Weak Kernels

Haitao Jiang Chihao Zhang Binhai Zhu

November 18, 2010

Abstract

In this paper, we formalize a folklore concept and formalgfide weak kerneldor (NP-
hard) search problems, which is about search space reduatid stands as a new generic
technique for designing FPT algorithms. We show that weakdle are different from the
(traditional) kernels for decision problems, by exhibitian example out oP such that its
decision version has no kernel while the equivalent searoblem has a weak kernel. We
show a few applications of weak kernels, for which a tradisibkernelization seems hard to
apply. Among them, we present the first FPT algorithm for #fimdus Sorting by Minimum
Unsigned Reversals problem.

“Department of Computer Science, Montana State UniversBgzeman, MT 59717, USA. Email:

htji ang@s. nont ana. edu.
fDepartment of Computer Science, Shanghai Jiao Tong UiiyerS§hanghai 200030, China. Email:

chi hao. zhang@mai | . com
fCorresponding author. Department of Computer Science,tdenState University, Bozeman, MT 59717, USA.

Email: bhz@s. nont ana. edu.

1 Introduction

In the last four decades, we have seen the huge advance aiNplateness [12, 27, 19]. Nowadays,
NP-complete problems appear in almost all the areas whicivies combinatorial optimization, for
example in computational biology and bioinformatics. Amfirthe beginning a lot of people tended
to believe BANP (at least it seems to be hard to prove or disprove it), geopediately started
to investigate different ways to handle NP-hard problemg.tdJtoday, the two most popular ways
to handle NP-hard problems, among researchers in algod#sign, are approximation algorithms
and exact (or FPT) algorithms, which were started with thaisal works of Johnson [25] and
Tarjan and Trojanowski [31] respectively. (Using heudstiethods to hand NP-hard problems, like
evolutionary computation, is beyond this paper.)

In some areas like computational biology and bioinfornsatibe data usually contain errors.
On top of this, if we design a factor-2 approximation to hanitiese data, whatever result we got
is not appealing to biologists. So, to make approximatigoihms useful for these applications,
the approximation factors must be very close to one. Themyaldy, FPT algorithm pops up as a
natural alternative for handling these problems. The twaliagtions we will discuss in this paper
all originate from computational biology.

On the other hand, the theory of fixed-parameter computdtdsbeen developed rigorously in
the last two decades. The first textbook was published in 1§9Bowney and Fellows [14] and
another couple were published in the last several years [&4). Interested readers are referred to
[20] for further details and references.

In designing FPT algorithms, kernelization is one of the nfosdamental techniques for de-
cision problems. Loosely speaking, kernelization is sedhta reduction i.e., with kernelization
one reduces the problem instance size (kernel size) to & $evemall that one could even ap-
ply a brute-force method. Sometimes, even if the kernel isizightly bigger (say2*) so that a
brute-force method is inappropriate, one can still makeafisiewith integer linear programming or
branch-and-bound to obtain almost optimal solutions ines@aable amount of time [20].

In this paper, we formalize a folklore method and formallyineweak kernelsand weak ker-
nelization forsearchproblems. Again, loosely speaking, when viewing an NP-lmgtiimization
problem as a search problem (like for Vertex Cover, we artiyrsaarching for a set of vertices,
amongn input vertices, so that deleting thevertices leaves the resulting graph edge-less), weak
kernelization is really abowsearch space reductionWe show that in general weak kernels and
kernels are not equivalent. This is done by showing an exaum of P such that its search version
has a weak kernel but its equivalent decision version hasnwek (We comment that this “search
vs decision” question has been considered in the compléxitgry before, as early as in 1974 by

Valiant [33]. Interested readers are referred to [5] for filmther development.)

The purpose for defining the weak kernels concept, on the didned, is more on helping us
design FPT algorithms more easily. In other words, weakédderation should be considered as a
new generic method for designing FPT algorithms efficietlgre, we show an application of weak
kernels to two problems, all known to be NP-complete, foralhive compute the corresponding
weak kernels efficiently (hence design efficient FPT algomg). Among the two problems, Sorting
with Minimum Unsigned Reversals is a famous problem in comanal biology and we do not
know of any non-trivial kernelization or FPT algorithm far We show that Sorting with Minimum
Unsigned Reversals has a weak kernel of gizehence an FPT algorithm running &(2%n, +
nlogn) time (and with a more detailed analysis,Mi2%n + nlog n) time).

