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The genomic scaffold filling problem has attracted a lot of attention recently. The prob-
lem is on filling an incomplete sequence (scaffold) I into I′, with respect to a complete
reference genome G, such that the number of common/shared adjacencies between G

and I′ is maximized. The problem is NP-complete, and admits a constant-factor ap-
proximation. However, the sequence input I is not quite practical and does not fit most
of the real datasets (where a scaffold is more often given as a list of contigs). In this
paper, we revisit the genomic scaffold filling problem by considering this important case
when a scaffold S is given, the missing genes can only be inserted in between the contigs,
and the objective is to maximize the number of common adjacencies between G and the
filled genome S′. For this problem, we present a simple NP-completeness proof, we then
present a factor-2 approximation algorithm.
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1. Introduction

Due to the advancement in genome sequencing technology, the cost for sequencing

a genome has been reduced significantly in the last decade. Currently, the cost

for sequencing a (human) genome is only around $1k. With this low cost, a lot

of genomes have been sequenced, although usually not completely finished. (We

typically call these incomplete genomes draft genomes). There has been tools to fill

the gaps for draft genomes 3,25, but it is not always guaranteed that one could fill

all the gaps for a given draft genome. In fact, the cost for making draft genomes

complete has not been reduced a lot compared with more than a decade ago 5. The

consequence is that there are more and more draft genomes. On the other hand,

to analyze the genomic data a lot of the corresponding tools do need complete

genomes as input. For example, we need two complete genomes to compute their

corresponding minimum reversal distance. Therefore, it is necessary to make a draft

genome complete.

To make the resulting genome biologically meaningful, Munoz et al. first studied

the scaffold filling problem (on multichromosomal genomes with no gene repetition)

which we define, following [24], as follows. Given a complete genome R (represented

as a permutation) and an incomplete scaffold S (represented as a list of contigs),

fill the missing genes in R − S into S to obtain S′ such that the genomic (or

DCJ) distance 26 between R and S′ is minimized. They showed that this problem

is polynomially solvable. Later, Jiang et al. showed that the two-sided case, where

each scaffold serves as a reference for the other, is also polynomially solvable 18. In
18, Jiang et al. also studied the case for singleton permutation genomes (i.e., with

no gene repetition in the genomes), using the simplest breakpoint distance as the

distance measure. It was shown that that this problem is also polynomially solvable;

in fact, even for the two-sided case when both of the input scaffolds are incomplete

permutations 18. (Again, in this case, each of the two scaffolds is a reference to the

other.)

When gene repetitions are allowed in the genomes and scaffolds, and when the

missing genes can be inserted freely in the scaffolds (usually implying the poor

quality of scaffolds), the problem becomes much harder. (That should not surprise

the readers as even computing several similarity measures between two complete

genomes with the same gene content is NP-complete, for example, under the ex-

emplar breakpoint distance 6,8,1,2,19, under the exemplar adjacency number 7,9, or

under the minimum common string partition 10.) For this case, the favorable similar-

ity measure for the genomic scaffold filling problem has been the number of common

(string) adjacencies, which can be easily computed in polynomial time 1,17,18. Jiang

et al. showed that genomic scaffold filling with the objective being maximizing the

number of common string adjacencies (SF-MNSA) is NP-hard 17,18. (The problem

can be formally defined as: filling an incomplete sequence scaffold I into I ′, using

a complete genome G as a reference, such that the missing letters in G − I can be

freely inserted into I and the resulting number of common adjacencies between G
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and I ′ is maximized.) A 1.33-approximation algorithm was designed in 17,18, and

this bound has recently been improved to 1.25 20. For the corresponding two-sided

case, i.e., when each of the two scaffolds serves as a reference to the other, the prob-

lem can be approximated with a factor of 1.5 (using the same similarity measure)
21 and 1.4 23. When the number of common adjacencies is used as a parameter,

this problem has been shown to be fixed-parameter tractable (FPT) 4. Of course,

this FPT algorithm can only handle the case when the number of common adjacen-

cies between the two genomes G and I ′ is a small parameter, i.e., when the input

genomes are not quite similar, hence the result is only of theoretical meaning.

