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Abstract
In computational biology, tandem duplication is an important biological phenomenon which can
occur either at the genome or at the DNA level. A tandem duplication takes a copy of a genome
segment and inserts it right after the segment – this can be represented as the string operation
AXB ⇒ AXXB. Tandem exon duplications have been found in many species such as human, fly
or worm, and have been largely studied in computational biology.

The Tandem Duplication (TD) distance problem we investigate in this paper is defined as
follows: given two strings S and T over the same alphabet, compute the smallest sequence of tandem
duplications required to convert S to T . The natural question of whether the TD distance can be
computed in polynomial time was posed in 2004 by Leupold et al. and had remained open, despite
the fact that tandem duplications have received much attention ever since. In this paper, we prove
that this problem is NP-hard, settling the 16-year old open problem. We further show that this
hardness holds even if all characters of S are distinct. This is known as the exemplar TD distance,
which is of special relevance in bioinformatics. One of the tools we develop for the reduction is a new
problem called the Cost-Effective Subgraph, for which we obtain W[1]-hardness results that might be
of independent interest. We finally show that computing the exemplar TD distance between S and
T is fixed-parameter tractable. Our results open the door to many other questions, and we conclude
with several open problems.
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1 Introduction

Tandem duplication is a biological process that creates consecutive copies of a segment of a
genome during DNA replication. Representing genomes as strings, this event transforms a
string AXB into another string AXXB. This process is known to occur either at small scale
at the nucleotide level, or at large scale at the genome level [5, 6, 7, 23, 12]. For instance,
it is known that the Huntington disease is associated with the duplication of 3 nucleotides
CAG [13], whereas at genome level, tandem duplications are known to involve multiple genes
during cancer progression [26]. Furthermore, gene duplication is believed to be the main
driving force behind evolution, and the majority of duplications affecting organisms are
believed to be of the tandem type (see e.g. [29]). As a result, around 3% of the human
genome are formed of tandem repeats.
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15:2 The Tandem Duplication Distance Is NP-Hard

For these reasons, tandem duplications have received significant attention in the last
decades, both in practice and theory. The combinatorial aspects of tandem duplications
have been studied extensively by computational biologists [2, 14, 16, 22, 30], one question of
interest being to reconstruct the evolution of a cluster of tandem repeats by duplications
that could have given rise to the observed sequences. In parallel, various formal language
communities [9, 31, 25] have investigated the expressive power of tandem duplications on
strings.

From the latter perspective, a natural question arises: given a string S, what is the
language that can be obtained starting from S and applying (any number of) tandem
duplications, i.e. rules of the form AXB → AXXB, where X can be any substring of
S? This question was first asked in 1984 in the context of so-called copying systems [11].
Combined with results from [3], it was shown that this language is regular if S is on a binary
alphabet, but not regular for larger alphabets. These results were rediscovered 15 years
later in [9, 31]. In [25], it was shown that the membership, inclusion and regularity testing
problems on the language defined by S can all be decided in linear time (still on binary
alphabets). In [25, 24, 19], similar problems are also considered on non-binary alphabets,
when the length |X| of duplicated strings is bounded by a constant. More recently, Cho
et al. [8] introduced a tandem duplication system where the depth of a character, i.e. the
number of “generations” it took to generate it, is considered. In [18, 20], the authors study
the expressive power of tandem duplications, a notion based on the subsequences that can
be obtained from various types of copying mechanisms.

More directly related to our work, Alon et al. [1] recently investigated the minimum
number of duplications required to transform a string S into another string T . We call this
the Tandem Duplication (TD) distance. More specifically, the authors show that on binary
strings, the maximum TD distance between a square-free string S and a string T of length n

is Θ(n). They also mention the unsolved algorithmic problem of computing the TD distance
between S and T . In fact, this question was posed earlier in [25] (pp. 306, Open Problem 3)
by Leupold et al. and has remained open ever since. We settle this open problem in this
paper for an unbounded alphabet. As will be seen, our technique is different from that used
in [1], which only works for binary strings.

On the other hand, the TD distance is one of the many ways of comparing two genomes
represented as strings in computational biology – other notable examples include break-
point [17] and transpositions distances, the latter having recently been shown NP-hard in a
celebrated paper of Bulteau et al. [4]. The TD distance has itself received special attention
recently, owing to its role in cancer evolution [27].

Our results. In this paper, we solve the problem posed by Leupold et al. in 2004 and show
that computing the TD distance from a string S to a string T is NP-hard. We show that this
result holds even if S is exemplar, i.e. if each character of S is distinct. Exemplar strings are
commonly studied in computational biology [28], since they represent genomes that existed
prior to duplication events. We note that simply deciding if S can be transformed into T by
a sequence of TDs still has unknown complexity. In our case, we show that the hardness of
minimizing TDs holds on instances in which such a sequence is guaranteed to exist.

