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Paired-end sequencing has been used successfully to se-

the whole genome sequencing problem which determines the quence small genomic targets, such as microbial genomes and

complete DNA sequence of an organism’s genome with the help o
laboratory processes. A paired-end (PE) interval for a segence
S is composed of at most two disjoint intervals. Due to the
cheap cost to obtain PE-intervals (also known ashort reads), in

large-insert subclones of large genomes [14], [15], [16]. |
1999, heuristic algorithms were provided by Anson and Myers
to handle whole genome shotgun sequencing [17]. In 2002,

practical datasets a letter in some genome to be sequencednca Husonet al. proved that the problem of sequencing a genome

be covered by at leastM PE-intervals. In this paper, we consider
the m-fold paired-end interval cover problem (m < M), which
can be defined as given a familyF of paired-end intervals on
a sequenceS such that each letter in S is covered at leastiM
times, find the minimum number of paired-end intervals of F
to cover each letter in.S at least m times. We prove that the
(1-fold) paired-end interval cover problem is NP-complete We
present a polynomial-time 12-approximation algorithm for the
case whenm = 1, which is based on greedy search. This result
also generalizes the set-cover problem (an element in the &&aset
becomes an interval which could contain a number of elemen}s
and a simple fixed parameter tractable algorithm is presentd
for the related k-bounded c-interval cover problem. We then
generalize the algorithm and analysis to the generain-fold PE-
interval cover problem, to have a factor of 2¢(4m — 1). Our
implementation results show that the practical approximaton
ratios are mostly bounded by 2.2 for examples constructed &m
real datasets.

Keywords: computational genomics, set cover, short reads,
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I. INTRODUCTION

with short reads is NP-complete and presented a heuristic
greedy method [24]. This method was improved recently by
Gaoet al. [25].

Recently, we started to investigate this problem in a more
formal way. The first step is to identify the most useful (i.e.
non-redundant) information from the input, which typigall
contains errors and redundancy. We formulate this as*tae
interval coverproblem. It turns out that the results for the
PE-interval cover problem can be generalized todeterval
cover problem which extends the classical set-cover pmble
whenc is arbitrary. We then take the practical condition into
account by considering the-fold PE-interval cover problem.

The set-cover problem is a classical and fundamental prob-
lem in computer science with many applications. Given a
finite set X of sizen and a familyF of subsets ofX such
that every element oK belongs to at least one subsethin
the problem is to find a minimum-size subgetC [ whose
members covelX. It is a well-known NP-complete problem
showed in Karp’s 21 NP-complete problems in 1972 and its
solutions give rise to the development of the entire field of

In the past two decades, we have seen a huge progresapproximation algorithms [1]. The well known approximatio

genome sequencing. The problem we investigate in this papdgorithm for the set-cover problem which has a ratio of
PE-interval cover, is derived from the paired-end sequemncilnn + O(1) was given by Johnson [2] in 1974. Chvatal
method which was developed based on shotgun sequenciBf.improved the upper bound on the approximation ratio to
Shotgun sequencing is a method used for sequencing ldng—Inlnn+O(1) in 1979. These ratios are tight because of a
DNA strands. The paired-end sequencing method comes afaihous inapproximability result of Feige [4] which statbatt
after shotgun sequencing, it is also known as double-barteére is no(1 — ¢) In n-approximation algorithm for the set-
shotgun sequencing and was first described by Edwards amer problem unless there are subexponeiialro'vos(n))
Caskey in 1991 [7]. In paired-end sequencing, sequences tmge deterministic algorithms for all problems in NP. A lowe
determined from both ends of random subclones derived frdmund ofcIn n was established recently, wherés a constant,

a DNA target. The benefit of this method toward shotgumnder the weaker assumption thgtIRP [6], [1].

sequencing is the information obtained by sequencing bothThe general set-cover problem has two interesting variants
ends of a fragment of DNA, commonly known sisort reads  k-set cover and:-bounded set cover. We derive some results
could be more useful. After the work of Edwards and Caskefypm these variants of set cover. Before presenting these
many variants of the strategy have been developed by seveeslults, we first give the formal definitions of theinterval
groups [8], [9], [10], [11], [12], [13]. cover problem and the paired-end interval cover problent. Le



|A| be the size of sefl, we have: We define that one element &f occurs once if it appears
Definition 1: Assume thatS is a sequence that has ndn exactly one of the subsets Bf Thenk-bounded set cover
repetition with its elements, i.65 is a permutation. Let be satisfies that the number of occurrences of any elemeiit iof

an integer parameter. F is bounded by a constakt> 2 and there exists an element
o A cinterval I = {Jy,Js,...,J;} of S is a series of which appears irF exactly k& times. The best approximation
disjoint non-empty interval/;(1 < i < t) of S which algorithm has a factor of —-—f—r— + o(1) [5]. In this
satisfies thatl| =t < c. paper, we show a fixed parameter tractable algorithm for the