We now depict the motivation of this paper as follow. When gene repeti-

tions are allowed, a ‘scaffold’ in consideration is simply an incomplete sequence,

i.e., a missing gene can be inserted freely into such a ‘scaffold’. In compara-

tive genomics, most of the real datasets are not under this format. Most of the

time, a scaffold in a real genomic dataset is composed of a list of contigs, which

have been researched a lot in the past 15,14. Nowadays, a contig is usually com-

puted with some mature tools like Celera (http://www.celera.com) and Spades

(http://cab.spbu.ru/software/spades/), etc, hence should be of a decent qual-

ity and should not be arbitrarily changed. This case was considered in 24,18,22, but

never in a systematic way. (In fact, all other research on scaffold filling simply used

an incomplete sequence as a scaffold.) For a recent survey on the genomic scaffold

filling research, the readers are referred to 28.

The main contribution of this paper is on filling a scaffold composed of a set

of contigs, with a reference genome. We formally define the problem as One-sided

Scaffold Filling (One-sided-SF-max), where the objective is to maximize the number

of common adjacencies between the (complete) reference genome and the filled

scaffold. For One-sided-SF-max, we present a simple reduction from the Hamiltonian

Path problem hence showing it to be NP-hard, and we then present a factor-2

approximation. We comment that the analysis of the 2-approximation covered in
16 is incomplete, so this paper can be considered as a fix-up for that part. (In 16,

there are more FPT results which we will not cover here.)

The paper is organized as follows. In Section 2, we give the basic definitions. In

Section 3, we present the approximation results for One-sided-SF-max. We conclude

the paper in Section 4.

2. Preliminaries

Throughout this paper we focus only on singleton genomes (i.e., each is a sequence).

But the results can be easily generalized to multichromosomal or circular genomes,

with minor changes.

At first, we review some necessary definitions, which are also defined in 18,27.

We assume that all genes and genomes are unsigned. Given a gene set Σ, a string

P is called permutation if each element in Σ appears exactly once in P . We use

c(P) to denote the set of elements in permutation P . A string A is called sequence
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if some genes appear more than once in A, and we use c(A) to denote the set of

genes in A, which is a multi-set of elements in Σ. For example, Σ = {a, b, c, d}, A

= abcdacd, c(A) = {a, a, b, c, c, d, d}. Let G be a (complete) reference geonome

with the corresponding gene set c(G), which is a multiset over Σ. With respect to

G, a sequence scaffold A is an incomplete sequence such that c(A) ⊂ c(G). A is

typically obtained by some sequencing and assembling process. A substring with m

genes (in a sequence A) is called an m-substring, and a 2-substring is also called a

pair ; as the genes are unsigned, the relative order of the two genes of a pair does

not matter, i.e., the pair xy is equal to the pair yx. Given an incomplete sequence

(or sequence scaffold) A=a1a2a3 · · · an, let PA = {a1a2, a2a3, . . . , an−1an} be the

set of pairs in A.

Definition 1. Given two sequence scaffolds A=a1a2 · · ·an and B=b1b2 · · · bm, if

aiai+1 = bjbj+1 (or aiai+1=bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB , we say

that aiai+1 and bjbj+1 are matched to each other (more formally, an edge is created

between these two pairs, each representing a vertex, in a bipartite graph B). In a

maximum matching of B, the vertex of a matching edge or a matched pair in PA

and PB, is called an adjacency, and an unmatched vertex (or pair) is called a

breakpoint in A and B respectively.

It follows from the definition that sequence scaffolds A and B contain the same

set of adjacencies but distinct breakpoints. The maximum matched pairs in B (or

equally, in A) form the (common) adjacency set between A and B, denoted as

a(A, B). We use bA(A, B) and bB(A, B) to denote the set of breakpoints in A and

B respectively. We illustrate the above definitions in Fig. 1.

sequence scaffold A = 〈c b c e d a b a 〉

sequence scaffold B = 〈a b a b d c〉

PA = {cb, bc, ce, ed, da, ab, ba}

PB = {ab, ba, ab, bd, dc}

matched pairs : (ab ↔ ba), (ba ↔ ba)

a(A, B) = {ab, ba}

bA(A, B) = {cb, bc, ce, ed, da}

bB(A, B) = {ab, bd, dc}

Fig. 1. An example for adjacency and breakpoint definitions. Note that there are three pairs ab

(or equivalently, ba) in PB, but there are only two in PA, hence one of them in PB is not matched
in the maximum matching for the corresponding bipartite graph B.

