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Abstract. A well-known measure to characterize the similarity of two polygonal
chains is the famous Fréchet distance. In this paper, for the first time, we consider
the problem of simplifying 3D polygonal chains under the discrete Fréchet dis-
tance. We present efficient polynomial time algorithms for simplifying a single
chain, including the first near-linear O(n log n) time exact algorithm for the con-
tinuous min-# fitting problem. Our algorithms generalize to any fixed dimension
d > 3. Motivated by the ridge-based model simplification we also consider sim-
plifying a pair of chains simultaneously and we show that one version of the
general problem is NP-complete.

1 Introduction

Simplifying polygonal chains is a well-studied problem, especially in the plane (and
occasionally in 3D and higher dimensional spaces). In short, the problem is to simplify
a given chain A with n vertices into A′ such that A and A′ are close and |A′| � n. For
instance, in 3D we face the problem of simplifying optic nerves in medical studies and
simplifying river networks in GIS [21]. Most of the previous researches are focused on
simplifying 2D polygonal chains [6,7,10,14,15,16,20,22], with the notable exception
of [10,4]. Readers are referred to [4] for a list of complete references on simplifying
polygonal chains in all dimensions. In this paper, we first follow the traditional work on
simplifying a polygonal chain (a polyline or simply a chain) in 3D, but under a relatively
new measure — the discrete Fréchet distance.

Fréchet distance was first defined by Maurice Fréchet in 1906 [11]. While known
as a famous distance measure in the field of mathematics (more specifically, abstract
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spaces), it was Alt and Godau who first applied it in measuring the similarity of polyg-
onal curves in early 1990s [2,3].

In 1994, Eiter and Mannila defined the discrete Fréchet distance between two polyg-
onal chains A and B (in any fixed dimensions) [9]. Recently, Jiang, Xu and Zhu applied
the discrete Fréchet distance in aligning the backbones of proteins (which is called the
protein structure-structure alignment problem) [17]. In fact, in this application the dis-
crete Fréchet distance makes more sense as the backbone of a protein is simply a polyg-
onal chain in 3D, with each vertex being the alpha-carbon atom of a residue. So if the
(continuous) Fréchet distance is realized by an alpha-carbon atom and some other point
which does not represent an atom, it is not meaningful biologically. Jiang, et al. showed
that given two planar polygonal chains the minimum discrete Fréchet distance between
them, under both translation and rotation, can be computed in polynomial time. They
also applied some ideas therein to design an efficient heuristic for the original protein
structure-structure alignment problem in 3D.

Very recently, the discrete Fréchet distance was used to align protein backbones lo-
cally. It was shown that given many proteins finding such a local alignment is NP-
complete, but when a constant number of chains are given then the problem is polyno-
mially solvable [24]. Notice that finding local alignment between two proteins (or 3D
chains) A, B is different from simplifying them. Loosely speaking, a local alignment is
to find a subsequence A′ of A and a subsequence B′ of B such that A′ and B′ are very
close. But A′ and A (hence B′ and B) could have a huge difference.

While one can claim that the discrete Fréchet distance is a special case of the (contin-
uous) Fréchet distance, the use of discrete Fréchet distance, in many situations, makes
more sense. Firstly, the discrete Fréchet distance is more efficient to compute. For in-
stance, Godau used the Fréchet distance to approximate polygonal chains using vertices
of the original curve [12] (i.e., discrete fitting in our terminology). The running time
of his algorithms are O(n3) for min-# fitting and O(n4 log n) for min-ε fitting, while
using the discrete Fréchet distance these bounds are O(n2) and O(n3) respectively.
Secondly, as we just mentioned, in many biological applications (continuous) Fréchet
distance does not make any sense.

Now coming back to the second motivation of our research — ridge-based geomet-
ric model simplification. A ridge is a critical 3D polygonal chain on a surface whose
projection on the XY-plane is a simple (planar) polygonal chain. Ridge simplification
and approximation is an interesting problem in geometric modeling, approximation and
3D geometric compression. We refer to Fig. 1 for an example. We have identified two
ridges P and Q and wish to simplify them into P ′ and Q′ so as to have a simplified
surface between P ′ and Q′. In this case, however, we not only want P and P ′ (Q and
Q′) to be close, but also want that P ′ and Q′ are close. Otherwise, as can be seen from
Fig. 1 (II), the large discrete Fréchet distance between P ′, Q′ induces some long skinny
triangle anchored at the vertex y. On the other hand, when we simplify P into P ′′ such
that P ′′ and Q′ have a smaller discrete Fréchet distance then the long skinny triangle
disappears (Fig. 1 (III) and (IV)).

