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Abstract—The one-sided Exemplar Adjacency Number (EAN)
is a known problem for computing the exemplar similarity
between a generic linear genomg with gene duplications and an
exemplar genomeH (over the same set oh gene families). In this
problem, we need to compute an exemplar genom®, which is a
permutation obtained from G, such that the number of common
adjacencies betweerG and H is maximized. Unfortunately, the
problem is not only NP-hard but also NP-hard to approximate.In
this paper, we approach the problem by relaxing the constrait
such that a sub-permutation G* obtained from G does not
have to include all the gene families, but still needs to hava
length at leastk. Hence G* is called apseudo-exemplar genome.
Then, a slightly more general problem (One-sided EAN+) is
defined: compute a pseudo-exemplar genom&+* from G such
that the number of common adjacencies betweerH and G*
is maximized. Certainly One-sided EAN+ contains One-sided
EAN as a special case; moreover, it presents some flexibilify
designing algorithms. Firstly, we relax and formulate the (he-
sided EAN+ problem as the maximum independent set (MIS) on
a colored interval graph and hence reduce the appearance oaeh
gene to at most two times. We show that this new relaxation igi#§
NP-complete, though a simple factor-2 approximation algathm
can be designed; moreover, we also prove that the problem cant
be approximated within 2—& by a local search technique. We then
show that this relaxed version is fixed-parameter tractablgFPT).
Secondly, to ensure that each gene appears {&" at most once,
we use integer linear programming (ILP) to solve this problen.
Finally, we implement our algorithm and compare it with the
up-to-date software GREDU, with simulated signed and unsiged
genomes. It turns out that our algorithm is more stable and ca
process genomes of length up to 12,000 for signed genomes ifeh
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|. INTRODUCTION

Computing the distance/similarity of two genomes is essen-
tial for building the evolution history of a genome. In thespa
two decades, there have been three general ways to compute
the genomic distance or similarity between general genomes
(with gene duplications): (1) computing the exemplar geitcom
distance (i.e., deleting all but one gene for each gene yamil
[20], [4], [B], [7], [2], [3], [16], (2) computing the numbeof
common adjacencies between them [2], [14], [15], [17], [18]
[22], [13], and (3) computing the minimum common partition
number [9]. As our method somehow falls into (1), we review
the corresponding methods in more detail.

In 1999, Sankoff formulated the exemplar breakpoint dis-
tance problem as follows: select exactly one gene from each
gene family from two generic genomgsandH over the same
set of gene families such that the breakpoint distance legtwe
the two resulting exemplar genom&sand H is minimized
[20]. From a theoretical point of view, computing the exeanpl
breakpoint distance is not only NP-hard [4], but also NRdhar
to approximate (regardless of the approximation factorgnvh
each gene appearsghandH at most three times [5] or twice
[3], [16]. This was shown by proving that deciding whether

GREDU can falter on such a large signed genome and it cannot the optimal exemplar breakpoint distance is zero, i.e, hdvet

handle unsigned genomes at all).
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G = H, is NP-complete. Hence, computing any approximation
solution is NP-hard.



Nonetheless, several algorithms have been proposed for pineblem on colored interval graphs is fixed-parameteraitzlet
problem. Sankoff first proposed a branch-and-bound approd&PT).
for the exemplar breakpoint distance problem [20]. Ngugen The above MIS approximation only gives us a re-
al. developed a more efficient divide-and-conquer algorithauced/relaxed instance for the One-sided EAN+ problem. Let
for the problem [19]. Angibaudkt al. presented an integerG’ be the reduced instance f@r obtained by the approximate
linear programming (ILP) method for computing the exadllS solution. InG’, each gene appears at most twicegh
breakpoint distance [1]. More recently, Shao and Moret gag@nd some gene family might not appeargh at all). The
a slightly relaxed formulation for the exemplar breakpoimext step is to use ILP to compute the number of exemplar
distance problem where not all gene families need to shd@ommon) adjacencies between the pseudo-exemplar genome
up in the final (reduced) genomes, and they then implementgd (obtained from further reducing’) andH. (We comment
a fast and exact algorithm (named GREDU) using ILP [21]that H is never altered, and this is different from the method

