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Abstract

In this column, we review the most recent results on processing persistence diagrams as
purely geometric objects. (Yes, this is not a typo! While persistence diagrams originally come
from computational topology, this column will mainly focus on the geometric parts and the
minimal amount of knowledge on computational topology is needed to read this column.) We
mainly focus on computing a center persistence diagram under the bottleneck and Wasserstein
distances, and also the approximate nearest neighbor query under the bottleneck distance. At
the end, we will go over a few open problems as well as some direction for future research, e.g.,
(approximate) farthest neighbor query under the bottleneck distance.
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1 Introduction

Persistence diagrams, one of the important tools in computational topology [9, 10, 28], have found
various applications in the last decade. For instance, persistent diagrams have been used in geo-
graphical information systems [1], in neural science [14], in wireless networks [23], and in prostate
cancer research [22], to name a few.

If we somehow ignore the topological meaning of the persistence diagrams, to some extent, each
of them is really a set of 2D (topological feature) points above and inclusive of the line y = x in
the X-Y plane. More precisely, a topological feature point (b, d) in a persistence diagram, which
we will simply call a point henceforth, indicates a topological feature which is born at time b
and dies at time d. Hence it is always the case that b ≤ d. See Figure 1 for an example. Note
that a point q = (t, t) on the line y = x can be thought of as a dummy feature point which dies
immediately after it is born. Let ℓ be (the set of all points on) the line y = x. We use P = P ∪ ℓ
to represent a persistent diagram throughout this paper, where P is a finite set of 2D points above
ℓ. Understanding that each persistent diagram contains ℓ, we simply say that P has |P | (discrete)
points. (In the topological language, points in P are counted with finite multiplicity, e.g., a point
appearing three times in P will be counted as three different points, while points on ℓ are counted
with infinite multiplicity.)

Then, how to measure the distance between two persistence diagrams P and Q? Well, it turns
out that this question was well-answered: either the bottleneck [4] or the Wasserstein distance [5];
in fact, both with decent stability bounds! These distances are defined formally in the following
paragraph. Throughout this paper, for two points p1 = (x1, y1) and p2 = (x2, y2), we use dp(p1, p2)
to represent the Lp distance between p1 and p2, which is dp(p1, p2) = (|x1 − x2|p + |y1 − y2|p)1/p,
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Figure 1: Two persistence diagrams P and Q, with feature point sets P = {p1, p2, p3} and Q =
{q1, q2}. A point p1 = (b, d) indicates its birth time b and death time d. The projection of p1 on
ℓ (or y = x) gives p′. In this case, dB(P ,Q) = d∞(p3, q1).

for p < ∞. When p = ∞, d∞(p1, p2) = ‖p1 − p2‖∞ = max{|x1 − x2|, |y1 − y2|}. We will mainly
focus on the L∞ metric.

Given two persistent diagrams P and Q, each with at most n points, the bottleneck distance
between them is defined as follows:

dB(P,Q) = inf
φ
{sup

x∈P
‖x − φ(x)‖∞, φ : P → Q is a bijection}.

Similarly, the p-Wasserstein distance is defined as

Wp(P,Q) =

(
inf
φ

∑

x∈P

‖x − φ(x)‖p
∞

)1/p

, φ : P → Q is a bijection.

We refer the readers to [9] for further information regarding persistence diagrams. It is worth
mention that the Wasserstein distance is coined after Leonid Wasserstein (Leonid Vasserstein in
Russian) for the distance between probability distributions [32]. In fact, similar notion of distance
between distributions was known as early as in 1781 [20, 25], for the commonly known Monge-
Kantorovich transportation problem; also as the Earth Mover’s Distance nowadays [29].