« Thec-interval cover problenis defined as given a family k-bounded set cover problem, and hence it can be used directly
I of c-intervals, find the least number efintervals of F  to solvek-boundedc-interval cover.
to coversS. The rest of the paper is organized as follows: Section Il
« Them-fold c-interval cover problemis defined as given gives fundamentals on approximation algorithms and FPT
a family IF of c-intervals onS such that each element inalgorithms. Section Il gives an approximation algorithar f
S is covered at least/ times, find the minimum number the c-interval cover problem using a greedy method, and then
of c-intervals ofF to coverS such that each element ofwe generalize it to then-fold c-interval cover problem. In
S is covered at least: (m < M) times. Section 1V, we show a fixed parameter tractable algorithm

The paired-end interval cover problem is a special caseef tffT the k-bounded set cover problem and theboundedc-
c-interval cover problem for = 2 andm = 1. For simplicity. interval cover problem. The complexities of the PE-intérva

we call the paired-end interval cover problem the PE-irabryCOVer problem and the-interval cover problem are presented
cover problem. Then-fold paired-end interval cover problemin Section V. Then, some experimental results are presented
is more practical in PE-based genome sequencing. Due to fhe>ection VI, form =1 andm = 30 respectively. Section
low cost of obtaining paired-end reads, a lot of short reads a’!l concludes the paper.

obtained such that each element is covered at least a certain

number (e.g., 200) of times. In this case, it makes sense to

have a minimum-size covering which covers each element at Il. PRELIMINARIES

leastm < 200 times. . _
For completeness, we present some basic definitions re-

We comment that our results hold even whgnis not a . - ) ;
permutation. Also, in some real datasets there is an addltiogardmg approximation algorithms and FPT (fixed-parameter
' ’ tlractable) algorithms.

information on the distance between two short reads. Bst th NI _ .
information does not help on the PE-interval cover problem; FO @ minimization problentl, a polynomial-time algorithm
in fact, it can be easily seen that our NP-completeness pro%f'S a factora approximation if for any instancél(/), the
holds even if this distance information is given. Howevkist Solution retumed byB, B(I), satisfies|B(1)| < a - O"(I),
distance information might be useful when we try to sequenwereo*w Is the correqundlng optlmql solut_|0r_1 value. (For
a genome (or re-order a set of contigs) later on. maxm.nz.gtlon problems, this can be defined S|m|I§1rly.) .
When each interval contains exactly one element, theDefinition 2: [20] Theclass APXis the set of optimization
paired-end interval problem reduces to 2-set coverk4get Problems that allow polynomial time approximation algo-
cover, every subset oX is of size at most. Whenk = 2, the rithms with approximation ratios bounded by a constant.

2-set cover can be reduced to the maximum matching problems [f there is a polynomial time algorithm to solve a problem
using the following two steps: within any constant factor greater than one, then the
1) Find a maximum matching in a graph constructed ac- Problem is said to have polynomial time approximation
cording to the given2-sets: create a vertex for each ~ scheme (PTASYnless P=NP, there are problems that are
element, and there is an edge between two vertices if N APX but not in PTAS; that is, problems that can be
there is a2-set consisting of this pair of elements. approximated within some constant factor, but not every
2) Return all the2-sets corresponding to the edges of the  constant factor.
maximum matching and thé-sets of the uncovered e A problem is said to beAPX-hardif there is a linear
elements (by the collection & sets which we found). reduction from every problem in APX to that problem,

It is known that the maximum matching problem is solvable in ~ a1d t0 beAPX-completef the problem is APX-hard and
polynomial time. So for PE-interval cover, if each interial also in APX.