It turns out that this problem of simultaneously simplifying a pair of chains is much
more difficult than the protein local alignment problem. We show that a special case,
where we measure the similarity between P, P ′ (and between Q, Q′) using the



632 S. Bereg et al.

(I)

(III)

(II)

(IV)

Q Q’

y

y
x

P P’

P" P"

Q’ Q’

Fig. 1. Large discrete Fréchet distance implies long skinny triangles

Hausdroff distance between vertices while measuring the similarity between P ′, Q′ us-
ing the discrete Fréchet distance, is NP-complete. This implies that we should better
add Steiner points in this application, which is a popular way to improve the quality of
a mesh.

2 Preliminaries

Given two polygonal chains A, B with |A| = k and |B| = l respectively, we aim
at aligning the similarity of A and B (sometimes under translation and rotation) such
that their distance is minimized under certain measure. Among the various distance
measures, the Hausdorff distance is known to be better suited for matching two point
sets than for matching two polygonal chains; the (continuous) Fréchet distance is a
superior measure for matching two polygonal chains, but it is not quite easy to compute
especially when translation/rotation are allowed.

Let X be the Euclidean space R3; let d(a, b) denote the Euclidean distance between
two points a, b ∈ X . The (continuous) Fréchet distance between two parametric curves
f : [0, 1] → X and g : [0, 1] → X is

δF(f, g) = inf
α,β

max
s∈[0,1]

d(f(α(s)), g(β(s))),

where α and β range over all continuous non-decreasing real functions with α(0) =
β(0) = 0 and α(1) = β(1) = 1.
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Imagine that a person and a dog walk along two different paths while connected
by a leash; they always move forward, though at different paces. The minimum possi-
ble length of the leash is the Fréchet distance between the two paths. To compute the
Fréchet distance between two polygonal curves A and B (in the Euclidean plane) of |A|
and |B| vertices, respectively, Alt and Godau [2] presented an O(|A||B| log2(|A||B|))
time algorithm. Later this bound was reduced to O(|A||B| log(|A||B|)) time [3].

We now define the discrete Fréchet distance following [9].

Definition 1. Given a polygonal chain (polyline) in 3D P = 〈p1, . . . , pk〉 of k ver-
tices, an m-walk along P partitions the path into m (disjoint) non-empty subchains
{Pi}i=1..m such that Pi = 〈pki−1+1, . . . , pki〉 and 0 = k0 < k1 < · · · < km = k.

Given two 3D polylines A = 〈a1, . . . , ak〉 and B = 〈b1, . . . , bl〉, a paired walk along
A and B is an m-walk {Ai}i=1..m along A and an m-walk {Bi}i=1..m along B for
some m, such that, for 1 ≤ i ≤ m, either |Ai| = 1 or |Bi| = 1 (that is, either Ai or
Bi contains exactly one vertex). The cost of a paired walk W = {(Ai, Bi)} along two
paths A and B is

dW
F (A, B) = max

i
max

(a,b)∈Ai×Bi

d(a, b).

The discrete Fréchet distance between two polylines A and B is

dF (A, B) = min
W

dW
F (A, B).

The paired walk that achieves the discrete Fréchet distance between two paths A and
B is also called the Fréchet alignment of A and B.

Consider the scenario in which the person walks along A and the dog along B. Intu-
itively, the definition of the paired walk is based on three cases:

1. |Bi| > |Ai| = 1: the person stays and the dog moves forward;
2. |Ai| > |Bi| = 1: the person moves forward and the dog stays;
3. |Ai| = |Bi| = 1: both the person and the dog move forward.