2 Kernels vs Weak Kernels

2.1 Preliminaries

Basically, a fixed-parameter tractable (FPT) algorithmafdecisionproblemIT with solution value

k is an algorithm which solves the problem @ f(k)n°) time, wheref is any function only on
k, n is the input size and is some fixed constant not related/to FPT also stands for the set of
problems which admit such an algorithm [14]. (B&be a finite alphabet. In the languages of [17],
a parameterized problen@, <) is composed of a s&) C X* of strings and a parameterization
x of ¥* (which mapsX* to N). An FPT algorithm for(Q,) is then an algorithm which solves
itin f(k(x)) - p(|z|) time, wherex is the input length,f is any computation function angis a
polynomial function.)

Kernelization is a polynomial time transformation thanséorms a problem instandé, k) to
another instancél’, k) such that (1)1, k) is a yes-instance iffI’, k') is also a yes-instance; (2)
k' < k; and (3)|I'| < f(k) for some functionf(—). (I’,k’) is typically called akernelof the
problem, with sizgI’|. It is easy to see that if a problem has a kernel then it is in; FROreover,
every problem in FPT has a kernel. From this, kernelizat®a way to perform data-reduction
with performance guarantee, “a humble strategy for copiith tiard problems, almost universally
employed” [15]. More fundamental details on FPT algorithtaa be found in [14, 17].

Recently, Bodlaendeaat al. conducted a seminal work by showing that a class of impoR&xt
problems cannot have polynomial (e.Q.(k?) size) kernels unless the polynomial hierarckyj
collapses to the third level (i.ePH = E;’;) [6]. (The fundamental technique of this work, however,
is adapted from [18].) One such problem is calledlEAF OUT-BRANCHING (i.e., finding a
rooted oriented spanning tree with at leadeaves in an input digrapP) [16].

2.2 Weak Kernels

As illustrated in the introduction, we view weak kernelipatas a way to reduce search space. In
the following, we formalize the folklore concept and caligéak kernel. We also prove some of its
basic properties.

Definition 1 (Search Problem) Let ¥ be the alphabet and. C ¥* be a decidable language. A
search problem w.r.tL is a binary relationR;, C ¥* x ¥*. x € L iff 3y € ¥* such thatR(x, y).
We say a Turing machiri computesR if:

e If x € L, thenT acceptsr with outputy € ¥* such thatR(zx, y).

e If x & L, thenT rejectsz.

Intuitively, two stringsz, y € ¥* such thatR(z, y) means thay is a witness ofc € L.
With this definition, a search problem is NP if:

e Thereis a polynomigh : N — N, for anyz,y € ¥*, R(x,y) implies|y| < p(|z|).
e Foranyzx,y € ¥*, R(x,y) can be decided in PTIME.

Then the search space of a search problem is a language frimin gdiution could be extracted.

Definition 2 (Search Space)Given a search probleni; w.r.t. a languagel and x € ¥*, the
search space oR;, is a languagel’ with two algorithmsS and A such thatr € L iff S(x) € L'
andRp(z, A(S(x))).

Definition 3 (Weak Kernel) Let Ry be a parameterized search problem over alphabetith the
underlying decision problerQ,). LetT" be a Turing machine that decidésand its runtime is
bounded by a functiorf.

A polynomial time computable functid# : X* — >* is a weak kernelization df), x) if there
exists an algorithmdy, such thatLy, := {W(z) : z € L} is a search space d®¢, moreover, for
eachz € ¥*, W(z) = (w1, w2) with |wi| < h(k(z)), |w2| < ¢(f(|z| + x(x))) and the runtime
of Ay (w1, w2) is bounded by (Jw1|) X p(|wz|) whereg, h are arbitrary computable functions and
p, g are polynomial functionsLyy is called the weak kernel.