For any two sequences Z1, Z2, the longest common subsequence between them

is represented as lcs(Z1, Z2). For a sequence A and a multi-set of elements X , let
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A + X be the set of all possible resulting sequences after filling all the elements

in X into A, i.e., for any Z ∈ A + X , we have lcs(Z, A) = A and moreover,

c(Z) − c(A) = X . We define a contig as a string over a gene set Σ whose contents

should not be altered. A scaffold S is simply a sequence of contigs 〈C1, ..., Cm〉.

We define c(S) = c(C1) ∪ · · · ∪ c(Cm). Let S̃ be the sequence 〈c1, ..., cm〉 where

each contig Ci is compressed into a new letter ci /∈ Σ ∪ X for i = 1..m. Then,

S + X is defined as the set which is obtained by taking all sequences in S̃ + X and

uncompressing each ci in S̃ back to Ci for i = 1..m. Now, we define the problems

on scaffolds formally.

Definition 2. One-Sided-SF-max.

Input: a complete genome G and a scaffold S = 〈C1, C2, ..., Cm〉 where G and the

contig Ci’s are over a gene set Σ, a multiset X = c(G) − c(S) 6= ∅.

Question: Find S∗ ∈ S + X such that |a(S∗, G)| is maximized.

We first present a simple reduction from Hamiltonian Path to One-Sided-SF-

max.

Theorem 1. The decision version of One-Sided-SF-max is NP-complete.

Proof. It is obvious that the decision version of One-Sided-SF-max is in NP, so we

just focus on the reduction from Hamiltonian Path. Given a connected graph H =

(V, E) with V = {v1, v2, · · · , vn} and ei = (vi,1, vi,2) for i = 1..m, and for ei ∈ E, let

e′i = vi,1vi,2 for i = 1..m. Let deg(v) be the degree of vertex v. WLOG, we assume

that deg(v) > 1 for all v, as otherwise in the reduction we might have deg(v)− 1 =

0, which will introduce some messy degenerate cases. (This assumption will not

change the complexity of the Hamiltonian Path problem — a graph admitting a

Hamiltonian path contains at most two degree-1 nodes and we could easily replace

a degree-1 node v by a triangle △(vv′v′′) where v′ and v′′ are newly introduced

nodes.) G and S are constructed as follows.

G = #e′1#e′2# · · ·#e′m# ◦ #2#3#
n
1 ,

and

S = 〈C1, C2〉,

with C1 = 〈#2v
deg(v1)−1
1 #1 · · · v

deg(vn)−1
n #1#〉 and C2 = 〈#m#3〉. Here # and

#j , j = 1..3 are new letters and ◦ is a connector and X = c(G) − c(S) = V . As

there are only three places to insert elements in X back to S; moreover, the only

possible adjacencies are between two vertices forming an edge in H and between a

vertex and a #, it is obvious that to maximize the number of adjacencies we need

to insert the sequence of vertices forming a Hamiltonian Path in between C1, C2.

We make the following claim: H has a Hamiltonian path iff n missing genes can

be inserted into S to obtain n + 1 adjacencies. We only show the “only if” part

here as the other direction is trivial. If n missing genes can be inserted into S to
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obtain n + 1 adjacencies, say they are inserted between C1 and C2 as v′1v
′
2 · · · v

′
n

(where v′j = vi for some i), then the n−1 adjacencies v′jv
′
j+1 must correspond to an

edge in H and the other two are #v′1 and v′n#. Then, by definition, the substring

v′1v
′
2 · · · v

′
n corresponds to a Hamiltonian path in H . It is obvious that this reduction

takes O(n2) time.

v1 v2

v3

v4 v5

e1

e2 e3

e4

e5 e6

e7

Fig. 2. A simple graph H for the reduction.