As demonstrated by the transpositions distance in [4], obtaining NP-hardness results for
string distances can sometimes be an involving task. Our hardness reduction is also quite
technical, and one of the tools we develop for it is a new problem we call the Cost-Effective
Subgraph. In this problem, we are given a graph G with a cost c, and we must choose a
subset X of V (G). Each edge with both endpoints in X has a cost of |X|, every other edge
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costs c, and the goal is to find a subset X of minimum cost. We show that this problem is
W[1]-hard for parameter p + c, where p is a parameter that asks if one can achieve a cost of
at most c|E(G)| − p (here c|E(G)| is an upper bound on the cost1). The problem enforces
optimizing the tradeoff between covering many edges versus having a large subset of high
cost, which might be applicable to other problems. In our case it captures the main difficulty
in computing TD distances. We then obtain some positive results by showing that if S is
exemplar, then one can decide if S can be transformed into T using at most k duplications
in time 2O(k2) + poly(n), where n is the length of T . The result is obtained through an
exponential size kernel. All of our results concern strings with unbounded alphabet sizes.
Finally, we conclude with several open problems that might be of interest to the theoretical
computer science community.

This paper is organized as follows. In Section 2, we give basic definitions. In Section 3,
we show that computing the TD distance is NP-hard through the Cost-Effective Subgraph
problem. In Section 4, we show that computing the exemplar TD distance is FPT. In Section
5, we conclude the paper with several open problems.

2 Preliminary notions

We borrow the string terminology and notation from [15]. In particular, [n] denotes the
set of integers {1, 2, . . . , n}. Unless stated otherwise, all the strings in the paper are on an
alphabet denoted Σ. If S1 and S2 are two strings, we usually denote their concatenation by
S1S2. For a string S, we write Σ(S) for the subset of characters of Σ that have at least one
occurrence in S. A string S is called exemplar if |S| = |Σ(S)|, i.e. each character present
in S occurs only once. A substring of S is a contiguous sequence of characters within S. A
prefix (resp. suffix) of S is a substring that occurs at the beginning (resp. end) of S, i.e.
if S = S1S2 for some strings S1 and S2, then S1 is a prefix of S and S2 a suffix of S. A
subsequence of S is a string that can be obtained by successively deleting characters from S.

A tandem duplication (TD) is an operation on a string S that copies a substring X of
S and inserts the copy after the occurrence of X in S. In other words, a TD transforms
S = AXB into AXXB. Given another string T , we write S ⇒ T if there exist strings
A, B, X such that S = AXB and T = AXXB. More generally, we write S ⇒k T if there
exist S1, . . . , Sk−1 such that S ⇒ S1 ⇒ . . . ⇒ Sk−1 ⇒ T . We also write S ⇒∗ T if there
exists some k such that S ⇒k T .

I Definition 1. The TD distance distT D(S, T ) between two strings S and T is the minimum
value of k satisfying S ⇒k T . If S ⇒∗ T does not hold, then distT D(S, T ) =∞.

We use the term distance here to refer to the number of TD operations from a string S to
another string T , but one may note that TD is not a metric in the formal sense. In particular,
distT D is not symmetric since duplications can only increase the length of a string.

A square string is a string of the form XX, i.e. a concatenation of two identical substrings.
Given a string S, a contraction is the reverse of a tandem duplication. That is, it takes a
square string XX contained in S and deletes one of the two copies of X. We write T � S if
there exist strings A, B, X such that T = AXXB and S = AXB. We also define T �k S

and T �∗ S for contractions analogously as for TDs. Observe that by the symmetry of

1 In other words, if we were to state the maximization version of the Cost-Effective Subgraph problem, p
would be the value to maximize. The minimization version, however, is more convenient to use for our
needs.
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duplications and contractions, T �k S if and only if S ⇒k T and T �∗ S if and only if
S ⇒∗ T . When there is no possible confusion, we will sometimes write T � S instead
T �∗ S.

We have the following problem.

The Tandem Duplication (TD) problem:
Input: Two strings S and T over the same alphabet Σ and an integer k.
Question: Is distT D(S, T ) ≤ k?

In the Exemplar-TD variant of this problem, S is required to be exemplar. In either
variant, we may call S the source string and T the target string. We will often use the fact
that S and T form a YES instance if and only if T can be transformed into S by a sequence
of at most k contractions. See Fig.1 for a simple example.

Sequence Operations

Sequence T = 〈a, c, g, g, a, c, g〉 contraction on 〈g, g〉
〈a, c, g, a, c, g〉 contraction on 〈a, c, g, a, c, g〉

Sequence S = 〈a, c, g〉

Figure 1 An example for transforming sequence T to S by two contractions. The corresponding
sequence of TDs from S to T would duplicate a, c, g, and then duplicate the first g.

We recall that although we study the minimization problem here, it is unknown whether
the question S ⇒∗ T can be decided in polynomial time. Nonetheless, our NP-hardness
reduction applies to “promise” instances in which S ⇒∗ T always holds.

3 NP-hardness of Exemplar-TD

To facilitate the presentation of our hardness proof, we first make an intermediate reduction
using the Cost-Effective Subgraph problem, which we will then reduce to the promise version
of the Exemplar-TD problem.

The Cost-Effective Subgraph problem
Suppose we are given a graph G = (V, E) and an integer cost c ∈ N>0. For a subset X ⊆ V ,
let E(X) = {uv ∈ E : u, v ∈ X} denote the edges inside of X. The cost of X is defined as

cost(X) = c · (|E(G)| − |E(X)|) + |X| · |E(X)|.