It looks like these distances are both continuous. However, Edelsbrunner and Harer obtained
a beautiful way to discretize them [9]. In the case of the bottleneck distance, this is done through
the traditional geometric bottleneck matching (which runs in O(n1.5 log n) time for two point sets
both with size n [11]), In fact, it was shown that the multiplicity property of the line y = x can
be used to compute the bottleneck matching between two diagrams P and Q more conveniently —
regardless of their sizes [9]. This can be done as follows. Recall that P and Q are the set of feature
points in P and Q respectively. Then project points in P (resp. Q) perpendicularly on y = x
to have P ′ (resp. Q′). (See also Figure 1.) It was shown that the bottleneck distance between
two diagrams P and Q is exactly equal to the bottleneck (bipartite) matching distance, in the L∞

metric, between P ∪ Q′ and Q ∪ P ′. Here the weight or cost of an edge c(u, v), with u ∈ Q′ and
v ∈ P ′, is set to zero; while c(u, v) = ‖u − v‖∞, if u ∈ P or v ∈ Q. The p-Wasserstein distance
can be computed similarly, using a min-sum bipartite matching between P ∪ Q′ and Q ∪ P ′, with

ACM SIGACT News 2 March 2020 Vol. 51, No. 1



all edge costs raised to cp. (Kerber, et al. showed that in practice several steps of the bottleneck
matching algorithm can be further simplified [21].)

Coming back to reality, as persistence diagrams are used more and more often in applications, a
consequence is that practitioners gradually have a database of persistence diagrams computed and
collected over certain period of time. It is not uncommon these days that such a database has tens
of thousands of persistence diagrams, each with up to several thousands of points. How to process
and search these diagrams becomes a new challenge for algorithm designers. In the following two
sections, we review two such recent progress, i.e., computing a center persistence diagram under
both the bottleneck and Wasserstein distances, and answering (approximate) nearest neighbor
queries under the bottleneck distance. We conclude the review in Section 4 with several open
problems.

2 Center Persistence Diagram

2.1 Hardness

It is known that prostate cancer develops slowly, and one important part is to determine how the
cancer progresses over a long period of time. In [22], the method is to use a persistence diagram for
each of the histopathology images (taken over certain period of time, hence image alignment is not
feasible). Naturally, for the data collected over some time interval, one could consider representing
a corresponding set of persistence diagrams with a center, which could be considered as a median
persistence diagram summarizing these persistence diagrams. A sequence of such centers over a
longer time period would give doctors a rough estimate on how the prostate cancer progresses —
the more accurate estimate uses machine learning and is beyond this review. Hence, computing
a center persistence diagram is practically meaningful. On the other hand, while the traditional
center concept (and the corresponding algorithms) has been used for planar point sets (under the
Euclidean distance) [27] and for binary strings (under the Hamming distance) [24]; recently we
have also seen its applications in more complex objects, like polygonal chains (under the discrete
Frechet distance) [2, 19]. We formally define the problem as follows.

Definition 1. The Center Persistence Diagram Problem under the Bottleneck Distance
(CPD-B)

Instance: A set of m persistence diagrams P1, ...,Pm with the corresponding feature point sets
P1, ..., Pm respectively, and a real value r.

Question: Is there a persistence diagram Q such that maxi dB(Q,Pi) ≤ r?

Recall that Q = Q ∪ ℓ, where ℓ is the line y = x. Note that we could have three versions,
depending on how points in Q are selected. If points in Q could be arbitrarily selected, we call the
version continuous. Otherwise, if points in Q can be selected from Pi’s we call the version discrete.
For the discrete version, we further have two sub-versions: With Replacement (i.e., points in Q
can be selected with replacement from the set ∪i=1..mPi) and Without Replacement (i.e., points in
Q can be selected with no replacement from the multiset ∪i=1..mPi). When m = 2, all the three
versions can be solved in polynomial time with the maximum-flow-based method [26]. Henceforth,
we focus on m ≥ 3. Moreover, since the details for the discrete versions have been covered in [18],
we focus more here on the continuous version here. (Note that generic ideas are similar, but details
need some twist).