degenerated to a single point, it is equivalent todkset cover  While approximation algorithms provide a way to handle
and can be solved in polynomial time. However, we prove thitP-hard problems, in many situations we can handle them
the general PE-interval cover problem is NP-complete. {ysimwith exact algorithms. For a decision problginwith param-

the fact that thet-set cover problem is APX-hard fdr > 3  eter k, an FPT (fixed-parameter tractable) algorithm is one
[19], we prove, in Section V, that theinterval cover problem which solvesD in time O(f(k)n°) wheref(—) is any function

is APX-hard if ¢ > 3. (It is well known that the 1-interval only on k£ and ¢ is independent of. The underlying idea
cover problem is polynomially solvable as it can be formedat of the FPT theory is that i% is fixed (typically as a small

as a shortest path problem.) Moreover, a polynomial tiime constant, like 30) then the corresponding FPT algorithm can
approximation algorithm is provided to solve thenterval solve D practically in polynomial time. For more information,
cover problem fore > 2. the readers are referred to some standard textbook [23].



1. GREEDY APPROXIMATION ALGORITHMS FOR THE observe thatr must be covered by at least one intervalin
c-INTERVAL COVER PROBLEMS the optimal solution. 1f/,,, does not contain any endpoint &f

In this section, we derive &c-approximation algorithm for then J,, is completely contained in/. Thus, the algorithm
the c-interval cover problem using a greedy method. We thé_/MouId select _thec-mterval containingJ, instead of thec-
generalize the algorithm and analysis to thefold c-interval interval containing/,,. _ _
cover problem, to have a factor @f:(4m — 1). Theoretically, ~ ©On the other hand, every endpoine £ can be in at most
these approximation ratios are big, but they have much ettgree intervals/;, that make a maximum single improvement.
performance in practice (at least from our simulation regul Namely, there can be one interval that makes a maximum
We will show our experimental results in Section VI. single improvement to both sides @fone interval that makes
a maximum single improvement to the left ef and one
interval that makes a maximum single improvement to the
o S right of e. After selecting such three intervals, there can be
Definition 3: Let U be the set which includes all theng more interval containing that makes a maximum single

A. Approximation Algorithm for the-interval Cover Problem

uncovered elements of, and let/ = {J1,J>,...,Ji} be improvement, or one of the previous selections would not be
a c-interval of FF. maximum.
« Theimprovemenbf interval J; for S is defined ag.J; N Therefore, because everyinterval in A contains at least
Ul. one endpoint fromE (in the interval making maximum single
« Thesingle improvementf c-interval I for S is defined improvement), and each endpoint frafhcan be selected (in
asmaxi<i<¢ |J; NUJ. an interval making a maximum single improvement) at most

o Thesum improvementf c-interval I for S is defined as three times,
Yi<ict SN U

The idea of our greedy algorithm is to select-interval Al <3 x|E| <3x2xex|O|
I; in F, at each step, such that/; makes the biggest single . ) o
improvement forS. The detailed algorithm is as follows. Thus our algorithm is &c-approximation. u
For the single improvement greedy algorithm, we can make
Single Improvement Greedy Algorithm aslight change, i.e., instead of selectingiaterval that makes
Input: a genome sequenceand a familyF of c-intervals the biggest single improvement fd, we select ac-interval
L(1<i<|F). that makes the biggest sum improvement for This slight
Output: a subsef' of F that coverss. change makes the algorithm a special case of the greedy
Steps: algorithm for the set-cover problem which hasnan + O(1)
1 LetU — S, C — 0. factor [2]. If we call this algorithmsum-improvement greedy
2 While U # 0, algorithm the same as for set-cover, this algorithm has an
3 Select ac-interval I; from F such that a single &Pproximation factoin [S| + O(1).

interval J,,, of I, covers the most uncovered

elements inS, i.e.,|J,, NU| is maximized. B Approximation Algorithm for then-fold c-interval Cover
4 U—U—A{Uyerdj} Problem
5 C—Cu{l)
6 ReturnC.
End of Algorithm

For the m-fold c-interval cover problem, we can easily
generalize the above two greedy algorithms. For the single
improvement variation (for then-fold c-interval cover prob-
lem), we can prove that it has an approximation factor of
2¢(4m — 1), which isO(1) whenm, ¢ are fixed.