The Cost-Effective Subgraph problem asks for a subset X of minimum cost. In the decision
version of the problem, we are given an integer r and we want to know if there is a subset X

whose cost is at most r. Observe that X = ∅ or X = V are possible solutions.
The idea is that each edge “outside” of X costs c and each edge “inside” costs |X|.

Therefore, we pay for each edge not included in X, but if X gets too large, we pay more for
edges in X. We must therefore find a balance between the size of X and its number of edges.
The connection with the TD problem can be roughly described as follows: in our reduction,
we will have many substrings which need to be deleted through contractions. We will have
to choose an initial set of contractions X and then, each substring will have two ways to be
contracted: one way requires c contractions, and the other requires |X|.
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An obvious solution for a Cost-Effective Subgraph is to take X = ∅, which is of cost
c|E(G)|. Another formulation of the problem could be whether there is a subset X of cost
at most c|E(G)| − p, where p can be seen as a “profit” to maximize. Treating c and p

as parameters, we show the NP-hardness and W[1]-hardness in parameters c + p of the
Cost-Effective Subgraph problem (we do not study the parameter r). Our reduction to the
TD problem does not preserve W[1]-hardness and we only use the NP-hardness in this paper,
but the W[1]-hardness might be of independent interest.

Before proceeding, we briefly argue the relevance of parameter c in the W[1]-hardness.
If c is a fixed constant, then we may assume that any solution X satisfies |X| ≤ c. This is
because if |X| > c, every edge included in X will cost more than c and putting X = ∅ yields
a lower cost. Thus for fixed c, it suffices to brute-force every subset X of size at most c and
we get a nO(c) time algorithm. Our W[1]-hardness shows that it is difficult to remove this
exponential dependence between n and c.

I Theorem 2. The Cost-Effective Subgraph problem is NP-hard and W[1]-hard for parameter
c + p.

Proof. We reduce from CLIQUE. In this classic problem, we are given a graph G and an
integer k, and must decide whether G contains a clique of size at least k, where a clique is a
set of vertices in which every pair shares an edge. This problem is NP-hard [21] and also
W[1]-hard in parameter k [10]. We will assume that k is even (which does not alter either
hardness results).

Let (G, k) be a CLIQUE instance, letting n := |V (G)| and m := |E(G)|. The graph in
our Cost-Effective Subgraph instance is also G. We set the cost c = 3k/2, which is an integer
since k is even, and set

r := c

(
m−

(
k

2

))
+ k

(
k

2

)
= cm +

(
k

2

)
(k − c) = cm− k

2

(
k

2

)
.

We ask whether G admits a subgraph X satisfying cost(X) ≤ r. We show that (G, k) is
a YES instance to CLIQUE if and only if G contains a set X ⊆ V (G) of cost at most r. This
will prove both NP-hardness and W[1]-hardness in c + p (noting that here p = k/2

(
k
2
)
).

The forward direction is easy to see. If G is a YES instance, it has a clique X of size
exactly k. Since |E(X)| =

(
k
2
)
, the cost of X is precisely r.

Let us consider the converse direction. Assume that (G, k) is a NO instance of CLIQUE.
Let X ⊆ V (G) be any subset of vertices. We will show that cost(X) > r. There are 3 cases
to consider depending on |X|.

Case 1 : |X| = k. Since G is a NO instance, X is not a clique and thus |E(X)| =
(

k
2
)
− h,

where h > 0. We have that cost(X) = c(m−
(

k
2
)
+h)+k(

(
k
2
)
−h) = cm+

(
k
2
)
(k−c)+h(c−k) =

r + h(c− k). Since c > k and h > 0, the cost of X is strictly greater than r.

Case 2 : |X| = k + l for some l > 0. Denote |E(X)| =
(

k+l
2
)
− h, where 0 ≤ h ≤

(
k+l

2
)
The

cost of X is

cost(X) = c

(
m−

(
k + l

2

)
+ h

)
+ (k + l)

((
k + l

2

)
− h

)
= cm +

(
k + l

2

)
(k + l − c) + h(c− k − l)

= cm +
(

k + l

2

)(
l − k

2

)
+ h

(
k

2 − l

)
.
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Considering the difference

cost(X)− r =
(

k + l

2

)(
l − k

2

)
+ h

(
k

2 − l

)
−
(
−k

2

)(
k

2

)
= 3kl2

4 − kl

4 + l3

2 −
l2

2 + h

(
k

2 − l

)
,

if k/2− l ≥ 0, then the difference is clearly above 0 regardless of h, and then cost(X) > r as
desired. Thus we may assume that k/2− l < 0. In this case, we may further assume that
h =

(
k+l

2
)
, as this minimizes the difference. But in this case,

cost(X) = cm +
(

k + l

2

)(
l − k

2

)
+
(

k + l

2

)(
k

2 − l

)
= cm > r,

which concludes this case.

Case 3 : |X| = k − l, with l > 0. If k = l, then X = ∅ and cost(X) = cm > r. So we assume
k > l. Put |E(X)| =

(
k−l

2
)
− h, where h ≥ 0. We have

cost(X) = c

(
m−

(
k − l

2

)
+ h

)
+ (k − l)

((
k − l

2

)
− h

)
= cm +

(
k − l

2

)
(k − l − c) + h(c− k + l)

= cm +
(

k − l

2

)(
−k

2 − l

)
+ h

(
k

2 + l

)
.

