
1

Minimum Paired-End Interval Cover and Its
Application

Liang Ding Bin Fu Binhai Zhu
Department of Computer Science Department of Computer Science Corresponding author

University of Georgia University of Texas-Pan American Department of Computer Science
Athens, GA 30602 Edinburg, TX 78541 Montana State University

USA USA Bozeman, MT 59717, USA
Email: adamdingliang@gmail.com Email: binfu@cs.panam.edu Email: bhz@cs.montana.edu

Abstract—Paired-end sequencing is a very useful method for
the whole genome sequencing problem which determines the
complete DNA sequence of an organism’s genome with the help of
laboratory processes. A paired-end (PE) interval for a sequence
S is composed of at most two disjoint intervals. Due to the
cheap cost to obtain PE-intervals (also known asshort reads), in
practical datasets a letter in some genome to be sequenced can
be covered by at leastM PE-intervals. In this paper, we consider
the m-fold paired-end interval cover problem (m ≤ M), which
can be defined as given a familyF of paired-end intervals on
a sequenceS such that each letter in S is covered at leastM
times, find the minimum number of paired-end intervals of F

to cover each letter in S at least m times. We prove that the
(1-fold) paired-end interval cover problem is NP-complete. We
present a polynomial-time 12-approximation algorithm for the
case whenm = 1, which is based on greedy search. This result
also generalizes the set-cover problem (an element in the base set
becomes an interval which could contain a number of elements)
and a simple fixed parameter tractable algorithm is presented
for the related k-bounded c-interval cover problem. We then
generalize the algorithm and analysis to the generalm-fold PE-
interval cover problem, to have a factor of 2c(4m − 1). Our
implementation results show that the practical approximation
ratios are mostly bounded by 2.2 for examples constructed from
real datasets.

Keywords: computational genomics, set cover, short reads,
approximation algorithms, FPT algorithms, NP-completeness.

I. I NTRODUCTION

In the past two decades, we have seen a huge progress on
genome sequencing. The problem we investigate in this paper,
PE-interval cover, is derived from the paired-end sequencing
method which was developed based on shotgun sequencing.
Shotgun sequencing is a method used for sequencing long
DNA strands. The paired-end sequencing method comes a bit
after shotgun sequencing, it is also known as double-barrel
shotgun sequencing and was first described by Edwards and
Caskey in 1991 [7]. In paired-end sequencing, sequences are
determined from both ends of random subclones derived from
a DNA target. The benefit of this method toward shotgun
sequencing is the information obtained by sequencing both
ends of a fragment of DNA, commonly known asshort reads,
could be more useful. After the work of Edwards and Caskey,
many variants of the strategy have been developed by several
groups [8], [9], [10], [11], [12], [13].

Paired-end sequencing has been used successfully to se-
quence small genomic targets, such as microbial genomes and
large-insert subclones of large genomes [14], [15], [16]. In
1999, heuristic algorithms were provided by Anson and Myers
to handle whole genome shotgun sequencing [17]. In 2002,
Husonet al. proved that the problem of sequencing a genome
with short reads is NP-complete and presented a heuristic
greedy method [24]. This method was improved recently by
Gaoet al. [25].

Recently, we started to investigate this problem in a more
formal way. The first step is to identify the most useful (i.e.,
non-redundant) information from the input, which typically
contains errors and redundancy. We formulate this as thePE-
interval coverproblem. It turns out that the results for the
PE-interval cover problem can be generalized to thec-interval
cover problem which extends the classical set-cover problem
when c is arbitrary. We then take the practical condition into
account by considering them-fold PE-interval cover problem.

The set-cover problem is a classical and fundamental prob-
lem in computer science with many applications. Given a
finite setX of size n and a familyF of subsets ofX such
that every element ofX belongs to at least one subset inF,
the problem is to find a minimum-size subsetC ⊆ F whose
members coverX . It is a well-known NP-complete problem
showed in Karp’s 21 NP-complete problems in 1972 and its
solutions give rise to the development of the entire field of
approximation algorithms [1]. The well known approximation
algorithm for the set-cover problem which has a ratio of
lnn + O(1) was given by Johnson [2] in 1974. Chvatal
[3] improved the upper bound on the approximation ratio to
lnn−ln lnn+O(1) in 1979. These ratios are tight because of a
famous inapproximability result of Feige [4] which states that
there is no(1 − ε) lnn-approximation algorithm for the set-
cover problem unless there are subexponentialO(npolylog(n))
time deterministic algorithms for all problems in NP. A lower
bound ofc lnn was established recently, wherec is a constant,
under the weaker assumption that P6=NP [6], [1].

The general set-cover problem has two interesting variants:
k-set cover andk-bounded set cover. We derive some results
from these variants of set cover. Before presenting these
results, we first give the formal definitions of thec-interval
cover problem and the paired-end interval cover problem. Let

2

|A| be the size of setA, we have:
Definition 1: Assume thatS is a sequence that has no

repetition with its elements, i.e.S is a permutation. Letc be
an integer parameter.

• A c-interval I = {J1, J2, . . . , Jt} of S is a series of
disjoint non-empty intervalsJi(1 ≤ i ≤ t) of S which
satisfies that|I| = t ≤ c.

• Thec-interval cover problemis defined as given a family
F of c-intervals, find the least number ofc-intervals ofF
to coverS.

• The m-fold c-interval cover problemis defined as given
a family F of c-intervals onS such that each element in
S is covered at leastM times, find the minimum number
of c-intervals ofF to coverS such that each element of
S is covered at leastm (m ≤M) times.