Let W be a weak kernelization and’(z) = (w;,w2) for somexr € ¥*. We define the size of

weak kernel w.r.tz: as |wy]|.

In the definition of weak kernelization, the runtime 4f; depends on two parts, sgy|w:|)
andp(|ws|) whereg is an arbitrary computable function apds a polynomial function. In many
practical caseap, contains the essential information to obtain the solutiad @, only deals with
encoding.

Forinstance, for the parameterized Vertex Cover (p-Ve@exer) with instance® = (V, E), k),
lwa|=O(klog|V]) = O(klogn). This issue was raised by Harnik and Naor before [21]. Howeve
for our applications, as all the problems areN#®, this actual encoding blow-up can be almost
always ignored. This is similar to the RAM model, in which oren store a vertex/integer using
O(1) space; but in theory we need to stdse n bits for a vertex if there are vertices to store.

However, in the following example, the, part is used to verify the solution.

Example 1 p-SAT has no polynomial kernelization unle®d collapses to its third level (i.e.,
PH = ¥%) [18, 6]. But it has a weak kernelization such tHat(z) = (x(z), z).

2.3 Kernels# Weak Kernels

Weak kernelization is somehow a generalization of kera&bn to search problems. In essence,
weak kernelization deals with problems that search for megis. However, since in a decision
problem, the solution is “Yes” or “No” and always differembi its witness, these two notations
are different if we directly change a search problem to decisne. We show below that for some
logically equivalent decision and search problem, kernel\@eak kernel cannot co-exist.

Example 2 Let@ ¢ P be some language ov&r such that for any: € >*, whetherx € @) can be
decided inf(|z|) time. Define a search problef, as below:

o Vx e ¥* ifx € Q,then(x,1) € Rg.
o Vz e ¥* ifx & Q, then(z,0) € Rg.

Letx(x) = 1 for everyx € ¥£*. ThenRg has a weak kernelization b(f),) has no kernelization.

Proof. Itis easy to see thdt),) has no kernelization for otherwise an FPT algorithm (fQr,)
would imply @ € P.

Rg has a trivial weak kernelization that (z) = z1/(2D) for all 2 € ©*. That is,W (z) is «
followed by f(]x|) 1's. (Note thatw; = { in this case.) The algorithmdy; just testsR(z, 0) and
R(z,1). 0

We comment that the above result is related to the “searchaisidn” question in the traditional
complexity theory; namely, under a complexity assumpttbere is an associated search problem
p in NP which cannot be reduced to its corresponding decision proljb].

5

However, if the underlying decision problem for a searchbpem is inNP, then weak kernel-
ization implies kernelization.

Proposition 1 Let R be a search problem with underlying parameterized decigioblem(Q,),
and@ € NP, then a weak kernelization fdtg implies a kernelization fofQ,).

Proof. Let W be a weak kernelization and (z) = (wi,w9) for x € ¥*. By the definition of
weak kernel,|w;| < h(x(x)) and|wz| < q(f(|z| + x(x))) for some computable functioh and
polynomial ¢; and furthermore,f is also a polynomial function sinad@ € NP. Then the search
algorithm Ay, whose runtime ig(|w;|) x p(|wz|) for some computable functiopand polynomial
p implies an FPT algorithm to decidg. O

While the above proofs are not really difficult, they haveemssting theoretical implications. For
instance, for a problem unlikely to have a kernel ($apominating Set, which is W[2]-complete),
as long as it belongs to NP, it is equally unlikely to have aknlganel. Therefore, for problems in
NP, the true merit of the above concepts seems to be helpidgsign efficient FPT algorithms via
weak kernels directly.

Through a private communication with Mike Fellows, the st idea of using weak kernels
seems to be in [1], where Bonsma, Briiggemann and Woegihgeresl that the MAX LEAF prob-
lem has a weak kernel of size5k. (Note that MAX LEAF is the complement of the Minimum
Connected Dominating Set problem.) In the next section, kesvsgwo new applications of weak
kernels.