Definition 4: Let F be a set ofc-intervals covering each
position (letter) ofS at leastM times. LetP C F andm
(ﬂsa a given integer bounded By . Abusing the terminology a

it, for a c-interval Q € P with J € Q (i.e., J is one of the

Theorem 1:There is a polynomial timéc-approximation c intervals ofQ), we also writeJ € P when the context is

algorithm for thec-interval cover problem. clear -~ _ _
Proof: Let O be an optimal solution for the-interval ~ « |fa position (letter/element)of S is covered < m times

Since the number of iterations of the loop on lings7
is bounded from above byF|, and the loop body can be
implemented to run in imé&(3_; _r|;|), there is an imple-
mentation that runs in im&(|F| >, _r |1;[). The following
theorem shows that it is a constant factor approximati
algorithm.

cover problem. Also, letd be the approximate solution com- Dy intervals inP, and another interval ¢ P coversi
puted by our algorithm. The optimal solution contains atmos ~ (denoted as < J), we say that the position incurs a
¢ x |O] intervals and hence at mo8tx ¢ x |O] endpoints. cover improvemerty J.
Let E be the set of endpoints of these intervals@f The ~ « Letp be a position (letter) of5, definecover(p, P) =
algorithm repeatedly selectscinterval I; such that a single {J:JePandpe J}.

interval .J,,, of I, covers the most uncovered elementssof ~ « With respect to a partial solutio®, the improvement

or, in other wordsJ; makes a maximum single improvement. ~ of an interval J ¢ P is the number of positions
WLOG, every such intervall,, contains at least one end- ~ With cover improvement by.J. Formally, we define

point e € E. To see this, take any element € .J,, and improve(J, P) = [{p: p € J and cover(p, P) < m}|.



Greedy Algorithm for m-Fold c-Interval Cover Similarly, we can deal with the case of right endpoints

Input: a genome sequenéeand a familyF of c-intervals improvement forl. Therefore,L;(I) contains at mosgm —
H,(1 <1 <|F|) covering each letter of at leastM times. 14 m+m = 4m — 1 intervals. The total approximation ratio

Output: a subseP of IF that covers each letter ¢f at least is bounded by at mostc(4m — 1), as there are intervals in

m < M times. 1, each with two endpoints. [ |
Steps: For them-fold PE-interval cover problem, the approxima-
1 Let P — 0. tion factor becomesl(4m — 1), asc = 2. It is still open
2 Repeat whether some approximation algorithms can be designed for
3 Select ac-interval H such that for some interval the m-fold c-interval cover problem, with a constant factor
w(H) € H, improve(w(H), P) is the largest.  independent ofn, c. We will report the performance of these

4 P~ PU{H}. two algorithms, form = 30 andc = 2, in Section VI.
5 Until each position inS is covered> m times.
6 Return P.

End of Algorithm

IV. FIXED PARAMETER TRACTABLE RESULT FOR
k-BOUNDED SET-COVER

Theorem 2:There is a polynomial time factde(4m — 1) In this section, we show a fixed parameter tractable solution
approximation algorithm for then-fold c-interval cover prob- for the k-bounded set cover problem.
lem. Theorem 3:There is anO(k*n©())-time algorithm such

Proof: Let O be an optimal solution for then-fold - that given a sefX’ with sizen and a familyF of subsets of

interval cover problem such that each positionsois covered X, it finds a solution for thet-bounded set cover problem

by at leastm c-intervals in F. When a newc-interval H  With at mostt subsets.

is added to the approximate solution, we have an interval Proof:In order to cover the whole sét, for each element

w(H) € H that makes the largest improvement given thi@ X that belongs to at mogt subsets, we must select one of

current partial solutiorP. the k subsets in order to cover this element. The selection has
When a newc-interval H is added toP, w(H) € H has a at mostk choices. Since a solution needs at mbstbsets,

cover improvement at least at positignwhich is covered at the total time is bounded b@(k'n°™).

mostm — 1 times by thec-intervals in P (i.e., cover(q, P) < u

m) before H is added toP. WLOG, assume that there is Definition 5: The k-boundedc-interval cover problenis a

somec-intervall € O, I ¢ P, such thatl coversq. If w(H)is Vvariant of thec-interval cover problem which satisfies that

completely contained in some interval bfthen it violates the the number of occurrences of any elements in esck

greedy choice of the algorithm (dsshould be selected insteads bounded by a constait > 2 and there exists an element

of H — due to that/ ¢ P, w(H) is contained inZ, and/ Which appears iff exactly & times.

coversg). Let I containe disjoint intervals|l;, 1], - - - , [lc, rc)- Since thek-boundedc-interval cover problem is a special
Consider a set of intervals; () in P that covers the left case of the:-bounded set cover problem, we have the follow-

endpoint/; in the i-th interval[l;,r;] in I. Let H; 1, H; 5,--- ing corollary.