The paired-end interval cover problem is a special case of the
c-interval cover problem forc = 2 andm = 1. For simplicity,
we call the paired-end interval cover problem the PE-interval
cover problem. Them-fold paired-end interval cover problem
is more practical in PE-based genome sequencing. Due to the
low cost of obtaining paired-end reads, a lot of short reads are
obtained such that each element is covered at least a certain
number (e.g., 200) of times. In this case, it makes sense to
have a minimum-size covering which covers each element at
leastm ≤ 200 times.

We comment that our results hold even whenS is not a
permutation. Also, in some real datasets there is an additional
information on the distance between two short reads. But this
information does not help on the PE-interval cover problem;
in fact, it can be easily seen that our NP-completeness proof
holds even if this distance information is given. However, this
distance information might be useful when we try to sequence
a genome (or re-order a set of contigs) later on.

When each interval contains exactly one element, the
paired-end interval problem reduces to 2-set cover. Ink-set
cover, every subset ofX is of size at mostk. Whenk = 2, the
2-set cover can be reduced to the maximum matching problem
using the following two steps:

1) Find a maximum matching in a graph constructed ac-
cording to the given2-sets: create a vertex for each
element, and there is an edge between two vertices if
there is a2-set consisting of this pair of elements.

2) Return all the2-sets corresponding to the edges of the
maximum matching and the1-sets of the uncovered
elements (by the collection of2-sets which we found).

It is known that the maximum matching problem is solvable in
polynomial time. So for PE-interval cover, if each intervalis
degenerated to a single point, it is equivalent to the2-set cover
and can be solved in polynomial time. However, we prove that
the general PE-interval cover problem is NP-complete. Using
the fact that thek-set cover problem is APX-hard fork ≥ 3
[19], we prove, in Section V, that thec-interval cover problem
is APX-hard if c ≥ 3. (It is well known that the 1-interval
cover problem is polynomially solvable as it can be formulated
as a shortest path problem.) Moreover, a polynomial time6c-
approximation algorithm is provided to solve thec-interval
cover problem forc ≥ 2.

We define that one element ofX occurs once if it appears
in exactly one of the subsets ofF. Thenk-bounded set cover
satisfies that the number of occurrences of any element ofX in
F is bounded by a constantk ≥ 2 and there exists an element
which appears inF exactlyk times. The best approximation
algorithm has a factor of k

k−(k−1) k
√

1−ε
+ o(1) [5]. In this

paper, we show a fixed parameter tractable algorithm for the
k-bounded set cover problem, and hence it can be used directly
to solvek-boundedc-interval cover.

The rest of the paper is organized as follows: Section II
gives fundamentals on approximation algorithms and FPT
algorithms. Section III gives an approximation algorithm for
the c-interval cover problem using a greedy method, and then
we generalize it to them-fold c-interval cover problem. In
Section IV, we show a fixed parameter tractable algorithm
for the k-bounded set cover problem and thek-boundedc-
interval cover problem. The complexities of the PE-interval
cover problem and thec-interval cover problem are presented
in Section V. Then, some experimental results are presented
in Section VI, form = 1 and m = 30 respectively. Section
VII concludes the paper.

II. PRELIMINARIES

For completeness, we present some basic definitions re-
garding approximation algorithms and FPT (fixed-parameter
tractable) algorithms.

For a minimization problemΠ, a polynomial-time algorithm
B is a factorα approximation if for any instanceΠ(I), the
solution returned byB, B(I), satisfies|B(I)| ≤ α · O∗(I),
whereO∗(I) is the corresponding optimal solution value. (For
maximization problems, this can be defined similarly.)

Definition 2: [20] The class APXis the set of optimization
problems that allow polynomial time approximation algo-
rithms with approximation ratios bounded by a constant.

• If there is a polynomial time algorithm to solve a problem
within any constant factor greater than one, then the
problem is said to have apolynomial time approximation
scheme (PTAS). Unless P=NP, there are problems that are
in APX but not in PTAS; that is, problems that can be
approximated within some constant factor, but not every
constant factor.

• A problem is said to beAPX-hard if there is a linear
reduction from every problem in APX to that problem,
and to beAPX-completeif the problem is APX-hard and
also in APX.

While approximation algorithms provide a way to handle
NP-hard problems, in many situations we can handle them
with exact algorithms. For a decision problemD with param-
eter k, an FPT (fixed-parameter tractable) algorithm is one
which solvesD in timeO(f(k)nc) wheref(−) is any function
only on k and c is independent ofk. The underlying idea
of the FPT theory is that ifk is fixed (typically as a small
constant, like 30) then the corresponding FPT algorithm can
solveD practically in polynomial time. For more information,
the readers are referred to some standard textbook [23].

3

III. GREEDY APPROXIMATION ALGORITHMS FOR THE

c-INTERVAL COVER PROBLEMS

In this section, we derive a6c-approximation algorithm for
the c-interval cover problem using a greedy method. We then
generalize the algorithm and analysis to them-fold c-interval
cover problem, to have a factor of2c(4m− 1). Theoretically,
these approximation ratios are big, but they have much better
performance in practice (at least from our simulation results).
We will show our experimental results in Section VI.

A. Approximation Algorithm for thec-interval Cover Problem

Definition 3: Let U be the set which includes all the
uncovered elements ofS, and let I = {J1, J2, . . . , Jt} be
a c-interval of F.

• The improvementof interval Ji for S is defined as|Ji ∩
U |.

• The single improvementof c-interval I for S is defined
asmax1≤i≤t |Ji ∩ U |.

• The sum improvementof c-interval I for S is defined as∑
1≤i≤t |Ji ∩ U |.