We show a simple example for the reduction. The graph H is given in Fig. 2.

We have G = #v1v2#v1v3#v2v3#v2v5#v3v4#v3v5#v4v5##2#3#1#1#1#1#1,

S = 〈 #2v1#1v2v2#1v3v3v3#1v4#1v5v5#1# , ########3 〉.

After inserting all the genes in V into S, we eventually obtain

S∗ = #2v1#1v2v2#1v3v3v3#1v4#1v5v5#1# v1v3v4v5v2 ########3 .

It is easy to verify that we have n + 1 = 6 common adjacencies between G and

S∗: #v1, v1v3, v3v4, v4v5, v5v2 and v2#.

We note that the reduction for the unbounded case SF-MNSA (from X3C in
17,18) in fact also works for One-Sided-SF-max — just making each letter in I a

contig. (Of course, this would make the contigs too artificial.) But it is obvious

that the above proof is simpler and more straightforward. We next present an

approximation algorithm for One-sided-SF-max.

3. An Approximation Algorithm for One-Sided-SF-max

Before presenting our approximation algorithm for One-sided-SF-max, we make the

following definitions.

Define αi, βi as the first and last letter of contig Ci, i = 1..m, respectively. Then

〈βi, αi+1〉 forms a region (or slot) where missing genes can be inserted between βi

and αi+1, for i = 1..m. Note that we also have two open regions at the two ends of

S. For convenience, we denote them as 〈−∞, α1〉 and 〈βm, +∞〉 respectively.

We define a type-1 substring s of length ℓ ≥ 1, over X , as a string which can be

inserted in slot 〈βi, αi+1〉, for some 1 ≤ i ≤ m − 1, to generate ℓ + 1 new common
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adjacencies. We call 〈βi, αi+1〉 a type-1 slot for s. Throughout this paper, once a

type-1 slot is inserted with a corresponding substring we do not allow the insertion

of any other letter and subsequently we lock it right away. (Here, ‘locking’ means

resetting a variable associated with a slot to ON, where initially all such variables

are set as OFF.) It is easy to see that we could have at most m − 1 type-1 slots as

there are m contigs and a type-1 slot can only be between two contigs.

Then, we define a type-2 substring s of length ℓ ≥ 1, over X , as a string which

can be inserted in slot 〈βi, αi+1〉, for some 0 ≤ i ≤ m, to generate ℓ common

adjacencies. (We write β0 = −∞ and αm+1 = +∞. Clearly the two open slots can

be type-2 or type-3, which will be formally defined next.) Note that in this case,

in 〈βi, αi+1〉, we could have two type-2 slots, i.e., right after βi (written as βi◦)

or right before αi+1 (written as ◦αi+1). By definition, for a fixed slot 〈βi, αi+1〉, it

cannot be type-1 and type-2 at the same time. It is easy to see that we could have

at most 2(m − 1) + 2 = 2m type-2 slots.

It should be noted that even if βiαi+1 is already a common adjacency with

respect to the reference genome G, it is still possible that s can be inserted

in the slot 〈βi, αi+1〉 to obtain |s| + 1 common adjacencies (while the existing

common adjacency βiαi+1 is destroyed). In this case, s in fact increases the to-

tal number of common adjacencies only by |s|. Hence, s should be considered

as type-2. For convenience, we simply say that in this case s generates |s| new

common adjacencies. In fact, with a simple example we could show that such

an existing adjacency in a slot must be destroyed to obtain an optimal solu-

tion. Example: G = 〈1, 1, 5, 4, 3, 5, 3, 7, 7〉, S = 〈 1,7,3,5 , 3,1,5,7 〉, the missing

gene 4 must be inserted between 1,7,3,5 , 3,1,5,7 to obtain the optimal solution:

S∗ = 〈 1,7,3,5 , 4, 3,1,5,7 〉.