3 Applications

We show below two examples of the applications of weak kern€br both of them, we do not
know of better kernel bounds. For the famous Sorting with iMimm Unsigned Reversals, this is
the first non-trivial FPT algorithm.

The two minimization problems we consider are all known td\g&complete: Minimum Co-
Path Set and Sorting with Minimum Unsigned Reversals (SMWR)will mainly focus on solving
these problems with weak kernels. For some of these prob{ergs Minimum Co-Path Set), it
is possible to solve it with bounded search tree, on top ofkwkeginels. Yet in general it is still
unknown whether bounded search tree is always more powkenlweak kernels.

3.1 Minimum Co-Path Set

In this subsection, we study the following problem callechidium Co-Path Set. Given a simple
undirected graplds, a co-path seis a setS of edges inG whose removal leaves a graph in which

6

every connected component is a path. In the Minimum Co-Petti?@®blem, we need to compute a
minimum co-path set k.

The Minimum Co-Path Set Problem originates from radiatigbrid (Rh) mapping, which is
a powerful technique for mapping unique DNA sequences dmtoncosomes and whole genomes
[9, 13, 28, 29]. In Rh mapping, chromosomes are randomly dardkto small DNA fragments
through gamma radiation. A (random) subset of these DNAnfiexgts retain with healthy hamster
cells and grow up to build up a hybrid cell line. This processdpeated many times and the co-
retention rate of a pair of markers (labeled chromosomad) ladicates their physical distance on
the chromosome. In principle, when two markerandy are close, the probability thatandy are
broken by the gamma radiation is small, hence with a highadsdity they are either co-present in
or co-absent from a DNA fragment.

A subset of markers that are co-present from DNA fragmentailed acluster Let V' =
{1,2,---,n} be a set of markers and l1ét= {C;,C5,---,C,,} be a collection of clusters. The
Radiation Hybrid Map Construction Problem is to computaadir ordering of the markers in which
the markers in each clustéf appear consecutively. In reality, a cluster might be form@éd errors,
s0 no such linear ordering might exist. In this case, one :g@demove the minimum number of
clusters so that the leftover clusters admit a linear onderiVhen|C;| = 2 for all 7, this is exactly
the Minimum Co-Path Set Problem. Given a simple undirecteglyG = (V, E), each vertex in
V corresponds to a marker, an edgev) € E corresponds to a clustér, v}.

In [9], the Minimum Co-Path Set Problem was shown to be NPgieta [19]. The proof is by
a reduction from the Hamiltonian Path problem, with eachegdgv) being converted to a cluster
{u,v}. Itis easy to see that there is a Hamiltonian Path in the igmphG if and only if one has to
delete exactlyfE| — n + 1 clusters. A factor-2 approximation was also proposed inydiich was
recently improved to 10/7 [11]. (The counterpart of the Minim Co-Path Set Problem is the well-
known Minimum Path Coveproblem [34] and will not be covered here.) Lebe the minimum
number of edges deleted for the problem. We show in this stibsethat the Minimum Co-Path
Set Problem is in FPT; in fact, it has a linear weak kernel o sit mosbtk, hence the problem can
be solved efficiently ir0 (236 (n 4 k)) time. In the following, we present the technical details.

If some connected component Gfhas maximum vertex degree at most 2 then the problem is
trivially solvable for that component. So from now on we assuthat each connected component
of G' has maximum vertex degree at least 3. Moreover, in the solatisingle vertex could also be
considered as a (degenerate) path. The following lemmasistegprove.

Lemma 1 There is a solutionRk for the minimum co-path set such thRtcontains only edges
incident to some vertices of degree at least &in

Proof. Assume to the contrary that a solutidhcontains some edgde:, y) such that bothr andy
have degree at most two (. Let G — R be the graph obtained frodd by deleting all the edges in
R. When bothr andy have degrees at most 2,(if, y) is in R then putting it back t@x — R would
have two possibilities: (1) make each connected comporfefe- R) U {(z,y)} a path, or (2)
create some cycle ifG — R) U {(z,y)}. In case (1), it contradicts the optimality & In case (2),
(x,y) is on some cycle i7. Hence we can find an edg@e’, ') on this cycle which is incident to
some vertex of degree at least 3Gh Then we simply swagx, y) with (2/,¢') in R. Itis easy to
see that repeating this process we can eventually have aoletios R’ such thajR’| = |R| and
R’ contains only edges incident to some vertices of degreast &inG. O

Now let D be a solution for the minimum co-path set such thatontains only edges incident
to some vertices of degree at least 3in The above lemma implies a simple weak kernelization
procedure.