be thec-intervals inL;(I) according to the order that are added Corollary 1: Given a permutatioy’ with lengthn and a set

to P. We need to bound the size &f(I), |L;(I)|. I of c-intervals, there is a® (k!n°™))-time algorithm to find
Let H;1, -, H;am—1 be the first2m — 1 c-intervals in a solution for thek-boundedc-interval cover problem with at

L;(I). ForanyH; ; with j > 2m—1in L;(I), it is impossible mostt c-intervals.

that H; ; can improve the elements to the left and right of

Assume that; ; improves an element, to the left ofl;, and v/ CompLEXITY OF THE c-INTERVAL COVER PROBLEM

also improves an elemept; to the right ofl;. py is covered ) ] ]
by at mostm — 1 intervals inH; 1, - - , Hiam_1, and pg is In this section, we explore the hardness of thimterval
IR Y B — 1 L

covered by at most — 1 intervals amongd; 1, - - - , Hy am-1. cover problem. Theorem 5 shows that the problem is NP-
Thus, there is an interval among; j,- - I , n7—1 that is Ccomplete wher: = 2 and by Theorem 4, the-interval cover

fully contained in H; ;. This contradicts the greedy choiceProblem is APX-hard ifc > 3.

of the algorithm (i.e., if so,H; ; would have been selected !t iS well known thatk-set cover is APX-hard fok > 3
earlier). [19]. Based on that, we have the following result.

Let H;,,H; ,, - ,Hi;, bem intervals in L;(I) after Theorem 4:The c-interval cover problem is APX-hard if
1,01 2,729 I 1,)m (3

the first2m — 1 intervals are selected to improve the elements= 3- _ o _

to the left of /;, When we haveH, ;. ,, it can improve an Proof: We have a simple polynomial time reduction from
elementp to the left of /;, and p’ T; covered by at most 3-set cover to the3-interval cover problem by setting each
m — 1 intervals in {H; ;,, Hi j,, -, Hi;, }. Thus, at least interval to be a single element. The same idea can be used for

one interval, sayH; ;,, does not covep. Therefore,H, ;, ., ¢~ 3. _ . u
can have a bigger improvement thaf j,. This contradicts 1N the _foIIowmg part, we show that the PE-interval cover
the greedy choice. Therefore, after the f2st — 1 c-intervals Problem is NP-complete. The core idea is that (Be3)-SAT
H;1, -+, H;2m_1 are selected, there are at mastintervals Problem is polynomial-time reducible to the PE-intervaveo

in L;(I) to improve the elements to the left &f problem. We first give the definitions 8SAT and(3, 3)-SAT.



Definition 6: A 3SAT instances a conjunctive formC; A simplified assumptions about the formulaFirstly, no clause
Cs A ... A\ C,, such that eaclt; is a disjunction of at most contains both a variable and its negation, for such a clause,
three literals.3SAT is the language of thos&SAT instances it is automatically satisfied by any assignment of values to
that have satisfiable assignments. the variables. Secondly, each variable appears in at le®st o
Definition 7: A (3,3)-SAT instance is an instanc& of clause, for otherwise it does not matter what value is assign
3SAT such that for each variable, the total number of to the variable. Thirdly, no variable appears three times in
occurrences ofr and z in G is at most3, and the total positively, otherwise we can simply assign these variatoles

number of occurrences af in G is at mostl. (3,3)-SATis

to remove them and the clauses which contains these vagiable

the language of thog@, 3)-SAT instances that have satisfiablavithout affecting the satisfiability o.

assignments.

For examples(zy V xa V 23) A (T1 V Z2) A (21 V Z3) IS @
3SAT instance but not &3, 3)-SAT instance sinc&; appears
twice. On the other handyg, Vaa Vas) A (21 VZ2 VES)A (21 V
x3) belongs to botlBSAT and (3, 3)-SAT. It is well known

First, we transformyp into a n3p-(3, 3)-SAT instancep’ =
CINCyN...NC], = s(af,a,...,x),) using Lemma 2.
Let m’ and k¥’ be the clause size and variable size @f
respectively, we haver < m’ < 2m andk <k’ < k+m. In
our constructions$ is initially composed of a sequence of non-

that 3SAT is an NP-complete problem. The following lemmampty segments/intervals, each is filled with a permutation

shows thaBSAT is polynomial-time reducible t¢3, 3)-SAT.

Lemma 1:[18] There is a polynomial time reductiofy(.)
from 3SAT to (3, 3)-SAT.