The difference with this cost and r is

cost(X)− r =
(

k − l

2

)(
−k

2 − l

)
+ h

(
k

2 + l

)
−
(
−k

2

)(
k

2

)
= 3kl2

4 + kl

4 −
l3

2 −
l2

2 + h

(
k

2 + l

)
>

1
4(3l3 + l2)− 1

2(l3 + l2) ≥ 0,

the latter since k > l ≥ 1. Again, it follows that cost(X) > r. J

Reduction to Exemplar-TD (promise version)
Since the reduction is somewhat technical, we provide an overview of the techniques that
we will use. Let (G, c, r) be a Cost-Effective Subgraph instance where c is the cost and r the
optimization value, and with vertices V (G) = {v1, . . . , vn}. We will construct strings S and
T and argue on the number of contractions to go from T to S. We would like our source
string to be S = x1x2 . . . xn, where each xi is a distinct character that corresponds to vertex
vi. Let S′ be obtained by doubling every xi, i.e. S′ = x1x1x2x2 . . . xnxn. Our goal is to put
T = S′E1E2 . . . Em, where each Ei is a substring gadget corresponding to edge ei ∈ E(G)
that we must remove to go from T to S. Assuming that there is a sequence of contractions that
transforms T into S, we make it so that we first want to contract some, but not necessarily
all, of the doubled xi’s of S′, resulting in another string S′′. Let t be the number of xi’s
contracted from S′ to S′′. For instance, we could have S′′ = x1x1x2x3x3x4x5x5, where only
x2 and x4 were contracted, and thus t = 2. The idea is that these contracted xi’s correspond
to the vertices of a cost-effective subgraph. After T is transformed to S′′E1 . . . Em, we then
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force each Ei to use S′′ to contract it. For m = 3, a contraction sequence that we would like
to enforce would take the form

S′E1E2E3 � S′′E1E2E3 � S′′E2E3 � S′′E3 � S′′� S,

where we underline the substring affected by contractions at each step. We make it so that
when contracting S′′EiEi+1 . . . Em into S′′Ei+1 . . . Em, we have two options. Suppose that
vj , vk are the endpoints of edge ei. If, in S′′, we had chosen to contract xj and xk, we can
contract Ei using a sequence of t moves. Otherwise, we must contract Ei using another more
costly sequence of c moves. The total cost to eliminate the Ei gadgets will be c(m− e) + te,
where e is the number of edges that can be contracted using the first choice, i.e. for which
both endpoints were chosen in S′′.

Unfortunately, constructing S′ and the Ei’s to implement the above idea is not straight-
forward. The main difficulty lies in forcing an optimal solution to behave as we describe,
i.e. enforcing going from S′ to S′′ first, enforcing the Ei’s to use S′′, and enforcing the two
options to contract Ei with the desired costs. In particular, we must replace the xi’s by
carefully constructed substrings Xi. We must also repeat the sequence of Ei’s a certain
number p times. We now proceed with the technical details.

I Theorem 3. The Exemplar-TD problem is NP-complete, even if for the given string S and
T , S ⇒∗ T is guaranteed to hold.

Proof. To see that the problem is in NP, note that distT D(S, T ) ≤ |T | since each contraction
from T to S removes at least character. Thus a sequence of contractions can serve as a
certificate, has polynomial size and is easy to verify.

For hardness, we reduce from the Cost-Effective Subgraph problem, which has been
shown NP-hard in Theorem 2. Let (G, c, r) be an instance of Cost-Effective Subgraph, letting
n := |V (G)| and m := |E(G)|. Here c is the “outsider edge” cost and we ask whether there is a
subset X ⊆ V (G) such that c(m−|E(X)|)+ |X||E(X)| ≤ r. We denote V (G) = {v1, . . . , vn}
and E(G) = {e1, . . . , em}. The ordering of vertices and edges is arbitrary but remains fixed
for the remainder of the proof. For convenience, we allow the edge indices to loop through 1
to m, and so we put ei = ei+lm for any integer l ≥ 0. Thus we may sometimes refer to an
edge eh with an index h > m, meaning that eh is actually the edge e((h−1) mod m)+1.

The construction. Let us first make an observation. If we take an exemplar string X =
x1 . . . xl (i.e. a string in which no character occurs twice), we can double its characters
and obtain a string X ′ = x1x1 . . . xlxl. The length of X ′ is only twice that of X and
distT D(X, X ′) = l, i.e. going from X ′ to X requires l contractions. We will sometimes
describe pairs of strings X and X ′ at distance l without explicitly describing X and X ′, but
the reader can assume that X starts as an exemplar string of length l and we obtain X ′ by
doubling each character, as above.

Now we show how to construct S and T . First let d = m + 1 and p = m(n + m)10.
The exact values of d and p are not crucial and will only refer to them when needed: for
the most part, it is enough to think of d and p as simply “large enough”. Note however
that p is a multiple of m. For later reference, the value of k we will use in the reduction is
k = p/m · d(r + nm) + 4cdn.