The exemplar adjacency number problem is simply tH®y Shao and Moret [21].)
complement of the exemplar breakpoint distance problemWe implemented the algorithm and tested it on simulated
[6], [8]. Formally, the Exemplar Adjacency Number (EAN)genomes, generated in very much the same way as in [21].
problem can be defined as follows: given two generic linegWe used both signed and unsigned genomes, though in [21]
genomesG and H over a set ofn gene families, delete only signed ones were used.) The comparison with GREDU
duplicated genes to obtain two exemplar genoBeand H [21] indicates that our algorithm is more stable and geesrat
of length n, such that the number of (common) adjacencie®mparable number of adjacencies (though the definitions of
betweerG andH is maximized. The One-Sided EAN problenthe adjacencies differ a little, as discussed above). Thailsle
is the special case wheH (= H) is given exemplar. are in Section 4.

For the EAN problem, Cheret al. first showed that if  This paper is organized as follows. In section 2, we make
H (= H) is exemplar and the other genorgeis 2-repetitive necessary definitions. In section 3, we approach the One-
(i.e., a gene from each of thegene families appears at mossided EAN+ problem by first reformulating it as the maximum
twice inG), then this version of One-sided EAN admits neithendependent set on colored interval graphs, and then pgovin
a polynomial-time facton®>-¢ approximation unlesB = NP, its NP-hardness. In section 4, we first design a simple 2-
nor an FPT algorithm unless FPT=W[1] [6], [8]. (FPT standapproximation algorithm (to obtain a reduced instance). In
for fixed-parameter tractablethe formal definition is given addition, we show that the problem is FPT (though the high
in Section 4.) A factor®® approximation algorithm was running time makes it impractical). Finally we use ILP towsol
presented for the EAN problem when each gene appeardtat reduced instance exactly. In section 5, we present our
most twice in bothG and # [8]. Intuitively, due to the empirical results in comparison with GREDU on simulated
hardness result of the EAN problem (especially that a gegenomes (with enough duplicated genes). In section 6, we
in each gene family must appear®), it is not convenient to conclude the paper and point out some directions for future
design efficient algorithms. work.

In this paper, we investigate the One-sided EAN problem
whose input isg and H, over a set ofn gene families. We Il. PRELIMINARIES
first relax the problem by deleting genes frgirsuch that the ~ As genomes could be signed or unsigned, in this section
reduced (pseudo-exemplar) genof@e is a sub-permutation we focus on the former (the latter is clear form the context,
of length at mosn, and the objective is still to maximize thewhich will be explained in the next section). Given a gebf
number of (common) adjacencies betw&nandH. We call n gene families (alphabet), a (signed) genaghis a sequence
this problem One-sided EAN+, which is a generalized versi@f elements off such that each element is with a sign (+ or -).
of One-sided EAN and is at least as hard as the latter. (N@4éven a (signed) genome with a gene in each family appearing
that the two problems are not exactly the same. For exampdgactly once (which is calleexemplay G = g102- - - gn, We
G = 315264 andH = 123456, for the latter problem theresay that the geng immediately precedes;, if j = i+1. Given
is no common adjacency while in the former we could stiwo exemplar genomes,H, if genea immediately precedds
delete 2 to obtain a common adjacency 56.) in G and neithea immediately preceddsnor —b immediately

On the other hand, One-sided EAN+ does give us somescedes-ain H, then they constitute lareakpointin G. Then
freedom in designing algorithms. We first obtain a new relaxhe breakpoint distance is simply the number of breakpoints
ation of the problem as the maximum independent set (MI8) G or H, denoted asd(G, H). Similarly, given exemplar
on a colored interval graph — a new variant of interval grapiienomesG,H, if gene a immediately precedeb in G and
for linear genomes where the intervals corresponding to te&hera immediately precedels or —b immediately precedes
potential adjacencyb or —b — a in G are given the same —ain H, then they constitute a (commaadljacencyin G. The
color. While it is well-known that MIS on interval graphs isadjacency number is the number of (common) adjacencies in
polynomially solvable [12], we show in this paper that th& or H, denoted asn(G, H). For exemplar genomes,H, we
MIS problem on colored interval graphs becomes NP-hardave the equatiobd(G, H) + an(G, H) = n— 1. For example,