Definition 8: Given a(3, 3)-SAT instancep = C; A Cy A
...NCy, a clauseC; of ¢ is called a3-positive clausef C;
contains three positive literals. If @, 3)-SAT instancep has
no 3-positive clauseg is called an3p-(3, 3)-SAT instance

of letters such that no two intervals share a common letter.
Moreover,|S| = n and there aren’ + k' intervals inS — we
assume that is a multiple ofm’+&’. We then try to construct

a setF which contain2k’ paired-end intervals, based on the
intervals inS, such thatp is satisfiable iff there exists a subset
C C F such that the sequence formed by the sulisebvers

all the elements of and|C| = ¥'.

Lemma 2:There is a polynomial time transformation from The set can be constructed using the followidgsteps of

a (3,3)-SAT instancep to an3p-(3, 3)-SAT instancep’ such
that ¢ is satisfiable iff¢’ is satisfiable.

Proof: Let ¢ = C; ACa A ... A (), be an instance of §;, 5, ..
(3, 3)-SAT. The transformation frons to ¢’ performs the same (1,2

conversion for each claugg;(1 < i < m). If a clauseC; =
(xf v b v i) of ¢ is a 3-positive clause, we convett;
into C/ A CY = (2} v ay v Il) A (xh v al) by adding a
new variablez’,. Neither C' nor C” is a 3-positive clause,

after the conversion. Therefore,(8, 3)-SAT instance can be

transformed into a3p-(3, 3)-SAT instance inO(m) time. It
is easy to verify thatC; is true iff C; A C/ is true, so¢ is
satisfiable iff¢’ is satisfiable. [ |
For exampleg; = C1 A Cy A Cs is an instance of3, 3)-
SAT, whereC; = (1‘1 \Y CEQ), Cy (Ifl V xo V 53), C3 =
(x1 V z2 V z3). We convert it into an equivalent3p-(3, 3)-
SAT instancep) = C; A Cy A C5 A CY by adding a (dummy)
variablez,. HereC, = (z1 V x2 V T4) and C) = (a3 V x4).
As a decision problem, for a given permutatich with

length n, a family F of paired-end intervals and an integer

numberk, we ask simply whether there exists a suliSet F
such that the permutation formed by the subSetovers all
the elements ir§ and|C| = k.

Theorem 5:The decision version of the PE-interval cover

problem is NP-complete.

Proof: To show that the PE-interval cover problem is in
NP, for a given seF of paired-end intervals, we nondetermin-

istically select a subsét C F as a certificate foF. Let .S’ be

the set of elements ifi covered byC. Checking the certificate

C can be accomplished in polynomial timen(|.S| = n) by
checking, for each elemente S, whethers belongs toS’.
We next prove that3, 3)-SAT <,, PE-interval cover, which

shows that the PE-interval cover problem is NP-hard. We are

given a(3,3)-SAT instance¢p = C; ACa A ... AN Cy, =
s(x1,x2,...,2r) Wherem is the number of clauses arid

procedures (see an example in Figure 1):
Step 1 Divide the sequenceés into m’' + k' intervals

.y Sm4k Of the same sizem,’—jrk/. We haveS; =
n __yn(i—=1) n(i—1) ni
..,—m,%,) ands; = (—m,+k, +1, e T2 —m,%,)

for2<i<m’+Fk.

Step 2 Mark all the intervals and all the variables as unused,
leti = 1.

Step 3 For clauseC! = (I V14 V1) of ¢/, wherei < m/,

we have three cases:

« Case 11If C/ has exactly one unused positive variable,
select the first unused interve,. Let the variables
14, 15 and I§ represent the same interval,, then S,
is marked as used. We call the intervals which are
marked by clauses &Slause IntervalsFor that unused
positive variablel; (j € {1,2,3}) in C}, which means
li = z; (1 <t < k'), select the first unused interval
Sy, letl] _andl;- represent the same intervsl}. Then the
variablel;. =z} and the intervalS, are marked as used.
We call the intervals which are marked by variables as
Variable Intervals

« Case 2 If C/ has two unused positive variables, select
the second unused intervél,, let variabledi, 75 and !}
represent the same interv&l,. Then the intervalS, is
marked as used. For those two positive variabjleﬁh €
{1,2,3}) and i, (j2 € {1,2,3}) in C}, select the first
and the second unused intervalg, S,. Let[j andlj
represent the same interval, . Similarly, letl; andij,
represent the same interval,,. Then the variableﬁ;l,

l;z and the intervalss,,, S,, are marked as used.