Instead of doubling xi’s as in the intuition paragraph above, we will duplicate some
characters d times. Moreover, we can’t create a T string that behaves exactly as described
above, but we will show that we can append p copies of carefully crafted substring to obtain
the desired result. We need d and p to be high enough so that “enough” copies behave as we
desire.
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For each i ∈ [n], define an exemplar string Xi of length d. Moreover, create enough
characters so that no two Xi strings contain a character in common. Let Xd

i be a string
satisfying distT D(Xi, Xd

i ) = d.
Then for each j ∈ {0, 1, . . . , 2p}, define an exemplar string Bj . Ensure that no Bj contains

a character from an Xi string, and no two Bj ’s contain a common character. The Bj strings
can consist of a single character, with the exception of B0 and B1 which are special. We
assume that for B0 and B1, we have strings B∗0 and B∗1 such that

distT D(B0, B∗0) = dc + 2d− 2,

distT D(B1, B∗1) = dn + 2d− 1.

Again, this can be done using the doubling trick on exemplar strings. The Bj ’s are the
building blocks of larger strings. For each q ∈ [2p], define

Bq = BqBq−1 . . . B2B1B0, B0
q = BqBq−1 . . . B2B1B∗0 ,

B1
q = BqBq−1 . . . B2B∗1B0, B01

q = BqBq−1 . . . B2B∗1B∗0 .

These strings are used as “blockers” and prevent certain contractions from happening. Note
that B0

q and B1
q can be turned into Bq using dc+2d−2 contractions and dn+2d−1 contractions,

respectively. Moreover, B01
q can be turned into B0

q using dn + 2d− 1 contractions and into
B1

q using dc + 2d− 2 contractions.
Also define the strings

X = X1X2 . . . Xn, X d = Xd
1 Xd

2 . . . Xd
n,

and for edge eq = vivj with q ∈ [p] whose endpoints are vi and vj , define

Xeq
= Xd

1 . . . Xd
i−1XiX

d
i+1 . . . Xd

j−1XjXd
j+1 . . . Xd

n.

Thus in Xeq
, all Xk substrings are turned into Xd

k , except Xi and Xj .
Finally, define a new additional character ∆, which will be used to separate some of the

components of our string. We can now define S and T . We have

S = B2pX∆ = B2pB2p−1 . . . B2B1B0X1X2 . . . Xn∆.

It follows from the definitions of B2p,X and ∆ that S is exemplar. Now for i ∈ [p], define

Ei := B01
i Xei

∆B1
2pX∆,

which we will call the edge gadget. Define T as

T = B0
2pX d∆B1

2pX∆E1E2 . . . Ep

= B0
2pX d∆B1

2pX∆
[
B01

1 Xe1∆B1
2pX∆

] [
B01

2 Xe2∆B1
2pX∆

]
. . .
[
B01

p Xep
∆B1

2pX∆
]

.

We add brackets for clarity only – they indicate the distinct Ei substrings, but the brackets
are not actual characters of T . The idea is that T starts with S′ = B0

2pX d∆, a modified S in
which B2p becomes B0

2p and the Xi substrings are turned into Xd
i . This X d substring serves

as a choice of vertices in our cost-effective subgraph. Each edge ei has a “gadget substring”
Ei = B01

i Xei
∆B1

2pX∆. Since p is a multiple of m, the sequence of edge gadgets E1E2 . . . Em

is repeated p/m times. Our goal to go from T to S is to get rid of all these edge gadgets
by contractions. Note that because a Ei gadget starts with B01

i and the gadget Ei+1 starts
with B01

i+1, the substring Ei+1 has a character that the substring Ei does not have.
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The hardness proof. We now show that G admits a subset of vertices W of cost at most r

if and only if T can be contracted to S using at most p/m · d(r + nm) + 4cdn contraction
operations. We include the forward direction, which is the most instructive, in the main text.
The other direction can be found in the full version. Although we shall not dig into details
here, it can be deduced from the (⇒) direction that T �∗ S holds.

(⇒) Suppose that G admits a subset of vertices W of cost at most r. Thus c(m −
|E(W )|) + |W | · |E(W )| ≤ r. To go from T to S, first consider an edge ei that does not have
both endpoints in W . We show how to get rid of the gadget substring Ei for ei using dn + dc

contractions. Note that T contains the substring B1
2pX∆Ei = B1

2pX∆[B01
i Xei

∆B1
2pX∆],

where brackets surround the Ei occurrence that we want to remove (note that here for i > 1,
the prefix B1

2pX∆ is the suffix of the previous Ei−1 gadget, and for i = 1, it is the suffix
of the starting block of T ). We can first contract B01

i to B1
i using dc + 2d− 2 contractions,

then contract Xei
to X using d(n− 2) contractions. The result is the B1

2pX∆[B1
iX∆B1

2pX∆]
substring, which becomes B1

2pX∆ using two contractions (see below). This sums to dc + 2d−
2 + d(n − 2) + 2 = dc + dn operations. More visually, the sequence of contractions works
as follows (as before, brackets indicate the Ei substring and what remains of it, and the
underlines are there to emphasize the substrings that participate in the contractions(s)):

B1
2pX∆

[
B01

i Xei
∆B1

2pX∆
]

(dc + 2d− 2 contractions)

�B1
2pX∆

[
B1

iXei
∆B1

2pX∆
]

(d(n− 2) = dn− 2d contractions)

�B1
2pX∆

[
B1

iX∆B1
2pX∆

]
=B2pB2p−1 . . . Bi+1B1

iX∆
[
B1

iX∆B1
2pX∆

]
(1 contraction)

�B2pB2p−1 . . . Bi+1B1
iX∆

[
B1

2pX∆
]

=B1
2pX∆

[
B1

2pX∆
]

(1 contraction)

�B1
2pX∆.