The idea of our greedy algorithm is to select ac-interval
Ii in F, at each stepi, such thatIi makes the biggest single
improvement forS. The detailed algorithm is as follows.

Single Improvement Greedy Algorithm
Input: a genome sequenceS and a familyF of c-intervals

Ii(1 ≤ i ≤ |F|).
Output: a subsetC of F that coversS.
Steps:
1 Let U ← S, C ← ∅.
2 While U 6= ∅,
3 Select ac-interval Ii from F such that a single

intervalJm of Ii covers the most uncovered
elements inS, i.e., |Jm ∩U | is maximized.

4 U ← U − {∪Jj∈Ii
Jj}

5 C ← C ∪ {Ii}
6 ReturnC.
End of Algorithm

Since the number of iterations of the loop on lines2–7
is bounded from above by|F|, and the loop body can be
implemented to run in timeO(

∑
Ii∈F
|Ii|), there is an imple-

mentation that runs in timeO(|F|
∑

Ii∈F
|Ii|). The following

theorem shows that it is a constant factor approximation
algorithm.

Theorem 1:There is a polynomial time6c-approximation
algorithm for thec-interval cover problem.

Proof: Let O be an optimal solution for thec-interval
cover problem. Also, letA be the approximate solution com-
puted by our algorithm. The optimal solution contains at most
c × |O| intervals and hence at most2 × c × |O| endpoints.
Let E be the set of endpoints of these intervals ofO. The
algorithm repeatedly selects ac-interval Ii such that a single
interval Jm of Ii covers the most uncovered elements ofS;
or, in other words,Ii makes a maximum single improvement.

WLOG, every such intervalJm contains at least one end-
point e ∈ E. To see this, take any elementx ∈ Jm and

observe thatx must be covered by at least one intervalJk in
the optimal solution. IfJm does not contain any endpoint ofJk

then Jm is completely contained inJk. Thus, the algorithm
would select thec-interval containingJk instead of thec-
interval containingJm.

On the other hand, every endpointe ∈ E can be in at most
three intervalsJm that make a maximum single improvement.
Namely, there can be one interval that makes a maximum
single improvement to both sides ofe, one interval that makes
a maximum single improvement to the left ofe and one
interval that makes a maximum single improvement to the
right of e. After selecting such three intervals, there can be
no more interval containinge that makes a maximum single
improvement, or one of the previous selections would not be
maximum.

Therefore, because everyc-interval in A contains at least
one endpoint fromE (in the interval making maximum single
improvement), and each endpoint fromE can be selected (in
an interval making a maximum single improvement) at most
three times,

|A| ≤ 3× |E| ≤ 3× 2× c× |O|.

Thus our algorithm is a6c-approximation.
For the single improvement greedy algorithm, we can make

a slight change, i.e., instead of selecting ac-interval that makes
the biggest single improvement forS, we select ac-interval
that makes the biggest sum improvement forS. This slight
change makes the algorithm a special case of the greedy
algorithm for the set-cover problem which has alnn + O(1)
factor [2]. If we call this algorithmsum-improvement greedy
algorithm, the same as for set-cover, this algorithm has an
approximation factorln |S|+ O(1).

B. Approximation Algorithm for them-fold c-interval Cover
Problem

For the m-fold c-interval cover problem, we can easily
generalize the above two greedy algorithms. For the single
improvement variation (for them-fold c-interval cover prob-
lem), we can prove that it has an approximation factor of
2c(4m− 1), which isO(1) whenm, c are fixed.

Definition 4: Let F be a set ofc-intervals covering each
position (letter) ofS at leastM times. LetP ⊆ F and m

be a given integer bounded byM . Abusing the terminology a
bit, for a c-interval Q ∈ P with J ∈ Q (i.e., J is one of the
c intervals ofQ), we also writeJ ∈ P when the context is
clear.

• If a position (letter/element)i of S is coveredt < m times
by intervals inP , and another intervalJ 6∈ P coversi

(denoted asi ∈ J), we say that the positioni incurs a
cover improvementby J .

• Let p be a position (letter) ofS, definecover(p, P) =
|{J : J ∈ P and p ∈ J}|.

• With respect to a partial solutionP , the improvement
of an interval J 6∈ P is the number of positions
with cover improvement byJ . Formally, we define
improve(J, P) = |{p : p ∈ J and cover(p, P) < m}|.

4

Greedy Algorithm for m-Fold c-Interval Cover
Input: a genome sequenceS and a familyF of c-intervals

Hi(1 ≤ i ≤ |F|) covering each letter ofS at leastM times.
Output: a subsetP of F that covers each letter ofS at least

m ≤M times.
Steps:
1 Let P ← ∅.
2 Repeat
3 Select ac-intervalH such that for some interval

w(H) ∈ H , improve(w(H), P) is the largest.
4 P ← P ∪ {H}.
5 Until each position inS is covered≥ m times.
6 ReturnP .
End of Algorithm

Theorem 2:There is a polynomial time factor-2c(4m− 1)
approximation algorithm for them-fold c-interval cover prob-
lem.

Proof: Let O be an optimal solution for them-fold c-
interval cover problem such that each position ofS is covered
by at leastm c-intervals in F. When a newc-interval H

is added to the approximate solution, we have an interval
w(H) ∈ H that makes the largest improvement given the
current partial solutionP .