It should be noted that when m = 3, this problem is very similar to the NP-complete geometric
three-dimensional assignment problem [15, 30], which is to partition three colored and equal-sized
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point sets into triangles such that the vertices in each triangle are in distinct colors and the maxi-
mum perimeter of these triangle is minimized. (Henceforth, we call such a triangle, whose vertices
are in different colors, a cluster. Apparently, in our problem, the objective is more on minimizing
the L∞ radius of the maximum circumscribing circles of the corresponding clusters.) In all these
problems, the reduction is from Planar 3-D Matching (Planar 3DM), which was proved to be NP-
complete by Dyer and Frieze [8]. In 3DM, we are given three sets of elements E1, E2, E3 (with
|E1| = |E2| = |E3| = q) and a set T of n triples, where T ∈ T implies that T = (t1, t2, t3) with
ti ∈ Ei. The problem is to decide whether there is a set S of q triples such that each element in Ei

appears exactly once in (the triples of) S [13]. The Planar 3DM incurs an additional constraint: if
we embed elements and triples as points in the plane such that there is an edge between an element
a and a triple T iff a appears in T , then the resulting graph is planar. An example for Planar 3DM
is as follows: E1 = {1, 2}, E2 = {a, b}, E3 = {x, y}, and T = {(1, a, x), (2, b, x), (2, b, y), (1, b, y)}.
The solution is S = {(1, a, x), (2, b, y)}.

With the nature of bottleneck and Wasserstein distances, where the L∞ norm is used at the
bottom-most level, for the NP-hardness proof the requirement is more demanding here; in fact, we
need to make sure that each cluster degenerates to either a horizontal or vertical line segment [18].
Between the discrete and continuous versions for CPD-B we also need some minor twist.

gadget for x

deg(x)=5

x x

x
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Figure 2: The gadget for element x. In general, there could be a path of • nodes between x2

and x3, hence a and b do not have to be in the form of xi’s (in this figure they do).

Let an instance for Planar 3DM be given, together with a corresponding planar graph G with
O(n) vertices, we first convert it to a planar graph with degree at most 3. This can be done as
follows: let an element node x in G be with degree greater than 3 (i.e., deg(x) = d > 3), replace
x with a path of d nodes x1, ..., xd, and replace the connection between x and a triple node T by
a connection from xi to T for some i (hence, after this operation, each xi has degree at most 3,
see also Figure 2). We have a resulting planar graph G′ = (V (G′), E(G′)) with degree at most 3
and with O(n) vertices. Then we construct a rectilinear embedding of G′ on a regular rectilinear
grid with a unit grid length, where each vertex u ∈ V (G′) is embedded at a grid point and an
edge (u, v) ∈ E(G′) is embedded as an intersection-free path between u and v on the grid. Valiant
showed that such an embedding can be computed in O(n2) time [31].

As shown in Figures 2,3 and 4, we use •, � and � to denote points in color-1, 2 and 3 respectively.
In Figure 2, the (element) gadget for element x is a path of • points. For each valid grid edge
connecting two • points (say a and b), we put a color-2 (i.e., �) point u and a color-3 (i.e., �)
point v at the mid-point of edge (a, b). Hence, to form a local optimal cluster with radius 1/4, we
either use cluster {a, u, v} or {b, u, v}, whose centers are marked with a cross (i.e. ×) in Figures
2-4. This operation is performed on color-2 and color-3 grid edges as well. A triple gadget for a
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triple T = (x, y, z) is constructed by using three points in color-i, i = 1..3, at a grid point where
the corresponding element gadgets for x, y and z would reach (see Figures 3-4).

In each element gadget for x, we have 3D + 1 grid points, where D is the number of grid points
on the path from x1 to xd in the element gadget. We then have the following lemma [18].

Lemma 1. In an element gadget for x, exactly one xi is covered by a disk of radius 1/4, centered
at a point out of the gadget.