1a

b1

a2

o b2

a3 1

a2

a a3

b o b b1 2
(II)(I)

Fig. 2. The relationship between the discrete and continuous Fréchet distances

Eiter and Mannila presented a simple dynamic programming algorithm to compute
dF (A, B) in O(|A||B|) = O(kl) time [9]. The recent result of Jiang, et al. shows
that in 3D the minimum discrete Fréchet distance between A and B under translation
can be computed in O(k4l4 log(k + l)) time, and under both translation and rotation
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it can be computed in O(k7l7 log(k + l)) time using the ideas presented in [23,17].
They are significantly faster than the corresponding bounds for the continuous Fréchet
distance. In 3D, Wenk showed that given two chains with sum of length N = k + l, the
minimum Fréchet distance between them can be computed in O(N3f+2 log N) time,
where f is the degree of freedom for moving the chains [23]. So with translation alone
this minimum Fréchet distance can be computed in O(N11 log N) time, and when both
translation and rotation are allowed the corresponding minimum Fréchet distance can
be computed in O(N20 log N) time [23].

We comment that while the discrete Fréchet distance could be arbitrarily larger than
the corresponding continuous Fréchet distance (e.g., in Fig. 2 (I), they are d(a2, b2) and
d(a2, o) respectively), by adding sample points on the polylines, one can easily obtain
a close approximation of the continuous Fréchet distance using the discrete Fréchet
distance (e.g., one can use d(a2, b) in Fig. 2 (II) to approximate d(a2, o)). This fact
was also pointed out in [9]. Moreover, the discrete Fréchet distance is a more natural
measure for matching the geometric shapes of biological sequences such as proteins. As
we mentioned in the introduction, in such applications, the continuous Fréchet distance
does not make much sense to biologists.

3 Min-# Fitting with a Given Error Bound

In this section, we discuss min-# fitting (simplification) with a given error bound;
namely, given a chain A and an error bound δ, we want to simplify A into another
chain C with the minimum number of vertices such that dF (A, C) ≤ δ. This is a tra-
ditional problem on polygonal chain simplification, except that almost all the previous
work are all focused on different measures, for instance, the ε-tolerance zone error mea-
sure [4]. With the (continuous) Fréchet error measure, for the 2D problem, Guibas, et
al. obtained an O(n2 log2 n) time algorithm [13]. We show that in 3D this problem can
be solved in O(n log n) time using the discrete Fréchet error measure.

Let A = A[1..n] be the given chain A of n vertices. Let A[i..j] be the (contiguous)
subchain of A starting from the index i to the index j. We call A[1..i] a prefix of A. Let
A ◦ B be the concatenation of two chains A and B (by connecting the last vertex of A
and the first vertex of B).

Given a discrete Fréchet distance (error) δ, we wish to simplify A = A[1..n] using
a simple chain C such that dF (A, C) ≤ δ and the size of C is minimized. Apparently,
we have two cases; the vertices of C could be arbitrary or could only be the vertices
of A. We call them the continuous and discrete cases respectively. It turns out that the
two cases can be solved differently, with the greedy method and dynamic programming
respectively. We cover the continuous case first.

For the continuous case, we can see that following the definition of the discrete
Fréchet distance, the paired walk between A and C, Ai and Ci, must satisfy the property
that |Ai| ≥ |Ci| = 1 for all i (otherwise, we can simply delete some vertices in C to
obtain a better simplification). Then, if |Ai| ≥ |Ci| = 1 for all i but Ai is not maximal,
we can merge Ai with a prefix y of Ai+1 which is at most distance δ away from Ci to
obtain a new A′

i = Ai ◦ y, without affecting the size of C.
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So we can use a greedy method to find the first breakpoint (the largest index j) such
that (all the vertices on) A[1..j] can be covered by a ball centered at a point bj with
radius δ, B(bj, δ), but A[1..j + 1] cannot be covered by any ball of radius δ. Given
A[1..j], we can decide whether it can be covered by B(bj, δ) in O(n) time. In fact,
one can simply compute the smallest enclosing ball for the vertices of A[1..j] to locate
the point bj in linear time [19]. So bj will be the first vertex on the simplified chain
C. Repeating this greedy process at most m∗ = O(n) times, where m∗ is the optimal
solution value for the problem, we can obtain a chain C with m∗ vertices. Because
we are in 3D, a simple perturbation on the vertices of A can easily eliminate any self-
intersection in C. It is easy to see that this greedy method solves the continuous min-#
fitting problem in O(n2) time.

We can use binary search to repeatedly find the breakpoints, so the problem can in
fact be solved in O(m∗n log n) time (which seems tough to beat at the first sight). How-
ever, we present the following Algorithm CMN(A[1..n], δ) which solves the problem
in O(n log n) time. We use the doubling search method, which has been used before in
[18,5,1].