This sequence of dn+dc contractions effectively removes the Ei substring gadget. Observe
that after applying this sequence, it is still true that every remaining Ej gadget substring is
preceded by B1

2pX∆. We may therefore repeatedly apply this contraction sequence to every
ei not contained in W (including those ei gadgets for which i > m). This procedure is thus
applied to p/m · (m− |E(W )|) gadgets. We assume that we have done so, and that every ei

for which the Ei gadget substring remains is in W . Call the resulting string T ′.
Now, let XW be the substring obtained from X d by contracting, for each vi ∈ W , the

string Xd
i to Xi. We assume that we have contracted the X d substring of T ′ to XW , which

uses d|W | contractions (note that there is only one occurrence of X d in T ′, namely right
before the first ∆). Call T ′′ the resulting string. At this point, for every Ei substring gadget
that remains, where Ei corresponds to edge ei = vjvk, XW contains the substrings Xj and
Xk (instead of Xd

j and Xd
k ).

Let i be the smallest integer for which the ei substring gadget Ei is still in T ′. This is
the leftmost edge gadget still in T ′′, meaning that T ′′ has the prefix

B0
2pXW ∆B1

2pX∆
[
B01

i Xei∆B1
2pX∆

]
,

where brackets indicate the Ei substring. To remove Ei, first contract B01
i to B0

i , and contract
Xei to XW (this is possible since ei ⊆W ). The result is B0

2pXW ∆B1
2pX∆

[
B0

iXW ∆B1
2pX∆

]
.

One more contraction gets rid of the second half. This requires dn + 2d− 1 + d(|W | − 2) + 1 =
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dn + d|W | contractions. This procedure is applied to p/m · |E(W )| gadgets. To recap, the
contraction sequence for Ei does as follows:

B0
2pXW ∆B1

2pX∆
[
B01

i Xei∆B1
2pX∆

]
(dn + 2d− 1 contractions)

�B0
2pXW ∆B1

2pX∆
[
B0

iXei∆B1
2pX∆

]
(d(|W | − 2) contractions)

�B0
2pXW ∆B1

2pX∆
[
B0

iXW ∆B1
2pX∆

]
(1 contraction)

�B0
2pXW ∆B1

2pX∆.

After we repeat this for every Ei, all that remains is the string B0
2pXW ∆B1

2pX∆. We contract
XW to X using d(n−|W |) contractions (in total, going from X d to X required dn contractions).
Then contract B0

2p and B1
2p to B2p using dc+2d−2+dn+2d−1 = d(c+n+4)−3 contractions.

One more contraction of the second half of the string yields S. The summary of the number
of contractions made is

p

m
· (m− |E(W )|) · (dc + dn) + p

m
· |E(W )| · (dn + d|W |) + dn + d(c + n + 4)− 3

≤ p

m
· (m− |E(W )|) · (dc + dn) + p

m
· |E(W )| · (dn + d|W |) + 4cdn

= p

m
· d · (c + n)(m− |E(W )|) + p

m
· d · (n + |W |)|E(W )|+ 4cdn

= p

m
· d · [c(m− |E(W )|) + |W ||E(W )|+ nm] + 4cdn

≤ p

m
· d(r + nm) + 4cdn,

as desired.
(⇐): this direction of the proof is somewhat involved and can be found in the full version.

The idea is to show that a minimum contraction sequence must have the form similar to
that in the (⇒) direction. The challenging part is to show that each Ei substring must
get removed separately in this sequence, and that “most” of them incur a cost of either
dn + dt− 2 or dn + dc− 2 for some t (this “most” is the reason that we need a large p). J

4 An FPT algorithm for the exemplar problem

In this section, we will show that Exemplar-k-TD can be solved in time 2O(k2) + poly(n) by
obtaining a kernel of size O(k2k), where n is the length of T .

We first note that there is a very simple, brute-force algorithm to solve the k-TD problem,
which is the variant of the TD problem with parameter k, the number of TDs to turn S into
T (including Exemplar-k-TD as a particular case). This only establishes membership in the
XP class, but it will be useful to evaluate the complexity of our kernelization later on.

I Proposition 4. The k-TD problem can be solved in time O(n2k), where n is the size of the
target string.

Proof. Let (S, T ) be a given instance of k-TD. Consider the branching algorithm that,
starting from T , tries to contract every substring of the form XX in T and recurses on each
resulting string, decrementing k by 1 each time (the branching stops when S is obtained
or when k reaches 0 without attaining S). We obtain a search tree of depth at most k and
degree at most n2, and thus it has O(n2k) nodes. Visiting the internal nodes of this search
tree only requires enumerating O(n2) substrings, which form the set of children of the node.
Hence, there is no added computation cost to consider when visiting a node. J
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From now on, we assume that we have an Exemplar-k-TD instance (S, T ), and so that S

is exemplar.
Let x and y be two consecutive characters in S (i.e. xy is a substring of S). We say that

xy is (S, T )-stable if in T , every occurrence of x in T is followed by y and every occurrence
of y is preceded by x. That is, the direct successor of every x character is y, and the direct
predecessor of every y character is y. An (S, T )-stable substring X = x1 . . . xl, where l ≥ 2,
is a substring of S such that xixi+1 is (S, T )-stable for every i ∈ [l − 1]. We also define a
string with a single character xi to be a (S, T )-stable substring (provided xi appears in S

and T ). If any substring of S that strictly contains X is not an (S, T )-stable substring, then
X is called a maximal (S, T )-stable substring. Note that these definitions are independent of
S and T , and so the same definitions apply for (X, Y )-stability, for any strings X and Y .