When xi is covered by a disk of radius 1/4 centered at a point out of the gadget x, we also say
that xi is pulled out of x. (This ‘pull-out’ concept is similarly defined for a triple gadget.) The
center of such a cluster refers to the point marked by ×, for example, above x2 in Figure 3 or below
x3 in Figure 4. We then have the following lemma (adapted from [18], referring Figure 3 and Figure
4).

x x x

triple gadget for T=(x,y,z)

gadget for y

x

gadget for z
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x x
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x1 x2
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Figure 3: The triple gadget for T = 〈x, y, x〉 (represented as N, which is really putting three
element points on a grid point). In this case the triple 〈x, y, z〉 is selected in the final solution
(assuming operations are similarly performed on y, z). Exactly one of xi (in this case x2) is
pulled out of the gadget for the element x.

Lemma 2. In a triple gadget for T = (x, y, z), to cover the three points representing T using disks
of radii at most 1/4, either all the three points are pulled out of the triple gadget T by the three
element gadgets respectively, or none is pulled out. In the latter case, these three points can be
covered by a disk of radius zero.

Theorem 1. The continuous Center Persistence Diagram problem under the bottleneck distance
(CPD-B) is NP-hard when m = 3 diagrams are given.

Proof. We obtain our reduction from Planar 3DM [8], which has just been described and can be
done in O(n2) time (with 3Kn points used in all three colors, where K = O(n2)). We state the
following statement without giving the detailed arguments: Planar 3DM has a solution of q triples
if and only if the converted instance with 3Kn points can be partitioned into Kn clusters each
covered by a disk of radius 1/4; moreover, exactly q clusters are covered by disks of radii zero.
Readers can either try it as an exercise, or refer to a similar argument in [18].

To finish the proof for persistence diagrams, we need to move the converted 3Kn points far
away from y = x (so that the optimal bottleneck distance is not determined by any projected point
on y = x). Let the diameter of the (union of the) three constructed point sets of different colors
(with size 3Kn) be D̂, we translate these points as a whole set rigidly such that all the points are

ACM SIGACT News 5 March 2020 Vol. 51, No. 1



at least 2D̂ distance away from y = x. We then have three persistence diagrams, one for each color.
This concludes the proof.

Note that the above reduction still works if we amplify the radius of the maximum covering
disks to below 1/2. Hence, we have the following corollary.

triple gadget for T=(x,y,z)
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Figure 4: The triple gadget for T = 〈x, y, x〉 (represented as N, which is really putting three
element points on a grid point). In this case the triple 〈x, y, z〉 would not be selected in the
final solution. Note that the black round point in the triple gadget is pulled out by the element
x, and the other two points are pulled out similarly by the element y and z.

Corollary 1. It is NP-hard to approximate (the optimization version of) Center Persistence Di-
agram problem under the bottleneck distance for m ≥ 3 diagrams within a factor 2 − ε, for some
ε > 0.

We comment that the above reduction also works for the continuous version of the Center
Persistence Diagram problem under the Wasserstein distance, which is defined as follows.

Definition 2. The Center Persistence Diagram Problem under the Wasserstein Dis-
tance (CPD-W)

Instance: A set of m persistence diagrams P1, ...,Pm with the corresponding feature point sets
P1, ..., Pm respectively, and a real value r.

Question: Is there a persistence diagram Q such that maxi Wp(Q,Pi) ≤ r?

Again, remember that Q = Q ∪ ℓ, where ℓ is the line y = x. Moreover, CPD-W also has three
versions as CPD-B. The above reduction does work for the continuous version for CPD-W, but for
neither of the discrete versions. The main reason is that each cluster in the proof is either a vertical
or a horizontal segment of length 1/2 and the continuous center (marked with × in Figures 2-4)
has the same L∞ distance of 1/4 to the corresponding three points forming the cluster. Hence the
minimum of the maximum Wasserstein distance can be explicitly computed in the continuous case.
We summarize the hardness result for CPD-W as follows.