o Case 3 If there does not exist any unused positive
variable inC/, select the first unused intervél,, let the
variablesii, 1i and I} represent the same interval,.
Then the intervalS, is marked as used.

is the number of variables . WLOG, we make three Leti =i+ 1, repeat step 3.
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Fig. 1. The reduction from3p-(3, 3)-SAT instancep| = C{ACLACLAC) 1 S B
to an instance of the PE-interval cover problem, whefe= (z1 VZ2 Vx3),
Ch = (11 V a2 V 3), O} = (21 V a2 V 34), C}, = (3 V x4). Set 2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k 28k 30k
S'is divided into eight intervals. Clause Intervals and \llgalntervals are Number of 2-intervals

marked as red and blue respectively. A satisfying assighmkthe formula

hasz; = 1, z3 = 0, z4 = 3 = 1, andz2 may be either0 or 1. This

assignment satisfieS] andC; with z1, it satisfiesC) with =4 and satisfies

Cs with Z3, corresponding to four paired-end intervals with four eiiéint Fig. 2. The comparison between the single-improvement amah- s

colored bold lines. improvement greedy algorithms. The sequence leng#0,i900, the length of
each interval is 100 and each element is covered at least ®heehorizontal
coordinates represent the number (in k=1000) of géntervals, the vertical
coordinates represent the average approximation ratie.ratios for the two

. algorithms are shown in the blue curve and cyan curve respéct
Step 4 If all the variables are marked as used, the construc-

tion is done. Otherwise there are unused variables. Then, fo
each unused variable,, select the first unused interval,.
Let z,, andz, represent the same intervs,. VI. EXPERIMENTAL RESULTS
It is easy to see that the sBtcontains a paired-end interval We implement the greedy algorithms described in Section
for both 2}, andz} (1 <t <k’) in ¢/. So the total number of Il for the PE-interval cover problem. The experimentaluiés
paired-end intervals ifif is 2k’. In addition, the transformation of the single improvement greedy algorithm show a much
takesO(m' + k') time. better approximation ratio thaic = 12, which was given
Finally, we must show that the transformation is a reductiof? Theorem 1. The sum improvement greedy algorithm is also
First, suppose thap has a satisfying assignment. By Lemmé&ested. The experimental results show that it has a general
2, ¢’ also has a satisfying assignment. Then for each variatsietter performance compared with the first one. We also imple
z, (1 <t < k), is assigned either or 0. If it is assignedl, menttwo algorithms for then-fold PE-interval cover problem,
we select the paired-end interval representedhyotherwise, focusing onm = 30 (andc¢ = 2). This conforms more with
we select the paired-end interval representedbyWe put all  the practical datasets in PE-based genome sequencindy simp
the selected intervals into the €@t it is obvious thatC hask’ because the cost of obtaining the short reads is cheap, ftence
elements. We next show that the union of all the intervals if Possible to obtain a lot of short reads such that each eieme
C covers the sequencg. Since¢’ is satisfiable, each clauseis covered at least/ > m times.
C; contains at least one literé] which is assigned. So for
each claus_e interval, it is covered. Fpr_each variable vater A Implementation Details
because either) or z; is selected, it is covered too. The _ ) ) L
sequences is made up of the union of all the clause intervals Vith the purpose of easily testing the approximation perfor

and variable intervals, therefofeis covered by the paired—endmanc?’ we select two short sequences of lengiivn00. The
intervals inC. selections are based on the first sequenced RNA-genome [21]

and DNA-genome [22]. The length of each short read is fixed

Conversely, suppose Fhﬁt IS pons}ructed_ using the aboveat 100, i.e., each PE-interval contains two disjoint inasv
procedures, andC C F is of size ¥’ and it covers all the

elements inS. We can assigf to all literals which are used to of length 100 each. We usdiSizeto represent the number

;o . . of given 2-intervals. We first construct an optimal solution
represent thé’ paired-end intervals i€. Here we do notneed _
S . . which uses the least number ®fintervals to cover the whole
to worry about assigning to both a literal and its complement.