Algorithm. CMN(A[1..n], δ)
(1) Search with t = 1, 2, 3, ... the first t such that A[1..2t−1] can be covered by a ball

with radius δ but A[1..2t] cannot. Then find the first breakpoint k1 in A[2t−1..2t] using
binary search.

(2) Repeat the above process on A[k1+1..n] to compute all of the m∗−1 breakpoints.

Theorem 1. The CMN procedure solves the continuous min-# fitting problem for a 3D
polyline under the discrete Fréchet distance in O(n log n) time and O(n) space.

Proof. Clearly k1 can be found in O(k1 log k1) time. This is due to that when k1 is in
A[2t−1..2t], then 2t is at most 2k1. Let n1, n2, ..., nm∗ be the sizes of the subchains
determined by the m∗ − 1 breakpoints (note that n1 = k1). The overall running time of
CMN is

O(n1 log n1) + O(n2 log n2) + · · · + O(nm∗ log nm∗),

which is O(n log n), due to n1 + n2 + · · · + nm∗ = n. 
�

We remark that the greedy method in Theorem 1 is similar to that in [4,1]. In [1],
Agarwal, et al. considered the similar discrete problem of min-# fitting (simplification)
with a given continuous Fréchet error. An approximation algorithm, which returns at
most twice the size of an optimal simplified curve within half of the error, was presented
in [1]. An open question on a better near-linear time approximation was also raised in
[1]. The above theorem shows that, using the discrete Fréchet distance, the continuous
version of the problem can be solved exactly with a near-linear time algorithm. For the
same discrete problem, we will use the discrete Fréchet measure and present an O(n2)
time solution to solve it exactly.

Regarding the discrete min-# fitting problem under the discrete Fréchet distance, i.e.,
when the vertices of the simplified chain, C′, must come from A, it turns out that there is
a dramatic difference compared with the continuous case. We refer to Fig. 3, in which
we have a chain A with five vertices, and when δ = 1 the optimal simplified chain
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Fig. 3. Given a chain A, when δ = 1, the optimal simplified chain is 〈a4, a5〉

is C′ = 〈a4, a5〉. In other words, A[1..2] is not covered by a vertex on the subchain
A[1..2]. This is also completely different from the situation in [4].

Due to the unfavorable non-local property of the discrete problem, we solve the
problem using a dynamic programming method. Without loss of generality, we only
show how to compute the optimal size of C′. The actual chain C′ can be constructed
easily by modifying the algorithm.

Define T [i, s] as the maximum index j, j ≥ i, such that the ball with radius δ and
centered at A[s] covers A[i..j]. T [i, s] = i−1 if d(A[i], A[s]) > δ; otherwise, T [i, s] =
T [i + 1, s]. For each s, T [−, s] can be computed in O(n) time. So T [−, −] can be
computed in O(n2) time.

Define N [i, s] as the minimum number of balls with radius δ and centered at A[s..n]
that cover A[i..n]. We have

N [i, s] = min{N [i, s + 1], N [j + 1, s + 1] + 1},

where j = T [i, s]. The boundary cases when i = n or s = n can be handled easily. So
N [−, −] can be computed in O(n2) time and space.

Theorem 2. The discrete min-# fitting problem for a 3D polyline under the discrete
Fréchet distance can be solved in O(n2) time and O(n2) space.

We remark that using the continuous Fréchet distance the discrete min-# fitting problem
can be solved in O(n3) time [12]. In [1] whether this bound can be reduced was listed
as an open problem. Our above theorem shows again that using the discrete Fréchet
distance the problem can be solved more efficiently, in fact, in quadratic time.

4 Min-ε Fitting with m-chains

The min-ε fitting with m-chains problem is defined as follows. Given a 3D chain A =
〈a1, a2, . . . , an〉 and a positive integer m, we wish to simplify A into a polyline B =
〈b1, b2, . . . , bm〉 such that dF (A, B) is minimized. Again, we have two cases: the con-
tinuous case (when the vertices of B are arbitrary ones) and the discrete case (when the
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vertices of B must come from A). We first show how to solve the continuous version of
the problem using CMN as a subroutine.

Be reminded that in the continuous case, the vertices of B do not have to come from
A. We first design a procedure CME(A[i..j], m) which covers A[i..j] with m balls of
the smallest radius. Let δ(i, j) be the radius of the smallest ball covering A[i..j].