1. Identify the vertices ofs with degree at least 3. Let this set bg(G).

2. Letthe set of edges which are incident to some verticé3 (&) be E5(G).
ReturnEs(G) as a weak kernel.

We have the following lemma.

Lemma 2 The Minimum Co-Path Set Problem has a solution of siffieand only if the solution
can be obtained by deletingedges inF5(G).

Proof. We only need to show the ‘only-if’ part as the other part isiobg. By Lemma 1, we do not
need to include any edge in which is incident to vertices of degree only one or two. O
It remains to show the weak kernel size (i.e., the siz€4i7)). We have the following lemma.

Lemma 3 Letk = |D|, then|E3(G)| < 5k. In other words, the size of the weak kernel of the
Minimum Co-Path Set Problem 5.

Proof. From Lemma 2, we know that theedges ofD can be found inEs(G). After thesek edges
in D are deleted frontz, G — D is only composed of paths, i.e., the degrees of vertic&s in D
are at most 2. In other words, the edgesi(G) — D must also be incident to vertices W — D
of degree at most 2 (note that these vertices originally kie &3(G)). As thek edges inD are
incident to at mosRk vertices inV3(G), |V3(G)| < 2k. Therefore, we have at mosk edges in
E5(G)—D. Counting thé: edges inD back, we havéEs;(G)| = |Es(G)—D|+|D| < 4k+k = 5k.
O

With the above lemmas, it is easy to have an FPT algorithmHerMinimum Co-Path Set
Problem. First, il V3(G)| > 2k or |E5(G)| > 5k then we can simply return NO. Otherwise, among

8

the (at mostpk edges inEs(G), select all combinations of edges to delete. For each setkof
edges selected, delete them frafand check whether the resulting graph is composed of paths
only (using standard linear time graph algorithms like @iefrist search). If we fail to find such a
set, then return ‘No solution of siZg; otherwise, just return the computed set of edge®ag he

5k
time complexity of the algorithm is dominated by checki{g .) ~ 2361k splutions. We have

the following theorem.

Theorem 1 Let % be the size of the minimum co-path set. The Minimum Co-PatRrSklem has
a weak kernel of siz&k, hence can be solved @ (2% (n + k)) time.

3.2 Sorting with Minimum Unsigned Reversals

Sorting with Minimum Unsigned Reversals (SMUR) is a famousbfem in computational biol-
ogy, more specifically, in computational genomics. GivereaameH composed of a sequence of
n distinct genes (also formulated as a permutations oftegers{1,2,---,n}), i.e., assume that
H = s189---8;Si4+1- - 5j—15j - - - Sp, areversaloperation on the segmesfs;; - - - s;_1s; trans-
formsH into H' = sysa---5jSj_1- -+ Si+1Si - - - Sp. The problem Sorting with Minimum Unsigned
Reversals is to use the minimum number of reversals to coriyento the identity permutation
I =123..-n. Example: GivenH = 15342, we can use two signed reversals to first change it to
15432 and finally to 12345.

When the genes are signed, we have a similar problem SortthdWinimum Signed Reversals.
Given a signed genomE ~ composed of a sequencesoflistinct (signed) genes (also formulated
as a signed permutations ofintegers{1,2,---,n}), i.e., H~ = tity---titiy1---tj_1t; - ty,
asigned reversabperation on the segmetyt; ; - - - t;_1t; transformsH ~ into H" = tty--- —
tj —tj_1--- —tiy1 — t;--- t,. The problem Sorting with Minimum Signed Reversals is to tinse
minimum number of signed reversals to convArt into the identity permutatiod = 123 - n.
Example: GiverH = 1—534—2, we can use two signed reversals to first changelitto —4—3—2
and finally to 12345. (Note that in the literature it is alscemable to converH~ to —1 =
—n---—3 —2— 1. We can enforce thalf ~ is converted td by adding two auxiliary genes, i.e.,
0H~(n + 1). This is a known trick in computational genomics.)