When a newc-interval H is added toP , w(H) ∈ H has a
cover improvement at least at positionq, which is covered at
mostm− 1 times by thec-intervals inP (i.e., cover(q, P) <

m) before H is added toP . WLOG, assume that there is
somec-intervalI ∈ O, I 6∈ P , such thatI coversq. If w(H) is
completely contained in some interval ofI, then it violates the
greedy choice of the algorithm (asI should be selected instead
of H — due to thatI 6∈ P , w(H) is contained inI, and I

coversq). Let I containc disjoint intervals[l1, r1], · · · , [lc, rc].
Consider a set of intervalsLi(I) in P that covers the left

endpointli in the i-th interval [li, ri] in I. Let Hi,1, Hi,2, · · ·
be thec-intervals inLi(I) according to the order that are added
to P . We need to bound the size ofLi(I), |Li(I)|.

Let Hi,1, · · · , Hi,2m−1 be the first2m − 1 c-intervals in
Li(I). For anyHi,j with j > 2m−1 in Li(I), it is impossible
that Hi,j can improve the elements to the left and right ofli.
Assume thatHi,j improves an elementpL to the left ofli, and
also improves an elementpR to the right ofli. pL is covered
by at mostm − 1 intervals inHi,1, · · · , Hi,2m−1, andpR is
covered by at mostm−1 intervals amongHi,1, · · · , Hi,2m−1.
Thus, there is an interval amongHi,1, · · · , Hi,2m−1 that is
fully contained inHi,j . This contradicts the greedy choice
of the algorithm (i.e., if so,Hi,j would have been selected
earlier).

Let Hi,j1 , Hi,j2 , · · · , Hi,jm
be m intervals in Li(I) after

the first2m−1 intervals are selected to improve the elements
to the left of li. When we haveHi,jm+1

, it can improve an
elementp to the left of li, and p is covered by at most
m − 1 intervals in {Hi,j1 , Hi,j2 , · · · , Hi,jm

}. Thus, at least
one interval, sayHi,jt

, does not coverp. Therefore,Hi,jm+1

can have a bigger improvement thanHi,jt
. This contradicts

the greedy choice. Therefore, after the first2m−1 c-intervals
Hi,1, · · · , Hi,2m−1 are selected, there are at mostm intervals
in Li(I) to improve the elements to the left ofli.

Similarly, we can deal with the case of right endpoints
improvement forI. Therefore,Li(I) contains at most2m−
1 + m + m = 4m− 1 intervals. The total approximation ratio
is bounded by at most2c(4m− 1), as there arec intervals in
I, each with two endpoints.

For them-fold PE-interval cover problem, the approxima-
tion factor becomes4(4m − 1), as c = 2. It is still open
whether some approximation algorithms can be designed for
the m-fold c-interval cover problem, with a constant factor
independent ofm, c. We will report the performance of these
two algorithms, form = 30 andc = 2, in Section VI.

IV. F IXED PARAMETER TRACTABLE RESULT FOR

k-BOUNDED SET-COVER

In this section, we show a fixed parameter tractable solution
for the k-bounded set cover problem.

Theorem 3:There is anO(ktnO(1))-time algorithm such
that given a setX with size n and a familyF of subsets of
X , it finds a solution for thek-bounded set cover problem
with at mostt subsets.

Proof: In order to cover the whole setX , for each element
in X that belongs to at mostk subsets, we must select one of
thek subsets in order to cover this element. The selection has
at mostk choices. Since a solution needs at mostt subsets,
the total time is bounded byO(ktnO(1)).

Definition 5: The k-boundedc-interval cover problemis a
variant of thec-interval cover problem which satisfies that
the number of occurrences of any elements in eachIi ∈ F

is bounded by a constantk ≥ 2 and there exists an element
which appears inF exactlyk times.

Since thek-boundedc-interval cover problem is a special
case of thek-bounded set cover problem, we have the follow-
ing corollary.

Corollary 1: Given a permutationS with lengthn and a set
F of c-intervals, there is anO(ktnO(1))-time algorithm to find
a solution for thek-boundedc-interval cover problem with at
most t c-intervals.

V. COMPLEXITY OF THE c-INTERVAL COVER PROBLEM

In this section, we explore the hardness of thec-interval
cover problem. Theorem 5 shows that the problem is NP-
complete whenc = 2 and by Theorem 4, thec-interval cover
problem is APX-hard ifc ≥ 3.

It is well known thatk-set cover is APX-hard fork ≥ 3
[19]. Based on that, we have the following result.

Theorem 4:The c-interval cover problem is APX-hard if
c ≥ 3.

Proof: We have a simple polynomial time reduction from
3-set cover to the3-interval cover problem by setting each
interval to be a single element. The same idea can be used for
c > 3.

In the following part, we show that the PE-interval cover
problem is NP-complete. The core idea is that the(3, 3)-SAT
problem is polynomial-time reducible to the PE-interval cover
problem. We first give the definitions of3SAT and(3, 3)-SAT.

5

Definition 6: A 3SAT instanceis a conjunctive formC1 ∧
C2 ∧ . . . ∧ Cm such that eachCi is a disjunction of at most
three literals.3SAT is the language of those3SAT instances
that have satisfiable assignments.

Definition 7: A (3, 3)-SAT instance is an instanceG of
3SAT such that for each variablex, the total number of
occurrences ofx and x̄ in G is at most3, and the total
number of occurrences of̄x in G is at most1. (3, 3)-SAT is
the language of those(3, 3)-SAT instances that have satisfiable
assignments.

For examples,(x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2) ∧ (x1 ∨ x̄3) is a
3SAT instance but not a(3, 3)-SAT instance sincēx1 appears
twice. On the other hand,(x1∨x2∨x3)∧(x̄1∨x̄2∨x̄3)∧(x1∨
x3) belongs to both3SAT and (3, 3)-SAT. It is well known
that 3SAT is an NP-complete problem. The following lemma
shows that3SAT is polynomial-time reducible to(3, 3)-SAT.