Algorithm. CME(A[i..j], m)
(1) If i ≥ j then return 0.
(2) If m = 1 then return δ(i, j).
(3) Find k such that CMN(A[i..j], δ(i, k)) > m ≥ CMN(A[i..j], δ(i, k + 1))

and return min{δ(i, k + 1), CME(A[k + 1..j], m − 1)}.

Apparently CME is a recursive procedure and we call CME(A[1..n], m) the first
time. We have the following theorem.

Theorem 3. The continuous min-ε fitting problem under the discrete Fréchet distance
can be solved in O(mn log n log(n/m)) time.

Proof. We first sketch the correctness proof of CME. Recall that δ(i, j) is the radius
of the smallest enclosing ball of A[i, j]. Denote by δ(i, j, k) the minimum radius of k
uniform balls covering A[i, j]. The following properties are not difficult to prove.

Let x be the smallest index such that A[x + 1, n] can be covered by m − 1 balls of
radius δ(1, x); that is, δ(x, n, m − 1) > δ(1, x − 1) and δ(x + 1, n, m − 1) ≤ δ(1, x).
Then we have the recursion

δ(1, n, m) = min{δ(1, x), δ(x, n, m − 1)}.

This corresponds to two cases in CMN: (1) Cover A[1, x] with a ball of radius δ(1, x)
and A[x + 1, n] with m − 1 balls of radius at most δ(1, x); and (2) cover A[1, x − 1]
with a ball of radius δ(1, x − 1) and A[x, n] with m − 1 balls of radius δ(x, n, m − 1).

Note that as we use CMN, which takes O(n log n) time, as a subroutine and we
have to recurse CME m times, the crucial question is how to find k quickly at each
recursion. A naive binary search would find each k in O(log n) time hence giving us
a total running time of m × O(log n) × O(n log n) = O(nm log2 n) time. However,
we can use the same doubling search idea in Theorem 1 so that at the i-th recursion the
corresponding ki can be found in O(log ni ×n logn) time, for i = 1, 2, ..., m, where ni

is the size of the subchain covered by the i-th vertex of B (with optimal radius/error).
So the running time of the algorithm is

∑

1≤i≤m

O(log ni × n log n),

which is O(mn log n log(n/m)), due to that
∑

1≤i≤m ni = n. 
�

We now consider the discrete case, i.e., the vertices of B must come from A. In this
problem, following Fig. 3 (when m = 2) we can again see that in the optimal solution
A[1..i] is not necessarily covered by a ball centered at a vertex on A[1..i]. Similar to the
discrete min-# fitting problem, we again follow the dynamic programming method.
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Define R[i, j, s] as the minimum radius of a ball centered at A[s] that covers A[i..j].
We have R[i, j, s] = max{d(A[i], A[s]), R[i + 1, j, s]}. So R[−, j, s] can be computed
in O(n) time and the whole table R[−, −, −] can be computed in O(n3) time.

Define E[i, s, z] as the minimum radius of z uniform balls centered at A[s..n] that
cover A[i..n]. Define J [i, s, z] as the minimum index j ≥ i such that R[i, j, s] ≥ E[j +
1, s + 1, z − 1]. E[i, s, z] can be updated in two cases: (1) s is used as a center for a
uniform ball, and (2) s is not used as a center for a uniform ball. Therefore,

E[i, s, z] = min{E[i, s + 1, z], R[i, j, s], E[j, s + 1, z − 1]},

where j = J [i, s, z]. Again, the boundary cases when i = n or s = n or z = 0 can be
handled easily.

E[−, −, −] can be computed in O(mn2) time given J [−, −, −]. Note that
E[−, −, z] depends on J [−, −, z], and that J [−, −, z] depends on E[−, −, z − 1].
Therefore, for each z from 1 to m, we need to compute J [−, −, z] before E[−, −, z].

To compute J [i − 1, s, z], compare d(A[i − 1], A[s]) with R[i, j, s], where j =
J [i, s, z]. If d(A[i − 1], A[s]) < R[i, j, s], then set J [i − 1, s, z] to j. Otherwise, use a
sequential search to find the minimum j′ ≤ j such that R[i − 1, j′, s] ≥ E[j′ + 1, s +
1, z−1], then set J [i−1, s, z] to j′. The time is O(j−j′+1) for filling each J [i−1, s, z],
which adds up to O(n) for J [−, s, z]. So J [−, −, −] can be computed in O(mn2) time.
The total running time for constructing E[−, −, −] is O(n3) + O(mn2) = O(n3).