SMUR was shown to be NP-complete by Caprara [7] and the besbeimation algorithm has
a factor 1.375 [2]. However, no non-trivial FPT algorithmkisown for the problem. The trivial
solution is to use a bounded search tree algorithm whichirursughly O (k°*)n) time. We show
below that with weak kernels, a much faster FPT algorithmlmadesigned.

We use Sorting with Minimum Signed Reversals as a subrodin&MUR. Unlike SMUR,

Sorting with Minimum Signed Reversals can be solved in potgral time [23, 26, 32], with the best
running time beingD(n logn) [30]. Computing the minimum signed reversal distance, hane

can be done in linear time [4]. Lé¥ be the (unsigned) genome to be sorted. It is easy to see that
each reversal can eliminate at most two breakpoints. (idhse a breakpoint is a 2-substrifig;)

of H such thatjj — i| # 1.) Hence, if the optimal solution size is there would be at mostk
breakpoints inH. In other words, there are at most genes which are in some breakpoints. Let
H;, be the set of such (at mosty genes.H,, is the weak kernel in this application.

Given H, let a maximal substring3 of H composed of at least two consecutive adjacen-
cies be called alock with the first and last letters calledead and tail of the block respec-
tively. (We also say that the head and the tail adgacent through the block in H.) Example:
H=1(0,5,7,8,10,1,2,3,4,9,6,11), B = (1,2,3,4) is a block with head and tail4. 7 and8 are
in H; but form an adjacency ifi/. 1 and4 are adjacent through the bloékin H. Following [22],
there is an optimal SMUR solution fd which does not cut any block.

Let H, be the set of signed genomes obtained by addifg signs on these genes (involved in
some breakpoints) ifi;,. (Following [22], if two such genes i, are the head and tail of a block
B, then all the genes iB should be given the same sign, i.e., either all positive lanegative.) It
is easily seen thdid, | < 2%k Moreover, we have the following lemma.

Lemma 4 There is a solution ok unsigned reversals for sortingf if and only if the solution can
be found by sorting some sequencédin with k signed reversals.

Proof. If there is a solution ofk unsigned reversals for sorting, then we can trace these
reversals backwards and each time add signs accordinglgxample, assume that the last reversal
to obtain(0, 1,2, 3,4, 5) is (3,2), then for sorting by signed reversals the second last sigaadme
is (0,1,—-3,—2,4,5). Itis easily seen that after repeating this proced¢snes, we have a signed
genomeH"” in H, . Certainly, one can soff” by k signed reversals.

On the other hand, if there akesigned reversals which sorts some genom&jn sayH"”, one
can ignore the negative signs i’ (to obtain /) and perform the samk (unsigned) reversals to

sortH into I. O

Theorem 2 Sorting with Minimum Unsigned Reversals has a weak kernétefls, hence can be
solved inO(2%n + nlogn) time.

Proof. We first show a bound ab(2*n + nlogn), which is straightforward from thék weak
kernel. First, following Lemma 4, the weak kernelizatioreasy: identify all the blocks i/ and
return (H, Hy, k). For each possible signed genomeHn (obtained fromH; by adding some

10

negative signs), we use th@(n) time algorithm in [4] to check whether it can be sorted with
signed reversals. If so, we can compute accordinglyktegned reversals using the algorithm by
Swensoret al. [30], to obtain thekt (unsigned) reversals to saf in O(nlogn) time. If no valid
solution is found, we report NO. This algorithm clearly ring)(2*%n + nlogn) time.