Lemma 1: [18] There is a polynomial time reductionf(.)
from 3SAT to (3, 3)-SAT.

Definition 8: Given a(3, 3)-SAT instanceφ = C1 ∧ C2 ∧
. . . ∧Cm, a clauseCi of φ is called a3-positive clauseif Ci

contains three positive literals. If a(3, 3)-SAT instanceφ has
no 3-positive clause,φ is called an3p-(3, 3)-SAT instance.

Lemma 2:There is a polynomial time transformation from
a (3, 3)-SAT instanceφ to a n3p-(3, 3)-SAT instanceφ′ such
that φ is satisfiable iffφ′ is satisfiable.

Proof: Let φ = C1 ∧ C2 ∧ . . . ∧ Cm be an instance of
(3, 3)-SAT. The transformation fromφ to φ′ performs the same
conversion for each clauseCi(1 ≤ i ≤ m). If a clauseCi =
(xi

1 ∨ xi
2 ∨ xi

3) of φ is a 3-positive clause, we convertCi

into C′
i ∧ C′′

i = (xi
1 ∨ xi

2 ∨ x̄i
a) ∧ (xi

3 ∨ xi
a) by adding a

new variablexi
a. Neither C′ nor C′′ is a 3-positive clause,

after the conversion. Therefore, a(3, 3)-SAT instance can be
transformed into an3p-(3, 3)-SAT instance inO(m) time. It
is easy to verify thatCi is true iff C′

i ∧ C′′
i is true, soφ is

satisfiable iffφ′ is satisfiable.
For example,φ1 = C1 ∧ C2 ∧ C3 is an instance of(3, 3)-

SAT, whereC1 = (x1 ∨ x̄2), C2 = (x̄1 ∨ x2 ∨ x̄3), C3 =
(x1 ∨ x2 ∨ x3). We convert it into an equivalentn3p-(3, 3)-
SAT instanceφ′

1 = C1 ∧C2 ∧C′
3 ∧C′

4 by adding a (dummy)
variablex4. HereC′

3 = (x1 ∨ x2 ∨ x̄4) andC′
4 = (x3 ∨ x4).

As a decision problem, for a given permutationS with
length n, a family F of paired-end intervals and an integer
numberk, we ask simply whether there exists a subsetC ⊆ F

such that the permutation formed by the subsetC covers all
the elements inS and |C| = k.

Theorem 5:The decision version of the PE-interval cover
problem is NP-complete.

Proof: To show that the PE-interval cover problem is in
NP, for a given setF of paired-end intervals, we nondetermin-
istically select a subsetC ⊆ F as a certificate forF. Let S′ be
the set of elements inS covered byC. Checking the certificate
C can be accomplished in polynomial time inn (|S| = n) by
checking, for each elements ∈ S, whethers belongs toS′.

We next prove that(3, 3)-SAT ≤p PE-interval cover, which
shows that the PE-interval cover problem is NP-hard. We are
given a (3, 3)-SAT instanceφ = C1 ∧ C2 ∧ . . . ∧ Cm =
s(x1, x2, . . . , xk) where m is the number of clauses andk
is the number of variables inφ. WLOG, we make three

simplified assumptions about the formulaφ. Firstly, no clause
contains both a variable and its negation, for such a clause,
it is automatically satisfied by any assignment of values to
the variables. Secondly, each variable appears in at least one
clause, for otherwise it does not matter what value is assigned
to the variable. Thirdly, no variable appears three times inφ

positively, otherwise we can simply assign these variablestrue
to remove them and the clauses which contains these variables
without affecting the satisfiability ofφ.

First, we transformφ into a n3p-(3, 3)-SAT instanceφ′ =
C′

1 ∧ C′
2 ∧ . . . ∧ C′

m′ = s(x′
1, x

′
2, . . . , x

′
k′) using Lemma 2.

Let m′ and k′ be the clause size and variable size ofφ′

respectively, we havem ≤ m′ ≤ 2m andk ≤ k′ ≤ k + m. In
our construction,S is initially composed of a sequence of non-
empty segments/intervals, each is filled with a permutation
of letters such that no two intervals share a common letter.
Moreover,|S| = n and there arem′ + k′ intervals inS — we
assume thatn is a multiple ofm′+k′. We then try to construct
a setF which contains2k′ paired-end intervals, based on the
intervals inS, such thatφ is satisfiable iff there exists a subset
C ⊆ F such that the sequence formed by the subsetC covers
all the elements ofS and |C| = k′.

The setF can be constructed using the following4 steps of
procedures (see an example in Figure 1):

Step 1: Divide the sequenceS into m′ + k′ intervals
S1, S2, . . . , Sm′+k′ of the same size n

m′+k′
. We haveS1 =

〈1, 2, . . . , n
m′+k′

〉 andSi = 〈n(i−1)
m′+k′

+1,
n(i−1)
m′+k′

+2, . . . , ni
m′+k′

〉
for 2 ≤ i ≤ m′ + k′.

Step 2: Mark all the intervals and all the variables as unused,
let i = 1.

Step 3: For clauseC′
i = (li1 ∨ li2 ∨ li3) of φ′, wherei ≤ m′,

we have three cases:

• Case 1: If C′
i has exactly one unused positive variable,

select the first unused intervalSu. Let the variables
li1, li2 and li3 represent the same intervalSu, then Su

is marked as used. We call the intervals which are
marked by clauses asClause Intervals. For that unused
positive variablelij (j ∈ {1, 2, 3}) in C′

i, which means
lij = x′

t (1 ≤ t ≤ k′), select the first unused interval
Sv, let lij and l̄ij represent the same intervalSv. Then the
variablelij = x′

t and the intervalSv are marked as used.
We call the intervals which are marked by variables as
Variable Intervals.