Theorem 4. The discrete min-ε fitting problem under the discrete Fréchet distance can
be solved in O(n3) time and O(n3) space.

We comment that the running times in Theorem 1, Theorem 2 (when m = o(n)), The-
orem 3 are all much faster than the corresponding ones for the ε-tolerance zone metric
[4]. This might due to the strong ‘ordering’ property of the discrete Fréchet distance.
However, we show in the next section that when we have to simplify a pair of chains
simultaneously under the discrete Fréchet distance, one version of the general problem
is even NP-complete. No such negative result is known, on any distance measure, in the
previous research on chain simplification.

5 Simplifying a Pair of Chains Under the Discrete Fréchet
Distance

As we have discussed in the introduction, in this section we investigate the problem of
simplifying a pair of chains A, B into A′, B′ such that the vertices of A′, B′ must come
from A, B respectively, d′(A, A′), d′(B, B′), dF (A′, B′) are all bounded. We will show
that when d′(−, −) is the Hausdorff distance between the vertices of two chains (de-
noted as dH(−, −) henceforth) then the problem for general 3D chains is NP-complete.
This indicates that for ridge-based model simplification, we should use Steiner points
to ensure the quality of the simplified surface.

Formally, the Chain Pair Simplification (CPS) problem is defined as follows.

Instance: Given a pair of 3D chains A and B in 3D, each with length O(n), an integer
K , and three real numbers δ1, δ2, δ3.
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Problem: Does there exist a pair of chains A′, B′ each of at most K vertices such that
the vertices of A′, B′ are from A, B respectively, and d1(A, A′) ≤ δ1, d2(B, B′) ≤
δ2, dF (A′, B′) ≤ δ3?

When d1 = d2 = dH , we call the corresponding problem CPS-2H and when d1 =
d2 = dF , we call the corresponding problem CPS-3F. We have the following theorem.

Theorem 5. The CPS-2H problem is NP-complete.

Proof. It is easy to see that CPS-2H belongs to NP. We now reduce 3SAT to the CPS-2H
problem. The idea of this reduction is from [8], even though over here we are handling
a geometric problem.

Let φ = F1
∧

F2
∧

· · ·
∧

Fm be a conjunctive normal form, where each sub-formula
Fi is a 3-disjunctive clause like (x2

∨
x5

∨
¬x7). Assume that x1, x2, · · · , xn are the

boolean variables in the formula φ and each Fi cannot contain both xk and ¬xk (other-
wise Fi is already true and can be discarded). We construct a triple of points for each Fi

as pi1 = (i, i2, 0), pi2 = (i, i2, ε), pi3 = (i, i2, 2ε), for some 0 < ε < 0.1. We then con-
struct two chains A and B each with 4n−1 vertices such that φ is satisfiable iff A and B
can be simplified into A′, B′ each with K = 2n−1 vertices such that dH(A, A′) ≤ 2ε,
dH(B, B′) ≤ 2ε and dF (A′, B′) = 0 (i.e., δ3 = 0 in our construction).

First we construct n − 1 points qj = (j, 0, 0), 1 ≤ j ≤ n − 1. For each variable
xi in φ, we construct two sequences Si and S∗

i . Let Fi1 , · · · , Fiu be the clauses in φ
that contain xi, and let Fj1 , · · · , Fjv be the clauses of φ that contain ¬xi. Let Si =
Fi1 · · · FiuFj1 · · · Fjv and S∗

i = Fj1 · · ·Fjv Fi1 · · · Fiu . We next convert Si (S∗
i ) into a

sequence of 3D points Ti (T ∗
i ), where each occurrence of Fk(1 ≤ k ≤ m) in Si or S∗

i

corresponds to a unique point in {pkj |j ≤ 3}. Note that since Fk contains 3 literals, it
appears in all Si and S∗

i exactly three times. So from now on we assume that the three
occurrences of pkj’s are always in the order pk1, pk2 and pk3 and with this in mind we
will use pk to simplify the presentation.

Let A = 〈T1, q1, T2, q2, · · · , qn−1, Tn〉 and B = 〈T ∗
1 , q1, T

∗
2 , q2, · · · , qn−1, T

∗
n〉.