For convenience, for a letter x ∈ X , we say a common adjacency xy or (x, y) is

external if y = αi or y = βi for some i ∈ [1..m]; otherwise, xy is internal. Finally,

we define a type-3 substring s of length ℓ ≥ 1, over X , as a string which can be

inserted in slot 〈βi, αi+1〉, for some i, to generate ℓ−1 common adjacencies. Clearly,

a type-3 substring s can form nothing but internal adjacencies; hence, as long as s

does not destroy any existing adjacencies it does not matter where we insert it.

We show an example as follows:

G = 〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6〉,

S = 〈 1,5 , 5,2 , 6,6 〉.

We have α1 = 1, β1 = 5, α2 = 5, β2 = 2, α3 = 6, β3 = 6. Then, X = {1, 2, 3, 3, 4, 4}

are missing genes from S. One of the optimal solutions is

S∗ = 〈3, 2, 1,5 , 4, 3, 4, 5,2 , 1, 6,6 〉.

In this case, 〈4, 3, 4〉 and 〈1〉 are type-1, and 〈3, 2〉 is type-2. Among the eight

common adjacencies obtained, the two (2, 1)’s are external, both of (5, 4) and (4, 5)
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are external, both of (4, 3) and (3, 4) are internal, (3, 2) is internal, and (1, 6) is

external.

We comment that in general a type-j substring, j = 1, 2, 3, does not have to be a

substring of G. (For example, 〈4, 3, 4〉 in the previous example is not a substring of

G.) If a type-j substring is composed of i letters, we say that it is a (length-i,type-j)

substring.

Let the number of common adjacencies between G and S be k0. After all genes in

X have been inserted into S, let the number of newly increased common adjacencies

be k1. To approximate k0 + k1, it suffices to approximate k1. This is because if we

have an approximation solution A1 for k1, i.e., |A1| ≥ k1/ρ, then k0 + |A1| ≥

(k0 + k1)/ρ (for ρ > 1). From now on, we will only discuss the approximation for

the newly increased common adjacencies.

Our Algorithm 1 is based on greedy search and two levels of maximum match-

ings, which is given separately as follows. To help readers understand the algorithm

better, we first give a rough sketch of the algorithm.

Step 1. Insert (length-1,type-1) letter greedily.

Step 2. Insert (length-1,type-2) letters for external adjacencies using

bipartite maximum matching.

Step 3. Insert the remaining letters involved in a maximum matching

of a general multigraph for internal adjacencies.

Step 4. Insert the remaining letters arbitrarily provided that no existing

adjacency is destroyed.

Step 5. Return the filled scaffold.

Fig. 3. A sketch of Algorithm 1.

Then we run the approximation algorithm on the previous example as follows.

(1) We insert 4 between 1,5 and 5,2 , and insert 1 between 5,2 and 6,6 . Four

common adjacencies are obtained due to the insertion of these type-1 substrings.

(2) With the bipartite maximum matching, we insert 2 before 1,5 to obtain an

external common adjacency (2,1). Here, 〈2〉 is type-2.

(3) The multigraph Q is a cycle of edges: (2,3), (3,4), (4,3), and (3,2). With the

maximum matching, we insert 3 before 2 (inserted at Step 2).

(4) Finally we insert 〈3, 4〉 after 6,6 , as a type-3 substring.

(5) We obtain the final filled scaffold: S′ = 〈3, 2, 1,5 , 4, 5,2 , 1, 6,6 , 3, 4〉.

There are a total of seven common adjacencies obtained, while the optimal solution

value is eight.

Let bij denote the number of (length-i,type-j) substrings in some optimal solu-

tion and let Bij be the corresponding set of (length-i,type-j) substrings. Then the
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optimal solution value is

Opt =
∑

i=1..p

(i + 1)bi1 +
∑

i=1..q

ibi2 +
∑

i=2..r

(i − 1)bi3,

for some p, q, r. Let b′ij denote the number of (length-i,type-j) substrings in the

approximation solution and let B′
ij be the corresponding set of (length-i,type-j)

substrings. We show the properties of the approximation algorithm as follows.

Algorithm 1: On input (G, S)

1 Use the greedy method to scan from left to right

in S for a (length-1,type-1) slot for a letter x ∈ X to be

inserted (to generate two new external common adjacencies),

and insert it accordingly in the respective slot. Lock this slot.