By a more detailed analysis (i.e., we do not have to try alkflide ways to sign genes i),
the running time of the above algorithm can be improved®t@?n + nlogn) time. Now let the
genes inHy, form a total ofz adjacencies (possibly through some blocks). Followind,[R2wo
such genes form an adjacencyfh obviously they have to be given the same signs, i.e., litbir
positive or both negative. If two such genes form an adjacémough some blockB in H, all the
genes inB need to have the same signs. So the total number of ways tgeigrs inH;, is bounded
by

22 X 2(4k—22)/2—1 — 22k—1

Hence we have an FPT algorithm with running tim&2*n + nlogn). O

We comment that, for the related Sorting with Minimum UnsidrTranslocation problem, ex-
actly the same idea can be applied to obtain a weak kernet@fkj hence an FPT algorithm with
running timeO(2%*n + n?). The relevant details can be found in [35, 3] (or from the nefiees
therein).

4 Concluding Remarks

We formally introduce a new (somehow a previous folklorenaept called weak kernels for fixed-
parameter computation and prove some interesting pregesfiweak kernels. We also show some
interesting applications with weak kernels. We believe thacertain problems weak kernels are
more flexible and possibly more powerful than the traditidmanels. This is certainly the case with
our two applications, especially the famous Sorting witmidium Unsigned Reversals (SMUR)
problem. We know of no FPT algorithm which runs closeQt(2*) time for SMUR. It turns
out that weak kernels can also be applied to obtain an effi€&iB algorithm for the problem of
sorting linear genomes under the unsigned DCJ distance [24juld be interesting to see more
applications of weak kernels.

Acknowledgments

This research is partially supported by NSF of China undejeget 60928006. We also thank Yijia
Chen, Mike Fellows and Angsheng Li for several valuable camis

11

References

[1] P. Bonsma, T. Briiggemann and G. Woeginger. A fast FPordhlgn for finding spanning
trees with many leaves. IRAroc. 28th Intl. Symp. on Mathematical Foundations of Catapu
Science (MFCS'03), pages 259-268, 2003.

[2] P. Berman, S. Hannenhalli and M. Karpinski. 1.375-agpmation algorithm for sorting by
reversals. IrProc. 10th European Symp. on Algorithms (ESA’'02), pages220) Rome, Italy,
Sep, 2002.

[3] A. Bergeron, J. Mixtacki and J. Stoye. On sorting by ttanation. InProc. 9th Intl. Conf. on
Research in Comput. Molecular Biology (RECOMB’Q&gges 615-629, 2005.

[4] D. Bader, B. Moret and M. Yan. A linear-time algorithm foomputing inversion distance
between signed permutations with an experimental sthiayf. Computational Biology8:483—
491, 2001.

[5] M. Bellare and S. Goldwasser. The complexity of decisiensus searchSIAM J. Comput.
23:97-119, 1994.

[6] H. Bodlaender, R. Downey, M. Fellows and D. Hermelin. Giolpfems without polyno-
mial kernels. InProc. 35th Intl. Colloguium on Automata, Languages and Paogming
(ICALP’08), pages 563-574, 2008.

[7] A. Caprara. Sorting by reversals is difficult. Proc. 1st Intl. Conf. on Research in Comput.
Molecular Biology (RECOMB’97pages 75-83, 1997.

[8] Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syrtdmdcks from comparative maps.
Journal of Combinatorial Optimizatiqri8:307-318, 2009.

[9] Y. Cheng, Z. Cai, R. Goebel, G. Lin and B. Zhu. The radiatitybrid map construction prob-
lem: recognition, hardness, and approximation algoritHgmgpublished Manuscrip2008.

[10] Y. Chen and J. Flum. A logic for PTIME and a parameteribadting problem. InProc. 24th
Annl. IEEE Symp. on Logic in Computer Science (LICS’'payes 397-406, 2009.

[11] Z. Chen, G. Lin and L. Wang. An approximation algorithar the minimum co-path set prob-
lem. Algorithmica to appear, 2010.

[12] S. Cook. The complexity of theorem-proving proceduresProceedings of the 3rd ACM
Symp. on Theory of Computing (STOC',/dages 151-158, 1971.

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. MygeRadiation hybrid mapping:
a somatic cell genetic method for constructing high resmtutaps of mammalian chromo-
somesScience250:245-250, 1990.