• Case 2: If C′
i has two unused positive variables, select

the second unused intervalSu, let variablesli1, li2 and li3
represent the same intervalSu. Then the intervalSu is
marked as used. For those two positive variableslij1 (j1 ∈
{1, 2, 3}) and lij2 (j2 ∈ {1, 2, 3}) in C′

i, select the first
and the second unused intervalsSv1

, Sv2
. Let lij1 and l̄ij1

represent the same intervalSv1
. Similarly, let lij2 and l̄ij2

represent the same intervalSv2
. Then the variableslij1 ,

lij2 and the intervalsSv1
, Sv2

are marked as used.
• Case 3: If there does not exist any unused positive

variable inC′
i, select the first unused intervalSu, let the

variablesli1, li2 and li3 represent the same intervalSu.
Then the intervalSu is marked as used.

Let i = i + 1, repeat step 3.

6

b b b b b b b b b

S x1 C
′

1 x3 C
′

2 x2 C
′

3 C
′

4 x4

b

x1

x̄1
b b

bb

x1

b b
x̄2

b b

x3
b

x3

b
x̄3

b b
x̄1

b
x2

b b
x̄3

b
x2

b b
x̄2

b b

x1

b b
x2

b b
x̄4

b b

x3

b
x4

b b
x4

b b
x̄4

Fig. 1. The reduction fromn3p-(3, 3)-SAT instanceφ′

1
= C′

1
∧C′

2
∧C′

3
∧C′

4

to an instance of the PE-interval cover problem, whereC′

1
= (x1∨ x̄2∨x3),

C′

2
= (x̄1 ∨ x2 ∨ x̄3), C′

3
= (x1 ∨ x2 ∨ x̄4), C′

4
= (x3 ∨ x4). Set

S is divided into eight intervals. Clause Intervals and Variable Intervals are
marked as red and blue respectively. A satisfying assignment of the formula
has x1 = 1, x3 = 0, x4 = x̄3 = 1, and x2 may be either0 or 1. This
assignment satisfiesC′

1
andC′

3
with x1, it satisfiesC′

4
with x4 and satisfies

C2 with x̄3, corresponding to four paired-end intervals with four different
colored bold lines.

Step 4: If all the variables are marked as used, the construc-
tion is done. Otherwise there are unused variables. Then, for
each unused variablexu, select the first unused intervalSu.
Let xu and x̄u represent the same intervalSu.

It is easy to see that the setF contains a paired-end interval
for both x′

t and x̄′
t (1 ≤ t ≤ k′) in φ′. So the total number of

paired-end intervals inF is 2k′. In addition, the transformation
takesO(m′ + k′) time.

Finally, we must show that the transformation is a reduction.
First, suppose thatφ has a satisfying assignment. By Lemma
2, φ′ also has a satisfying assignment. Then for each variable
x′

t (1 ≤ t ≤ k′), x′
t is assigned either1 or 0. If it is assigned1,

we select the paired-end interval represented byx′
t; otherwise,

we select the paired-end interval represented byx̄′
t. We put all

the selected intervals into the setC, it is obvious thatC hask′

elements. We next show that the union of all the intervals in
C covers the sequenceS. Sinceφ′ is satisfiable, each clause
C′

i contains at least one literallij which is assigned1. So for
each clause interval, it is covered. For each variable interval,
because eitherx′

t or x̄′
t is selected, it is covered too. The

sequenceS is made up of the union of all the clause intervals
and variable intervals, thereforeS is covered by the paired-end
intervals inC.

Conversely, suppose thatF is constructed using the above
procedures, andC ⊆ F is of size k′ and it covers all the
elements inS. We can assign1 to all literals which are used to
represent thek′ paired-end intervals inC. Here we do not need
to worry about assigning1 to both a literal and its complement.
SinceC is of sizek′, if the paired-end intervals represented by
x′

t and x̄′
t are both included inC, there must exist a variable

x′′
t such that neither the paired-end interval represented byx′′

t

nor by x̄′′
t is included inC. According to the construction of

F, the union of all intervals inC cannot cover all the elements
of S. After the truth assignment, each clause is satisfied. Then
φ′ is satisfied, and thereforeφ is satisfied.

We comment that this hardness result also holds if the
reconstructed object is a sequence instead of a permutation.

1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k 30k

A
p

p
ro

xi
m

at
io

n
R

at
io

Number of 2-intervals

Single Improvement

Sum Improvement

b
b b b b b b b b b b b b b b

b
b b b

b b b b b b b b b b b

Fig. 2. The comparison between the single-improvement and sum-
improvement greedy algorithms. The sequence length is20, 000, the length of
each interval is 100 and each element is covered at least once. The horizontal
coordinates represent the number (in k=1000) of given2-intervals, the vertical
coordinates represent the average approximation ratio. The ratios for the two
algorithms are shown in the blue curve and cyan curve respectively.

VI. EXPERIMENTAL RESULTS

We implement the greedy algorithms described in Section
III for the PE-interval cover problem. The experimental results
of the single improvement greedy algorithm show a much
better approximation ratio than6c = 12, which was given
in Theorem 1. The sum improvement greedy algorithm is also
tested. The experimental results show that it has a general
better performance compared with the first one. We also imple-
ment two algorithms for them-fold PE-interval cover problem,
focusing onm = 30 (and c = 2). This conforms more with
the practical datasets in PE-based genome sequencing, simply
because the cost of obtaining the short reads is cheap, henceit
is possible to obtain a lot of short reads such that each element
is covered at leastM ≥ m times.