2 Use the bipartite maximum matching to identify all (length-1,type-2)

substrings (or, external common adjacencies) xz such that

the letter x ∈ X and z = αj or βj for some j = 1..m.

Insert x into the slot and update the the slot as follows.

If x is inserted at the slot z◦ (resp. ◦z) then insert x after z

(resp. insert x before z) and update the slot as x◦ (resp. ◦x).

3 For all the remaining letters in X after Step 1 (including those

inserted at Step 2), compute a multigraph Q with the vertices

being these letters in X (after Step 1), and if xy is a potential

internal adjacency in G (ignoring those already matched with the

ones computed at Step 1 and 2), then there is an edge between all

x ∈ X and all y ∈ X. Compute a maximum matching M in Q.

For all the pairs xy in M with one end x being a letter

inserted at Step 2, insert y before or after x accordingly.

For the remaining pairs in M , insert them arbitrarily in any

unlocked slot in S, provided that no existing adjacency is destroyed.

4 Insert the remaining letters in X arbitrarily in any unlocked

slot in S, provided that no existing adjacency is destroyed.

5 Return the filled scaffold S′.

Lemma 1. After Step 1, a misplaced (length-1,type-1) letter c in B′
11 (compared

to B11) could at most change a (length-1,type-1) substring in the optimal solution

into type-3 and two type-1 substrings ((length-v,type-1) and (length-w,type-1) re-

spectively) into type-2, with v, w ≥ 1.

Proof. All we need to prove is that if a (length-1,type-1) letter was inserted at

a wrong slot, then at most three type-1 substrings su, sv and sw are not type-

1 anymore. To see this, assume that in some optimal solution a (length-1,type-1)

letter c is inserted in the slot v1v2 and three type-1 substrings su, sv, sw are inserted

in the slots zizi+1 respectively, for i = 1, 2, 3. Suppose that c is inserted in one of

the slots zizi+1, say z1z2, as type-1. Then, in the worst case, all su, sv, sw cannot

be type-1 anymore: su could be type-3 and sv, sw could be type-2.
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We could verify this with a generic example. First, assume that in G the

letter c is only involved in four adjacent pairs a1c, a2c, b1c and b2c, and d1 is

only involved in two adjacent pairs b1d1 and b2d1 (in this example all letters

are different unless otherwise specified). On top of this assumption, let G =

〈· · · , a1, c, a2, · · · , b1, d1, b2, · · · , b3, d3, b4, · · · , b5, d5, b6, · · ·〉, S = 〈 · · · a1 , a2 · · · ,...,

· · · b1 , b2 · · · , · · · b3 , b4 · · · b5 , b6 · · · 〉. Let X = {c, d1, d3, d5}. The optimal so-

lution is to insert c between a1 and a2, and di’s between bi, bi+1, for i = 1, 3, 5. If c

is inserted between b1 and b2, then all di’s cannot be type-1 anymore. This happens

when, for instance, b4 = b5 = c, d3 = b1 and d5 = b2. Then, d3 and d5 are made

into type-2, while d1 is made into type-3.

Naturally, this lemma could force the approximation to be 2. Let |su| = |sv| =

|sw| = 1. The insertion of c and su, sv, sw optimally will generate 4 × 2 = 8 adja-

cencies. If c is misplaced with the greedy search step, a total of 4 adjacencies are

generated (2 from c; 1 each from sv and sw, which are type-2 now, and 0 from su,

which is type-3 now).

Let Yi,j be the set of (length-i,type-1) substrings in some optimal solution con-

verted into type-j by the approximation algorithm — due to the misplacement of

some (length-1,type-1) substrings at Step 1, for i ≥ 1, 2 ≤ j ≤ 3. We have the

following lemma.

Lemma 2. At Step 2, a total of b′12 +
∑

i≥1 |Yi,2| new type-2 common (external)

adjacencies are generated; moreover, b′12 ≥ b12.