R. Downey and M. FellowsRarameterized Complexit$pringer-Verlag, 1999.

M. Fellows. The lost continent of polynomial time: prepessing and kernelization. Froc.
2nd Intl. Workshop on Parameterized and Exact ComputatiPEC’'06) LNCS 4169, pages
276-277, 2006.

H. Fernau, F. Fomin, D. Lokshtanov, D. Raible, S. Salarahd Y. Villanger. Kernel(s) for
problems with no kernel: on out-trees with many leave®1oc. 26th Intl. Symp. on Theoret-
ical Aspects of Computer Science (STACS'Papes 421-432, 2009.

J. Flum and M. GroheParameterized Complexity Theorgpringer-Verlag. 2006.

L. Fortnow and R. Santhanam. Infeasibility of instarmmenpression and succinct PCPs for
NP. In Proc. 40th ACM Symp. Theory of Computation (STOC’08), pd§&s142, Victoria,
Canada, 2008.

M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide to the Theory of NP-
CompletenesaV. H. Freeman, 1979.

J. Guo and R. Niedermeier. Invitation to data reducta problem kernelizationSIGACT
News 38:31-45. 2007.

D. Harnik and M. Naor. On the compressibility of NP instas and cryptographic applica-
tions. InProc. 47th IEEE Symp. Foundations of Computer Science (F@,$ages 719-728,
Berkeley, CA, 2006.

S. Hannenhalli and P. Pevzner. To cut...or not to cutplisptions of comparative physical
maps in molecular evolution). IRroceedings of the 7th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA’'96) pages 304-313, 1996.

S. Hannenhalli and P. Pevzner. Transforming cabbaigetimnip: polynomial algorithm for
sorting signed permutations by reversalsACM 46(1):1-27. 1999.

H. Jiang, B. Zhu and D. Zhu. Algorithms for sorting limegenomes under the unsigned DCJ
distanceBioinformatics submitted for publication, 2010.

13

[25] D.Johnson. Approximation algorithms for combinaédproblems.J. Comput. Sys. Scienges
9:256-278, 1974.

[26] H. Kaplan, R. Shamir and R. Tarjan. A faster and simplgodthm for sorting signed permu-
tations by reversalsSIAM J. Comput.29:880-892, 1999.

[27] R. Karp. Reducibility among combinatorial problems R. Miller and J. Thatcher (eds.),
Complexity of Computer Computatigrii@enum Press, NY, pages 85-103, 1972.

[28] C.W. Richard, D.A. Withers, T.C. Meeker, S. Maurer, G.&vans, R.M. Myers, and D.R.
Cox. A radiation hybrid map of the proximal long arm of humdmanosome 11, containing
the multiple endocrine neoplasia type 1 (MEN-1) and bclskdse lociAmerican J. of Human
Genetics49:1189-1196, 1991.

[29] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Buildilmuman genome maps with radiation
hybrids.J. of Computational Biology:487-504, 1997.

[30] K. Swenson, V. Rajan, Y. Lin, and B. Moret. Sorting signgermutations by inversions in
O(nlogn) time. InProc. RECOMB’09LNCS 5541, pages 386-399, 2009.

[31] R. Tarjan and A. Trojanowski. Finding a maximum indegent setSIAM J. Comput.6:537—
546, 1977.

[32] E. Tannier and M-F. Sagot. Sorting by reversals in saloigatic time. InProc. 15th Symp.
Combinatorial Pattern Matching (CPM’04)stanbul, Turkey, pages 1-13, July, 2004.

[33] L. Valiant. On the relative complexity of checking anghtuating.University of Leeds Techni-
cal Report LS29JT, Octobget974.

[34] S.Vishwanathan. An approximation algorithm for thgrametric travelling salesman problem
with distance one and twinformation Processing Letterd4:297-302, 1992.

[35] L. Wang, D. Zhu, X. Liu and S. Ma. A®(n?) algorithm for signed translocatiod. Compui.
Sys. Science§0:284-299, 2005.

14