Assume that x1 = b1, · · · , xn = bn are assignments that make φ true. If bi = 1,
simplify both Ti and T ∗

i to T ′
i = pi1 , · · · , piu and T ∗′

i = pi1 , · · · , piu , respectively.
If bi = 0, simplify both Ti and T ∗

i to T ′
i = pj1 , · · · , pjv and T ∗′

i = pj1 , · · · , pjv ,
respectively. It is easy to see that A′ = 〈T ′

1, q1, T
′
2, · · · , T ′

n−1, qn−1, T
′
n〉 is the same

as B′ = 〈T ∗′

1 , q1, T
∗′

2 , · · · , T ∗′

n−1, qn−1, T
∗′

n 〉 except that some pj in T ′
i are at most 2ε

distance away. It is easy to see that dH(A, A′) ≤ 2ε, dH(B, B′) ≤ 2ε and dF (A′, B′) =
0; moreover, K = 2n − 1.

Assume that A is simplified into A′′ and B is simplified into B′′ via removing some
points in {pij |1 ≤ i ≤ n, 1 ≤ j ≤ 3} such that dH(A, A′′) ≤ 2ε, dH(B, B′′) ≤ 2ε,
and dF (A′′, B′′) = 0. Notice that the distance between pij and pkl and the distance
between qi and qk are at least one, as long as i �= k. The condition that dH(A, A′′) ≤ 2ε,
dH(B, B′′) ≤ 2ε implies that we can only remove points in {pij |1 ≤ i ≤ n, 1 ≤ j ≤
3} and we must leave at least one point in A′′, B′′ for each pij , 1 ≤ j ≤ 3. As Fi

cannot contain both xk and ¬xk, on the subchain between qr and qr+1 on A or B there
is exactly one point pz , for some z. Finally, as K = 2n−1, to make dF (A′′, B′′) ≤ 2ε,
we must leave all qs’s and leave exactly one point in A′′, B′′ for each pij , 1 ≤ j ≤ 3.
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Let T
′′

i and T ∗′′

i be the subchains in A′′ and B′′ which are obtained from simplifying
Ti and T ∗

i in A and B respectively. If T
′′

i is empty then we can assign a value to xi

arbitrarily. Now we focus on the case when T
′′

i is not empty, which implies that T
′′

i

and T ∗′′

i have the same size and dF (T
′′

i , T ∗′′

i ) ≤ 2ε. If T
′′

i is not empty and it is a
subsequence of pi1 , · · · , piu then we assign xi = 1. If T

′′

i is not empty and it is a
subsequence of pj1 , · · · , pjv then we assign xi = 0. It is easy to see that φ is true by
the assignments to those variables x1, · · · , xn.

To conclude the proof of this theorem, notice that the reduction takes linear (in the
length of φ) time. 
�

We comment that for several optimization versions of the problem the proof still holds.
For instance, when all the other conditions hold and we try to minimize K , then the
problem is still NP-complete. Moreover, as in the above proof deciding whether
dF (A′, B′) = 0 is NP-complete, when all other conditions hold, there is no polyno-
mial time algorithm for approximating dF (A′, B′) unless P=NP. The above theorem
certainly implies that it is better to add Steiner points when we simplify a pair of (adja-
cent) ridges in ridge-based geometric model simplification.

6 Concluding Remarks

In this paper, for the first time, we study the problem of simplifying/approximating
polylines in 3D under the discrete Fréchet distance. There are many open questions. (1)
Our algorithms also work for any fixed dimension d > 3. However, when applied on
2D chains our algorithms might return self-intersecting approximating chains. This is
also a problem for previous chain simplification algorithms using (continuous) Fréchet
distance. In fact, this was listed as an open problem in [1]. How can we handle this
problem? (2) In Theorem 4, the running time of the algorithm is dominated by the com-
putation of the smallest enclosing balls in table R[−, −, −]. Is there a way to improve
the O(n3) bound? Also, regardless of the running time it might be possible to reduce the
space complexity in Theorem 4 (and Theorem 2). (3) The proof of the NP-completeness
of CPS-2H uses general 3D polylines, not really ridges. Can we use ridges to finish the
proof? (4) What is the complexity of the CPS-3F problem? We conjecture that it is also
NP-complete.
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