Corollary 2. It is NP-hard to solve the continuous Center Persistence Diagram problem under the
Wasserstein distance for m ≥ 3 diagrams.
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2.2 Approximation

For approximation algorithms, it is extremely simple. As both dB and Wp satisfy the triangle
inequality, we can simply pick any of the m input diagrams Pi, i = 1..m, as the center — assuming
points in Pi is colored with color-i. (This is similar to [15], even though the objective function
there is different.) The difference here is that Pi could have different sizes, but this can be handled
using a generalized projection method. Suppose we select Pi as our approximate center, a point p
of color-i is projected m− 1 times onto y = x to obtain m− 1 points of different colors in the color
set {1, ..., i − 1, i + 1, ...,m}. Moreover, when m is a constant, the running time of this algorithm
would be O(n1.5 log n) using the bottleneck distance , where n is the maximum size of the m input
persistence diagrams. However, when m is part of the input the running time of the algorithm
increases to O((mn)1.5 log(mn)) using the bottleneck distance. With the p-Wasserstein distance,
of course, the traditional Hungarian method would be used for computing the minimum weight
matching, leading to a higher polynomial running time.

Now we finish the analysis of approximation factor for the continuous CPD-W problem. Let Q
be the optimal solution. Then

Wp(Pi,Pj) ≤ Wp(Pi,Q) + Wp(Q,Pj) ≤ 2 · Opt.

It is in fact easy to improve this solution practically. For instance, when m = 3, for each cluster
{pi, pj , pk}, instead of using pi as the local center, we could use the Voronoi vertex q, which is the
center of the smallest enclosing L∞-circle for this cluster, as the center for this cluster. But it is
unknown yet whether this would give us a better approximation factor.

We summarize our results in the following table.

Table 1: Results for the Center Persistence Diagram problems under the bottleneck (dB) and Wasserstein
(Wp) distances when m ≥ 3 diagrams are given.

Hardness Inapproximability bound Approximation factor

dB , with no replacement NP-complete 2 − ε 2
dB , with replacement NP-complete 2 − ε 2
dB , continuous NP-hard 2 − ε 2

Wp, with no replacement ? ? 2
Wp, with replacement ? ? 2
Wp, continuous NP-hard ? 2

3 Approximate Nearest Neighbor Query

In this section, we consider the following problem: given a set of persistent diagrams (PDs) Γ =
{Pi|i = 1..n}, preprocess them with a data structure such that for a query persistent diagram
Q one can return an approximate nearest neighbor (diagram) in Γ from Q under the bottleneck
distance. Recall that Pi = Pi ∪ ℓ, where ℓ is the line y = x. Throughout this section, we assume
maxi |Pi| = m and for any point (a, b) in Pi we have max{|a|, |b|} ≤ M . In [12], these diagrams are
called (M,m)-bounded. We assume that Q is also (M,m)-bounded.

Clearly, a brute-force searching over all Pi’s would take O(nm1.5 log m) time, using the geometric
bottleneck matching algorithm by Efrat, Itai and Katz [11]. Since n is usually large (sometimes m
too, though we could try to reduce m by some preprocessing, like deleting all the noisy features
close to ℓ in all the persistence diagrams), this method is not feasible in practice. A second thought
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could be treating each persistence diagram as a high-dimensional data point and use some standard
method like divide-and-conquer. In fact, Clarkson proved that the divide-and-conquer algorithm
in metric spaces runs in a time that is exponential in the doubling dimension [3]. (Roughly, in
a metric space X with metric d, if the open ball B(x, r), i.e., a ball with center x and radius r
respectively, can be covered by at most 2C balls of radius r/2 then the doubling dimension of X is
C.) Unfortunately, as shown in (the most recent version of) [12], in the metric space of persistence
diagrams under the bottleneck metric, the doubling dimension is infinite. Hence, this method is
again not feasible.