Proof. If a slot t = 〈u, v〉 could be inserted with a (length-1,type-1) substring si,

then there is an optimal solution in which a (length-1,type-2) substring (letter) x

is not inserted at the slot t. The reason is as follows. Suppose that the slot t can be

inserted with a (length-1,type-1) substring si to obtain two new common adjacencies

usi and siv. Suppose that in some optimal solution the slot t is inserted with an x

to generate one common adjacency and si is inserted at some slot t′ instead. Then,

if si generates no common adjacency in t′ we could swap x with si to generate at

least two common adjacencies. This contradicts with the optimality of the assumed

optimal solution. If si generates one common adjacency in t′, swapping x with si

gives us a solution at least as good as in the optimal solution. If x is type-2 at both

the slots t and t′, and si is type-1 at both slots the slots t and t′, then we could in

fact obtain an optimal solution with the greedy search.

If a slot t = 〈u, v〉 could be inserted with a (length-1,type-1) substring si but was

inserted with two (length-1,type-2) substrings sj and sk instead, a similar argument

follows. In this case we could swap si and sjsk to have another optimal solution

with the same number of adjacencies; moreover, the (length-1,type-1) substring is

always inserted before (length-2,type-1) substrings.

Then, following the maximality of the bipartite maximum matching at Step

2, we have b′12 ≥ b12. By the previous lemma, each misplaced (length-1,type-1)
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substring could result in putting two type-1 substrings into Yi,2 and Yj,2, for some

i, j ≥ 1. With the bipartite maximum matching, one external common adjacency is

generated for each substring in Yi,2. Hence the lemma is proved.

Lemma 3. At Step 3, the size of the maximum matching, |M |, satisfies

|M | ≥ 1
2

(

∑

i=2..p(i + 1)bi1 +
∑

i=2..q ibi2 +
∑

i=2..r(i − 1)bi3

)

+
(

∑

i≥2⌊
i
2⌋|Yi,2| +

∑

i≥2⌊
i
2⌋|Yi,3|

)

.

Proof. On the right hand side of the above inequality, the first summation rep-

resents the optimal internal adjacencies among the corresponding type-1, type-2,

and type-3 substrings in the optimal solution (with length at least 2). The second

summation represents the number of internal adjacencies of the substrings in Yi,2

and Yi,3, converted from type-1 due to the greedy search at Step 1.

Lemma 4. Let b′11 be the number of (length-1,type-1) substrings obtained at Step

1, then by Step 3 the number of adjacencies generated by the algorithm which are

due to the selection of B′
11 (instead of B11) satisfies that

2b′11 +
∑

i≥1

(1 + ⌊
i

2
⌋|Yi,2|) +

∑

i≥2

⌊
i

2
⌋|Yi,3| ≥ b11.

Proof. As discussed earlier (Lemma 1), each letter in B′
11 could make two type-1

substrings, sv and sw, into type-2; and make one type-1 substring, su, into type-3.

With Step 2 (and Lemma 2), we could guarantee that the algorithm can generate

one external adjacency for all type-2 substrings (including those type-2 ones in some

optimal solution and those type-1 ones in some optimal solution but converted to

type-2 due to a misplacement of some (length-1,type-1) substring at Step 1). With

Step 3, we could guarantee that for each type-2 and type-3 substring of length ℓ one

could generate a number of internal adjacencies at least ⌊ℓ/2⌋. Then following the

approximation solution, with a misplaced (length-1,type-1) substring x, we generate

2 + (1 + ⌊|sv|/2⌋) + (1 + ⌊|sw|/2⌋) + ⌊|su|/2⌋ adjacencies, while with the optimal

solution we could generate 2 + (|sv| + 1) + (|sw| + 1) + (|su| + 1) adjacencies. This

gives us

2 + (|sv| + 1) + (|sw| + 1) + (|su| + 1)

2 + (1 + ⌊|sv|/2⌋) + (1 + ⌊|sw|/2⌋) + ⌊|su|/2⌋

=
2 + (|sv| + 1) + (|sw| + 1) + (|su| + 1)

1 + (1 + ⌊|sv|/2⌋) + (1 + ⌊|sw|/2⌋) + (1 + ⌊|su|/2)⌋
,

which is obviously bounded above by 2, due to that |su|, |sv|, |sw| ≥ 1.