SinceC is of sizek’, if the paired-end intervals represented by adence (which is 20000/200=100) and add it into Zhe
, _, p pail ep . Yhterval set, and then the remainifgntervals are constructed
z; andz; are both included irC, there must exist a variable

x} such that neither the paired-end interval represented;/by randomly.
nor by z; is included inC. According to the construction of
IF, the union of all intervals ifC cannot cover all the elementsB. Results for PE-interval Cover
of 5. After the truth assignment, each clause is satisfied. Thener the single improvement greedy algorithm, the worst
¢’ is satisfied, and therefoig is satisfied. approximation ratio i€.03. It is much better than the ratit2
B which was presented in Theorem 1. For the sum improvement

We comment that this hardness result also holds if tlggeedy algorithm, the worst approximation ratioli§0. From

reconstructed object is a sequence instead of a permutatiotheir average approximation ratios, we discover that tleese
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Fig. 3. The comparison between the greedy algorithms Sib@® and Fig. 4. The comparison between the greedy algorithms Sid@e and

Sum-1(m) for the m-fold PE-interval cover problem. The sspe length is Sum-2(m) for the m-fold PE-interval cover problem. The swpe length is
20, 000, the length of each interval is set 180. Both two greedy methods 20, 000, the length of each interval is set 1®0. Both two greedy methods
cover each element at least = 30 times layer by layer. The horizontal cover each element at least = 30 times. The horizontal coordinates
coordinates represent the least number of times each eleshédme sequence represent the least number of times each element of the 1segjig covered.
is covered. The vertical coordinates represent the aveapgeoximation ratio. The vertical coordinates represent the approximatiorordathe ratios for the
The ratios for the two algorithms are showed in the blue camve cyan curve two algorithms are showed in the blue curve and cyan curveergively.
respectively.

. . VIlI. CONCLUSION
algorithm has an overall better performance compared \uigh t

first one. Though we cannot prove that the second algorithm!" thiS paper, we investigate the problem of identifying
is a constant factor approximation, the testing resultssshd€ Minimum number of short reads to cover the genes in a
that it works very effectively in practice. See Figure 2 for §Enome (to be sequenced)times. Form = 1, we formulate
comparison for the two greedy algorithms with their averag;Q'S as the PE-interval cover problem which is related to the
approximation ratios. amous set-cover problem. We explore the hardness of the

We also found that the approximation ratios for these twiE-intérval cover problem and present some approximation
greedy algorithms are not relevant to the number of given &90rithm to solve it. The approximation algorithm also gen
intervals. This is possibly due to that the intervals arehsf t €ralizes to the case for fixeth,c and is shown to have a

same length (which is a common practice in PE-based genof@glor of 2¢(4m —1). There are several open problems. (1)
sequencing). For the m-fold c-interval cover problem, is there a constant

factor approximation whose factor is independentrofc?
. (2) Whenm = 1, the sum improvement greedy algorithm
C. Results fom-fold PE-interval Cover has a better performance in our implementation; however,
For the m-fold PE-interval cover problem, we implementhere is no approximation analysis of it. (3) It seems that th
two versions of algorithms, which are both based on the singlpproximation ratio given in Section Il can be improved, at
improvement and sum-improvement algorithms for PE-irgrvieast indicated by our empirical results.
cover. The first version, Single-1(m) (resp. Sum-1(m)),ds t
run the single-improvement (resp. sum-improvement) greed
algorithmm times, i.e., level by level, each level corresponds ) ]
to a solution for the PE-interval cover problem. We use the Bin Fu is supported in part by NSF Early Career Award
number of times an element is leastly covergfi, as another 0845376. Binhai Zhu is partially supported by NSF un-
parameter. In the whole process, we fix=30. See Figure der project DMS-0918034, _by NSF of China under project
3 for a comparison for the two greedy algorithms with theif0928006, by the Shanghai Thousand Talents Program, and
average approximation ratios. by the Open Fun(_d of qu Key D|SC|pI|ne of Computer Spft—
The second version, Single-2(m) (resp. Sum-2(m)), is théare and T_heor_y in Zhejiang Provincial Colleges a.t Zhejiang
factor2¢(4m — 1) approximation algorithm; i.e., we select aNormal Unlversn)_/. We also thank anonymous reviewers for
PE-interval I; which contains the maximum number of eleSeéveral constructive comments.
ments which have not been coveredtimes yet in one (resp.
both) of the intervals inf. See Figure 4 for a comparison for
the two greedy algorithms with their average approximatiorﬂl]
ratios. While the approximate ratios are similar for the two
versions of algorithms, the second version shows a muckdarg(?]
fluctuation. On the other hand, it is much better than they
theoretical ratio which is 478 (in the worst case).
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