Yet another method is to use locality-sensitive hashing [17]. In fact, Driemel and Silvestri applied
the method on polygonal chains under the discrete Frechet distance [7]. (Roughly, one stores the
perturbations of all the vertices in the database of chains, Ci’s, such that the perturbation of the
query chain CQ would match with some Ci with a small probability, if the discrete Frechet distance
dF (Ci, CQ) is small. Then, if one runs this query many times eventually one would get a hit with
a high probability.) By adapting the method in [7], we can obtain the following bounds: with
O(212mn log n + nm) space, given any query PD Q with at most m feature points, a factor-8

√
2

approximate PD Pi under the bottleneck distance can be returned in O(212mm log n + 212m log2 n)
time. However, in this method the key used would be coming from both Pi and Q — following the
way to compute the bottleneck distance [9], hence it is hard to speed up the search by preprocessing
the keys offline before the search starts (let alone building a hierarchical data structure). This
drawback was handled as follows [12].

Figure 5: Snap-rounding a set of feature points to an integer grid. Multiplicity of duplicated
grid points must be counted. For this case, the key (reading row by row) is: 〈1, 3, 1, 2, 2, 0, 0, 2, 1〉.

In [12], a grid-based deterministic hashing (or snap-rounding) method was used. We assume
all feature points and grid points are within the box [−M,M ]2, note that −M is included as
topologically the birth and death times could be negative. (A similar method using such a grid was
used by Heffernan and Schirra for point set matching [16]. But in that method multiplicities were
ignored.) The idea is as follows:

• At each level j ≥ 0, an integer grid G[j] is generated where the (base) cell has a length
rj = 2M/2j , and the number of cells is 2j+1.

• At each level j, for each point p in Pi, snap-round p to each of the 4 cell points where p is
located (see Figure 5). A vector obtained through this snap-rounding for all the points in Pi

gives a key kj(Pi) for PD Pi. (We here ignore the boundary case when p is on a grid line.)
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• At each level j, for each point p in Pi that is at L∞ distance at most rj from the diagonal ℓ,
additionally allow p to be optionally deleted. (For each of these points we have 5 choices: 4
snap-roundings plus an optional deletion.)

• At each level j, store all the O(5m) keys generated for each PD.

Let DS(Pi, G[j]) be the set of all snap-roundings of Pi obtained by additionally allowing p ∈ Pi

within distance at most rj from the diagonal ℓ to be optionally deleted. Then for Pi′ ∈ DS(Pi, G[j]),
we use kj(Pi′) to denote the key associated with Pi′ at level j.

M X

Y
M

y=x

rj/2

rj/2

Figure 6: Handling points close to the diagonal ℓ (or y = x) at level-j. Note that if Q is the
set of black points, then all the 3 black points in the first rj/2 band above ℓ would be deleted
while the only white point in the second band, which is in Pi, has an additional choice of being
deleted, besides being snap-rounded to the 4 grid points of the cell containing it.

For the query diagram Q, a similar (but non-identical!) operation is performed as follows:

• For the query PD Q, at level j, first delete all the points within L∞ distance at most rj/2

from the diagonal ℓ, let the resulting PD be Q̃j (we drop the index j sometimes, whenever

a specified level is given in the context). Then snap-round each point q in Q̃ to the nearest
grid point, obtain the key kj(Q̃) at level-j.

• The searching is done by finding a match between kj(Q̃) and kj(Pi′), also commonly known
as a collision1, in the stored databases of keys.

We state the following central theorem as follows:

Theorem 2. On grid G[j], after optional deletions on Pi’s and mandatory deletions on Q are
performed as described in the previous paragraphs. We have

1. If there is a Pi′ ∈ DS(Pi, G[j]) such that one of its keys collides with that of Q̃, i.e., kj(Pi′) =

kj(Q̃), then dB(Pi,Q) ≤ 3

2
rj .

1We slightly abuse the notation by also saying that the PD’s Pi and Q collide at that level.
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2. If dB(Pi,Q) ≤ 1

2
rj, then there is a Pi′ ∈ DS(Pi, G[j]) such that kj(Pi′) = kj(Q̃).