Therefore, by Step 3 the number of adjacencies generated by the algorithm due

to the forming of B′
11 (instead of B11) satisfies that

2b′11 +
∑

i≥1

(1 + ⌊
i

2
⌋|Yi,2|) +

∑

i≥2

⌊
i

2
⌋|Yi,3| ≥

1

2
(2b11) = b11.
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Hence, we could have the following theorem.

Theorem 2. One-Sided-SF-max can be approximated within a factor of 2.

Proof. By definition, the optimal solution value OPT satisfies

Opt =
∑

i=1..p

(i + 1)bi1 +
∑

i=1..q

ibi2 +
∑

i=2..r

(i − 1)bi3,

for some p, q, r. At Step 3, the size of the maximum matching, |M |, satisfies

|M | ≥ 1
2

(

∑

i=2..p(i + 1)bi1 +
∑

i=2..q ibi2 +
∑

i=2..r(i − 1)bi3

)

+
(

∑

i≥2⌊
i
2⌋|Yi,2| +

∑

i≥2⌊
i
2⌋|Yi,3|

)

.

The approximation solution value, App, satisfies

App = 2b′11 + (b′12 +
∑

i≥1

|Yi,2|) + |M |

≥ 2b′11 + (b′12 +
∑

i≥1

|Yi,2|)

+
1

2
{

∑

i=2..p

(i + 1)bi1 +
∑

i=2..q

ibi2 +
∑

i=2..r

(i − 1)bi3}

+(
∑

i≥2

⌊
i

2
⌋|Yi,2| +

∑

i≥2

⌊
i

2
⌋|Yi,3|)

(by Lemma 3)

≥ {2b′11 +
∑

i≥1

(1 + ⌊
i

2
⌋|Yi,2|) +

∑

i≥2

⌊
i

2
⌋|Yi,3|} + b12

+
1

2
{

∑

i=2..p

(i + 1)bi1 +
∑

i=2..q

ibi2 +
∑

i=2..r

(i − 1)bi3}

(by Lemma 2)

≥ b11 + b12

+
1

2
{

∑

i=2..p

(i + 1)bi1 +
∑

i=2..q

ibi2 +
∑

i=2..r

(i − 1)bi3}

(by Lemma 4)

≥
1

2
Opt.

The running time of the algorithm is dominated by the computation of maxi-

mum matching in a bipartite graph with O(n) vertices at Step 2, and also by the

computation of maximum matching in a general graph with O(n) vertices at Step

3, both taking O(n2.5) time 13,11.

Regarding the lower bound of the running time, in fact, we could show that

the algorithm must take at least Ω(n2.5) time (or, the current best running time to

compute the maximum matching in a general graph) 11. The proof is by modifying



August 14, 2018 11:8 WSPC/INSTRUCTION FILE jbcb18

Instructions for Typing Manuscripts (Paper’s Title) 13

that of Theorem 1. We could use two additional genes #4, #5 (after #2#3 in G).

Then, we keep S = 〈C1, C2〉, but we make minor changes on C1 and C2; i.e., C1 =

〈#2v
deg(v1)−1
1 #1 · · · v

deg(vn)−1
n #1#5〉 and C2 = 〈#3#

m+1#4〉. Obviously, running

the approximation algorithm on this instance, Step 1 and Step 2 does nothing as no

external adjacencies could be formed. Then Step 3 must run a maximum matching

algorithm on the original graph H , on which G and S are constructed, to return

the approximate solution. Hence, this algorithm must take Ω(n2.5) time, which is

the current best running time for computing the maximum matching in a general

graph H 11.

4. Concluding Remarks

In this paper, we revisit the genomic scaffold filling problem by considering each

scaffold as a sequence of contigs (instead of as an incomplete sequence as in most

of the previous research). Here a contig cannot be altered, hence missing genes

(relative to a reference gonome) can only be inserted in between contigs. We obtain

a factor-2 approximation algorithm for this NP-complete problem. We hope this

could attract more algorithmic results which could eventually lead to the practical

processing of genomic datasets.
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