A. Implementation Details

With the purpose of easily testing the approximation perfor-
mance, we select two short sequences of length20, 000. The
selections are based on the first sequenced RNA-genome [21]
and DNA-genome [22]. The length of each short read is fixed
at 100, i.e., each PE-interval contains two disjoint intervals
of length 100 each. We usediSize to represent the number
of given 2-intervals. We first construct an optimal solution
which uses the least number of2-intervals to cover the whole
sequence (which is 20000/200=100) and add it into the2-
interval set, and then the remaining2-intervals are constructed
randomly.

B. Results for PE-interval Cover

For the single improvement greedy algorithm, the worst
approximation ratio is2.03. It is much better than the ratio12
which was presented in Theorem 1. For the sum improvement
greedy algorithm, the worst approximation ratio is1.60. From
their average approximation ratios, we discover that the second

7

1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

40 50 60 70 80 90 100120140160180200220240 250

A
p

p
ro

xi
m

at
io

n
R

at
io

M — Sequence Cover Times

Single Improvement

Sum Improvement

b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b

Fig. 3. The comparison between the greedy algorithms Single-1(m) and
Sum-1(m) for the m-fold PE-interval cover problem. The sequence length is
20, 000, the length of each interval is set to100. Both two greedy methods
cover each element at leastm = 30 times layer by layer. The horizontal
coordinates represent the least number of times each element of the sequence
is covered. The vertical coordinates represent the averageapproximation ratio.
The ratios for the two algorithms are showed in the blue curveand cyan curve
respectively.

algorithm has an overall better performance compared with the
first one. Though we cannot prove that the second algorithm
is a constant factor approximation, the testing results show
that it works very effectively in practice. See Figure 2 for a
comparison for the two greedy algorithms with their average
approximation ratios.

We also found that the approximation ratios for these two
greedy algorithms are not relevant to the number of given2-
intervals. This is possibly due to that the intervals are of the
same length (which is a common practice in PE-based genome
sequencing).

C. Results form-fold PE-interval Cover

For the m-fold PE-interval cover problem, we implement
two versions of algorithms, which are both based on the single-
improvement and sum-improvement algorithms for PE-interval
cover. The first version, Single-1(m) (resp. Sum-1(m)), is to
run the single-improvement (resp. sum-improvement) greedy
algorithmm times, i.e., level by level, each level corresponds
to a solution for the PE-interval cover problem. We use the
number of times an element is leastly covered,M , as another
parameter. In the whole process, we fixm=30. See Figure
3 for a comparison for the two greedy algorithms with their
average approximation ratios.

The second version, Single-2(m) (resp. Sum-2(m)), is the
factor-2c(4m− 1) approximation algorithm; i.e., we select a
PE-intervalIi which contains the maximum number of ele-
ments which have not been coveredm times yet in one (resp.
both) of the intervals inI. See Figure 4 for a comparison for
the two greedy algorithms with their average approximation
ratios. While the approximate ratios are similar for the two
versions of algorithms, the second version shows a much larger
fluctuation. On the other hand, it is much better than the
theoretical ratio which is 478 (in the worst case).

1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

40 50 60 70 80 90 100120140160180200220230 240

A
p

p
ro

xi
m

at
io

n
R

at
io

M — Sequence Cover Times

Single Improvement

Sum Improvement

b

b b

b

b
b

b
b

b

b

b

b
b b b

b
b

b
b b b b

b b b b b b b b

Fig. 4. The comparison between the greedy algorithms Single-2(m) and
Sum-2(m) for the m-fold PE-interval cover problem. The sequence length is
20, 000, the length of each interval is set to100. Both two greedy methods
cover each element at leastm = 30 times. The horizontal coordinates
represent the least number of times each element of the sequence is covered.
The vertical coordinates represent the approximation ratio. The ratios for the
two algorithms are showed in the blue curve and cyan curve respectively.

VII. CONCLUSION

In this paper, we investigate the problem of identifying
the minimum number of short reads to cover the genes in a
genome (to be sequenced)m times. Form = 1, we formulate
this as the PE-interval cover problem which is related to the
famous set-cover problem. We explore the hardness of the
PE-interval cover problem and present some approximation
algorithm to solve it. The approximation algorithm also gen-
eralizes to the case for fixedm, c and is shown to have a
factor of 2c(4m − 1). There are several open problems. (1)
For them-fold c-interval cover problem, is there a constant
factor approximation whose factor is independent ofm, c?
(2) When m = 1, the sum improvement greedy algorithm
has a better performance in our implementation; however,
there is no approximation analysis of it. (3) It seems that the
approximation ratio given in Section III can be improved, at
least indicated by our empirical results.

ACKNOWLEDGMENTS

Bin Fu is supported in part by NSF Early Career Award
0845376. Binhai Zhu is partially supported by NSF un-
der project DMS-0918034, by NSF of China under project
60928006, by the Shanghai Thousand Talents Program, and
by the Open Fund of Top Key Discipline of Computer Soft-
ware and Theory in Zhejiang Provincial Colleges at Zhejiang
Normal University. We also thank anonymous reviewers for
several constructive comments.

REFERENCES

[1] Alon N., Moshkovitz D., and Safra S. Algorithmic construction of sets
for k-restrictions.ACM Trans. Algorithms., 2(2):153-177, 2006.

[2] Johnson D.S. Approximation algorithms for combinatorial problems.J.
Comput. System Sci., 9:256-278, 1974.

[3] Chvatal V. A greedy heuristic for the set-covering problem.Mathematics
of Operations Research, 4:233-235, 1979.