We will show that every maximal (S, T )-stable substring can be replaced by a single
character, and that if T can be obtained from S using at most k tandem duplications, then
this leaves strings of bounded size.

We first show that, roughly speaking, stability is maintained by all tandem duplications
when going from S to T .

I Lemma 5. Suppose that distT D(S, T ) = k and let X be an (S, T )-stable substring. Let
S = S0, S1, . . . , Sk = T be any minimum sequence of strings transforming S to T by tandem
duplications. Then X is (S, Si)-stable for every i ∈ [k].

Proof. Assume the lemma is false, and let Si be the first of S1, . . . , Sk that does not satisfy
the statement. Then there are two characters x, y belonging to X such that xy is (S, T )-stable,
but xy is not (S, Si)-stable.

We claim that, under our assumption, xy is not (S, Sj)-stable for any j ∈ {i, . . . , k}. As
this includes Sk = T , this will contradict that xy is (S, T )-stable. We do this by induction
– as a base case, xy is not (S, Si)-stable so this is true for j = i. Assume that xy is not
(S, Sj−1)-stable, where i < j ≤ k. Let D be the duplication transforming Sj−1 to Sj (here
D = (a, b) contains the start and end positions of the substring of Sj−1 to duplicate).

Suppose first that xy is not (S, Sj−1)-stable because Sj−1 has an occurrence of x that is
not followed by y. Thus Sj−1 has an occurrence of x, say at position px, followed by z 6= y.
If we assume that xy is (S, Sj)-stable, then a y character must have appeared after this x

from Sj−1 to Sj . Changing the character next to this x is only possible if the last character
duplicated by D is the x at position px and the first character of D is a y. In other words,
denoting Sj−1 = A1yA2xzA3 for appropriate A1, A2, A3 substrings, the D duplication must
do the following

A1yA2xzA3 ⇒ A1yA2xyA2xzA3,

as otherwise, the character next to the above occurrence of x will remain z. But then, there
is still an occurrence of x followed by z, and it follows that xy cannot be (S, Sj)-stable.

So suppose instead that xy is not (S, Sj−1)-stable because Sj−1 has an occurrence of
y preceded by z 6= x. Assume the character preceding this y has changed in Sj and has
become x. But one can verify that this is impossible. For completeness, we present each
possible case: either D includes both z and y, includes one of them or none. These cases are
represented below, and each one of them leads to an occurrence of y still preceded by z (the
left-hand side represents Sj−1 and the right-hand side represents Sj , and the Ai’s are the
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relevant substrings in each case):

Include both: A1A2zyA3A4 ⇒ A1A2zyA3A2zyA3A4,

Include z only: A1A2zyA3 ⇒ A1A2zA2zyA3,

Include y only: A1zyA2A3 ⇒ A1zyA2yA2A3,

Include none: A1A2zyA3 ⇒ A1A2A2zyA3 or A1zyA2A3 ⇒ A1zyA2A2A3.

We have therefore shown that xy cannot be (S, Sj)-stable, and therefore not (S, T )-stable,
which concludes the proof. J

Let S′ be a substring obtained from S by tandem duplications, and let X := S′[a..b] be
the substring of S′ at positions from a to b. Suppose that we apply a duplication D = (c, d),
which copies the substring S′[c..d]. Then we say that D cuts X if one of the following holds:

a < c ≤ b and b < d, in which case we say that D cuts X to the right;
c < a and a ≤ d < b, in which case we say that D cuts X to the left;
(a, b) 6= (c, d) and a ≤ c < d ≤ b, in which case D cuts X inside.

In other words, if we write X = X1X2 and S′ = UV X1X2WY , cutting to the right
takes the form UV X1X2WY ⇒ UBX1X2WX2WY . Cutting to the left takes the form
UV X1X2WY ⇒ UV X1V X1X2WY . Rewriting X = X1X2X3 and S′ = UX1X2X3V ,
cutting inside takes the form UX1X2X3V ⇒ UX1X2X2X3V . Note that if D does not cut
any occurrence of a maximal (S, S′)-stable substring X and S′′ is obtained by applying D

on S′, then X is (S, S′′)-stable.
The next lemma shows that we can assume that maximal stable substrings never get cut,

and thus always get duplicated together. The idea is that any duplication that cuts an Xj

can be replaced by an equivalent duplication that doesn’t.

I Lemma 6. Suppose that distT D(S, T ) = k, and let X1, . . . , Xl be the set of maximal
(S, T )-stable substrings. Then there exists a sequence of tandem duplications D1, . . . , Dk

transforming S into T such that no occurrence of an Xj gets cut by a Di.
In other words, for all i ∈ [k] and all j ∈ [l], the tandem duplication Di does not cut any

occurrence of Xj in the string obtained by applying D1, . . . , Di−1 to S.