This theorem enables us to design a hierarchical data structure ∆j associated with G[j], for
j = 0, 1, 2, · · · , where at each level we store the sorted list of keys and for each key the corresponding
subset of PD’s. To find a near neighbor of Q in Γ, we search up to the last level j′ where the key
for Q collides with a key k′

j stored at level j′ (i.e., the key of Q has no collision with any key stored
in ∆j+1). Any PD associated with k′

j can be returned as an approximate nearest neighbor. The
following can be proved and we refer interested readers to [12] for the formal details.

1. (Hierarchical Collision Lemma): If a PD Pi collides with the query PD Q at level j′,
then they collide at level j for every j < j′.

2. (Nearest Neighbor Bin Lemma): Let the PD P∗ ∈ Γ be the nearest neighbor to Q,
realizing min

i=1..n
dB(Pi,Q). Let j be the largest index such that kj(Q̃) collides some key in ∆j .

Then there is a snap-rounding P ∗
j−2

∈ DS(P∗, G[j − 2]) such that kj−2(P
∗
j−2

) = kj−2(Q̃j−2).

3. (Nearest Neighbor Approximation Lemma): If j is the largest index such that
kj(Pi′) = kj(Q̃), then any Pi ∈ Γ provides a 6-approximation for min

i=1..n
dB(Pi,Q), provided

that Pi′ ∈ DS(Pi, G[j]) and kj(Pi′) is the key for Pi′ at level-j.

Note that the Hierarchical Collision Lemma further enables us to run a binary search over
∆0,∆1, · · · ,∆τ . (This is not possible if we used an adapted version of Driemel and Silvestri [7].)
Also note that the Nearest Neighbor Lemma says that we might not be able to find the true nearest
neighbor at ∆j, but we can find it by a linear search in ∆j ,∆j−1 and ∆j−2. In addition, with some
twist, i.e., by identifying the largest level j satisfying the condition that at least k > 1 different
diagrams with keys colliding with that of Q at that level, any diagram in ∆j provides a factor-24
approximation for the kth-nearest neighbor [12]. (Symmetrically, the actual kth-nearest neighbor
can be found by a linear search in ∆j+2,∆j+1,∆j, ∆j−1 and ∆j−2.)

We summarize the main theorem as follows:

Theorem 3. Given a set of (M,m)-bounded persistence diagrams Γ = {Pi|i = 1..n}, a τ -level data
structure of size O(n5mτ) can be constructed such that, for any query diagram Q (which is also
(M,m)-bounded), it can find a 6-approximation of min

i=1..n
dB(Pi,Q) in O((m log n + m2) log τ) time.

We comment that while this (space,query)-bound is significantly better than directly using the
method in [7], the space complexity is still exponential in m. In [12], several ideas were proposed
to improve the space complexity, but further research is still needed.

4 Open Problems

We close this review with several open problems.

1. Is the discrete CPD-W problem NP-hard when m ≥ 3? More precisely, under the p-
Wasserstein distance, is the discrete version of the Center Persistence Diagram problem
NP-hard with at least 3 input diagrams (for either of the ‘With Replacement’ or ‘Without
Replacement’ cases)?

2. Is it possible to obtain some approximation lower bound (e.g., at least 1 + ε) for all the three
versions of the CPD-W problem? Note that a related open problem for three-dimensional
assignment problem where the objective function is in a min-sum manner was posed by Custic,
Klinz and Woeginger a few years ago [6].
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3. Is it possible to improve the 2-approximation upper bound for all the three versions of the
CPD-W problem?

4. For the approximate nearest neighbor query problem, is it possible to reduce the space com-
plexity to polynomial while still maintaining a constant factor approximation?

5. In some applications, we might need to find persistence diagrams which are far away from a
query diagram. Is it possible to design an efficient data structure to answer (approximate)
farthest neighbor queries?
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