8

[4] Feige U. A threshold of ln n for approximating set cover.J. ACM,
45(4):634-652, 1998.

[5] Bar-Yehuda R. and Kehat Z. Approximating the dense set-cover
problem. J.Comput. and System Sci., 69:547-561, 2004.

[6] Raz R. and Safra S. A sub-constant error-probability low-degree test,
and a sub-constant error-probability PCP characterization of NP. In
STOC ’97: Proceedings of the twenty-ninth annual ACM Symposium on
Theory of Computing, pp.475-484, 1997.

[7] Edwards A. and Caskey T. Closure strategies for random DNA
sequencing.Methods Comp. Methods Enzymol, 3(1):41-47, 1991.

[8] Chen E.Y., Schlessinger D. and Kere J. Ordered shotgun sequencing,
as strategy for integrating mapping and sequencing of YAC clones.
Genomics, 17:651-656, 1993.

[9] Smith M.W., Holmsen A., Wei Y.H., Peterson M. and Evans G.A.
Genomic sequencing sampling: A strategy for high resolution sequence-
based physical mapping of complex genomes.Nat. Genet., 7:40-47,
1994.

[10] Venter J.C., Adams M.D., Sutton G.G., Kerlavage A.R., Smith H.O. and
Hunkapiller M. Shotgun sequencing for the human genome.Science,
280:1540-1542, 1998.

[11] Venter J.C., Smith H.O. and Hood L. A new strategy for genome
sequencing.Nature, 381:364-366, 1996.

[12] Weber J.L. and Myers E.W. Human whole-genome shotgun sequencing.
Genome Res., 7:401-409, 1997.

[13] Siegel A. F., Engh G. van den, Hood L., Trask B. and Roach J.
C. Analysis of sequence-tagged connector (STC) strategiesfor DNA
sequencing.Genomics, 68(3):237-246, 2000.

[14] Eward A., Voss H., Rice P., Civitello A., Stegemann J., Schwager C.,
Zimmerman J., Erfle H., Caskey T. and Ansorge W. Automated DNA
sequencing of the human HPRT locus.Genomics, 6:593-608, 1990.

[15] Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F.,
Kerlavage A.R., Bult C.J., Tomb J.F., Dougherty B.A., Merrick J.M., et
al. Whole-genome random sequencing and assembly of Haemophilus
influenzae Rd.Science, 269(5223):496-512, 1995.

[16] Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A.,
Fleischmann R.D., Bult C.J., Kerlavage A.R., Sutton G., Kelley J.M., et
al. The minimal gene complement of Mycoplasma genitalium.Science,
270(5235):397-404, 1995.

[17] Anson E. and Myers E.W. Algorithms for whole genome shotgun
sequencing. InProceedings of the third annual International Conference
on Research in Computational Molecular Biology (RECOMB’99), pp.1-
9, 1999.

[18] Tovery C.A. A simplified satisfiability problem. Discrete Applied
Mathematics, 8:85-89, 1984.

[19] Kann V. Maximum bounded 3-dimensional matching is MAX SNP-
complete. Information Processing Letters, 37:27-35, 1991.

[20] Papadimitriou C. and Yannakakis M. Optimization, approximation and
complexity classes.J. Comput. and System Sci., 43:425-440, 1991.

[21] Fiers W., Contreras R., Duerinck F., Haegeman G., Iserentant D.,
Merregaert J., Min Jou W., Molemans F., Raeymaekers A., Van Den
Berghe A., Volckaert G., and Ysebaert M. Complete nucleotide-
sequence of bacteriophage MS2-RNA - primary and secondary structure
of replicate gene.Nature, 260(5551):500-507, 1976.

[22] Sanger F., Air G.M., Barrell B.G., Brown N.L., Coulson A.R., Fiddes
C.A., Hutchison C.A., Slocombe P.M., and Smith M. Nucleotide
sequence of bacteriophage phi X174 DNA.Nature, 265(5596):687-695,
1977.

[23] Downey R. and Fellows M.Parameterized Complexity, Springer-Verlag.
1999.

[24] Huson D., Reinert K., and Myers E.W. The greedy path-merging
algorithm for contig scaffolding.J. ACM, 49(5):603-615, 2002.

[25] Gao S., Nagarajan N., and Sung W-K. Opera: Reconstructing optimal
genomic scaffolds with high-throughput paired-end sequences. InPro-
ceedings of the fifteenth annual International Conference on Research
in Computational Molecular Biology (RECOMB’11), pp.437-451, 2011.

Liang Ding Liang Ding is currently a PhD student
in computer science at the University of Georgia.
He obtained a MS degree in Computer Science
at University of Texas - Pan American in 2011.
His research interests are computational biology and
bioinformatics.

Bin Fu Bin Fu is currently an associate professor
in computer science at University of Texas - Pan
American. He obtained his PhD in Computer Sci-
ence from Yale University in 1998. He won the
NSF Career Award in 2009. His research interests
are complexity theory, algorithms, computational
biology and bioinformatics. He has published over
100 papers in these areas.

Binhai Zhu Binhai Zhu is currently a professor
in computer science at Montana State University,
USA. He obtained his Ph.D. in Computer Science
from McGill University, Canada, in 1994. He was
a post-doctoral research associate at Los Alamos
National Laboratory, USA from 1994 to 1996. From
1996 to 2000, he was an assistant professor at City
University of Hong Kong. He has been at Mon-
tana State University since 2000 (associate professor
until 2006, professor since 2006). Professor Zhu’s
research interests are geometric computing, biolog-

ical/geometric modeling, bioinformatics and combinatorial optimization. He
has published over 120 papers in these areas.

