, S. K. Kim. A
simple algorithm for the constrained sequence problems. Inform. Proc. Letters,
90(4):175-179, 2004.

[2] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to Algorithms, second
edition, MIT Press, 2001.

[3] M. Dayhoff. Computer aids to protein sequence determination. J. Theoret.
Biology, 8(1):97-112, 1965.

[4] M. Dayhoff. Computer analysis of protein evolution. Scientific American,
221(1):86-95, 1969.

[5] E. Davydov and S. Batzoglu. A computational model for RNA multiple
structural alignment. Proc. 15th Ann. Symp. Combinatorial Pattern Matching,
LNCS 3109, pp. 254-269, 2004.

[6] X. Deng, G. Li, Z. Li, B. Ma and L. Wang. A PTAS for distinguishing
(sub)string selection. Proc. ICALP’02, pp. 740-751, 2002.

[7] S.R. Eddy. Noncoding RNA genes and the modern RNA world. Nature review
Genetics, 2:919-929, 2001.

[8] D. Goldman, S. Istrail and C. Papadimitriou. Algorithmic aspects of protein
structure similarity. Proc. 40th Ann. Symp. Foundations of Computer Science
(FOCS’99), pp. 512-522, 1999.

[9] R. I. Greenberg. Bounds on the Number of the Longest Common Subsequence
Problem. CoRR cs.DM/0301030, 2003.

[10] D. Hirschberg. The longest common subsequence problem. PhD Thesis,
Princeton University, 1975.

[11] W.J. Hsu and M.W. Du. Computing a longest common subsequence for a set
of strings. BIT, 24:45-59, 1984.

[12] T. Jiang and M. Li. On the approximation of shortest common supersequences
and longest common subsequences. SIAM J. Comput., 24(5):1122-1139, 1995.

[13] M. Kubica, R. Rizzi, S. Vialette and T. Walen. Approximation of RNA multiple
structural alignment. Proc. 17th Ann. Symp. Combinatorial Pattern Matching,
LNCS 4009, pp. 211-222, 2006.

[14] K. Lanctot, M. Li, B. Ma, S. Wang and L. Zhang. Distinguishing string selection
problems. Proc. 6th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 633-
642, 1999.

[15] M. Li, B. Ma and L. Wang. Finding similar regions in many strings. Proc. 31st
ACM Symp. on Theory of Computing (STOC’99), pp. 473-482, 1999.

13

[16] D. Maier. The complexity of some problems on subsequences and
supersequences. J. ACM, 25:322-336, 1978.

[17] R. Nussinov, G. Pieczenik, J. Griggs and D. Kleitman. Algorithms for loop
matching. SIAM J. Applied Math., 35:68-82, 1978.

[18] C. Rick. Efficient Computation of All Longest Common Subsequences. Proc. 7th
Scandinavian Workshop on Algorithm Theory (SWAT’00), pp. 407-418, 2000.

[19] E. Rivas and S.R. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J. Molecular Biology, 285:2053-2068, 1999.

[20] T.F. Smith and M.S. Waterman. Identification of common molecular
subsequences. J. Molecular Biology, 147:195-197, 1981.

[21] Y.-T. Tsai, The constrained longest common subsequence problem, Inform.
Proc. Letters, 88(4):173-176, 2003.

[22] M. Zucker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research,
9:133-148, 1981.

[23] M. Zucker. Computer prediction of RNA structure. Methods in Enzymology,
180:262-288, 1989.

14