The above implies that we may replace each maximal (S, T )-stable substring X of S and
T by a single character, since we may assume that characters of X are always duplicated
together (assuming, of course, that S is exemplar). It only remains to show that the resulting
strings are small enough. The proof of the following lemma has a very simple intuition.
First, S has exactly 1 maximal (S, S)-stable substring. Each time we apply a duplication, we
“break” at most 2 stable substrings, which creates 2 new ones. So if we apply k duplications,
there are at most 2k + 1 such substrings in the end.

I Lemma 7. If distT D(S, T ) ≤ k, then there are at most 2k + 1 maximal (S, T )-stable
substrings.

Proof. Let S = S0, S1, . . . , Sk = T be any minimum sequence of strings transforming S to T

by tandem duplications. We show by induction that, for each i ∈ {0, 1, . . . , k}, the number
of maximal (S, Si)-stable substrings is at most 2i + 1. For i = 0, there is only one maximal
(S, S)-stable substring, namely S itself. Now assume that there are at most 2(i−1)+1 = 2i−1
maximal (S, Si−1)-stable substrings. Let X = {X1, . . . , Xl} be the set of these substrings,
l ≤ 2i − 1. We then know that Si−1 can be written as a concatenation of Xj ’s from X
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(with possible repetitions). The duplication D transforming Si−1 to Si copies some of these
Xj ’s entirely, except at most two Xj ’s at the ends which it may copy partially (i.e. D cuts
at most two substrings from X). In other words, the substring duplicated by D can be
written as X2

j Xa1Xa2 . . . Xar X1
h, where Xj = X1

j X2
j and Xh = X1

hX2
h for some j, h ∈ [l] (and

Xa1 , . . . , Xar
∈ X). Going further, Si−1 and Si can be written, using appropriate substrings

A, B, C that are concatenation of elements of X, as

Si−1 = AX1
j X2

j BX1
hX2

hC ⇒ AX1
j X2

j BX1
hX2

j BX1
hX2

hC = Si.

Now, any Xr ∈ X \ {Xj , Xh} is (S, Si)-stable. Moreover, X1
j , X2

j , X1
h and X2

h are also
(S, Si)-stable. This shows that the number of maximal (S, Si)-stable substrings is at most
2i− 1− 2 + 4 = 2i + 1, as desired. J

We can now transform an instance (S, T ) of Exemplar-k-TD to a kernel, an equivalent
instance (S′, T ′) of size depending only on k.

I Theorem 8. An instance (S, T ) of Exemplar-k-TD admits a kernel (S′, T ′) in which
|S′| ≤ 2k + 1 and |T ′| ≤ (2k + 1)2k.

Proof. Let S′, T ′ be obtained from an instance (S, T ) by replacing each maximal (S, T )-
stable substring by a distinct character. We first prove that (S′, T ′) is indeed a kernel by
establishing its equivalence with (S, T ). Clearly if (S′, T ′) can be solved using at most k

duplications, then the same applies to (S, T ). By Lemma 6, the converse also holds: if (S, T )
can be solved with at most k duplications, we may assume that these duplications never cut
a maximal (S, T )-stable substring, and so these duplications can be applied on (S′, T ′).

Then by Lemma 7, we know that S′ has at most 2k + 1 characters. If distT D(S′, T ′) ≤ k,
then each duplication can at most double the size of the previous string. Therefore, T ′ must
have size at most (2k + 1)2k. J

The kernelization can be performed in polynomial time, as one only needs to identify
maximal (S, T )-stable substrings and contract them (we do not bother with the exact
complexity for now). Running the brute-force algorithm from Proposition 4 yields the
following.

I Corollary 9. The exemplar k-tandem duplication problem can be solved in time O(((2k +
1)2k)2k + poly(n)) = 2O(k2) + poly(n), where n is the size of the input.

5 Open problems

Although this work answers some open questions, many of them still deserve investigation.
We conclude with some of these questions along with future research perspectives.

Is the k-TD problem FPT in parameter k? As we observe in our Exemplar-k-TD kerneliza-
tion, if T and S are large compared to k, they must share many long common substrings
which could be exploited for an FPT algorithm. It is also an interesting question whether
Exemplar-k-TD admits a polynomial size kernel.
If |Σ| is fixed, is k-TD in P? Even the |Σ| = 2 case is open. One possibility it to check
whether we can reduce the alphabet of any instance to some constant by encoding each
character appropriately.

STACS 2020



15:14 The Tandem Duplication Distance Is NP-Hard

Can one decide in polynomial time whether S ⇒∗ T? The only known result on this
topic is that it can be done if |Σ| = 2, as one can construct a finite automaton accepting
all strings generated by S (though this automaton does not give the minimum number of
duplications required).
Does the k-TD problem admit a constant factor approximation algorithm? The answer
might depend on the hardness of deciding whether S ⇒∗ T , but one might still consider
the promise version of the problem.
If the length of each duplicated string is bounded by d, is k-TD in P (with d treated as a
constant)? We believe that it is FPT in k + d, but is it FPT in d?
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