On the other hand, a simple factor-2 approximation, a twikit G = 12345 H = -5- 4312, then there are two adjacencies
of Gavril's greedy algorithm [12], can be obtained. We shovand two breakpoints betweds and H.

a bit surprisingly, that a simple local search cannot furthe Given two generic genomes (i.e., with gene duplications)
improve the 2 factor; moreover, we also show that this MI§ and H the exemplar breakpoint distance between them,



denoted asbdg, H), is the minimum breakpoint distance G igfaid h2b ceg 2 bfdigfh ... gza eih.

bd(G, H) among all exemplar genomé&3, H obtained from

G andH. Similarly, the exemplar adjacency number between
G andH, denoted agang, H), is the maximum adjacency
numberan(G, H) among all exemplar genom&s H obtained

from G and H. Again, we have the equatioebdg, H) + H

eanG, H)=n—1.

The problem of computingang, H) is formally defined Fig. 1. Formulation of the one-sided EAN problem potenyias MIS in a
as theExemplar Adjacency Numbd&EAN) problem. When colored interval graph. Note that i the two intervals labeled with color 1
one of G, H is given exemplar, the correspondin roble orrespond to the adjacen@p, while the three intervals labeled with color
. > . 9 piar, P . gp correspond to the adjacendg
is calledOne-sided EANproblem. Throughout this paper, we
assume thafH is given exemplar and we udé instead of

b
H henceforth. A genom&* with length at leask (k < n), Problem: MIS-CIG

obtained fromg by deleting duplicated genes (but each gene Instance A set I of mintervals on a line, each is colored
S ) ,
appears at most once iB"), is called apseudo-exemplar by one of thek (k < m) colors, and a parametéy < k.

enome. (Note thaG* is really a sub-permutation and the . L .
gefinitions( of breakpoints ang adjacer?cies between pseuOIOQuestlort Are therek; disjoint intervals of different colors?

\We show next that MIS-CIG is NP-complete.
exemplar genomes are the same as for exemplar genomes,
except that they do not necessarily sumnte 1 anymore.)
Givenk, the problem of computinG* from G such that the A Hardness of MIS-CIG

number of adjacencies betwe&@t and H is maximized, is .

hence called th®©ne-sided EAN+problem. (Note that One-  Theorem 1:The MIS-CIG problem is NP-complete.

sided EAN+ contains One-sided EAN as a special case when Proof: It is easy to see that MIS-CIG is in NP. To prove
k = n; hence it is at least as hard as the latter.) its NP-completeness, we reduce the classic 3SAT problem to

Finally, an interval graphZ = (V,E) is a graph whose MIS-CIG. Given a Boolean formula in 3-conjunctive normal

vertices have an one-to-one correspondence to a set ofafgerform, ¢ = F1 A F2 A--- A F,, where each of thé clausesF;
on a line. An interval = (I(u), r(u)) is represented by its left has three distinct literals from a set of boolean variables
endpointl(u) and the right endpoint(u). There is an edge *1. X2,--+, Xm and their negations, the problem is to decide
between two vertices, v € V iff the intervals have a non- Whetherg is satisfiable.
empty intersection. See Fig. 1 for an example. For each literal (variablg and its negation;), we construct

In the next section, we present a new method for tH@o copies of interleaving intervals of four different codo

One-sided EAN+ problem. We start with a different relaxdi —3,4i —2,4i —1,4i. (See Figure 2.) If; is assigned TRUE,
ation/formulation of the problem. we select #- 3,4i — 1 at the top-right corner andi 4 2, 4i

at the bottom-left corner. I is assigned FALSE, we select
4i — 3,4i — 1 at the top-left corner and 4 2, 4i at the bottom-
right corner. For each claude;, we create three very small
As discussed earlier, the input for us is a generic line&ntervals of the same coloF{). We put the interval with color
genomesz and an exemplar linear genorkie over the same set Fj under the interval 4- 3 of x; if x appears irF;, and we
of gene families. First of all, we try to identify some disjbi put the interval with colorF; under the interval 4— 3 of
intervals in G, one for each color (each corresponding to & if X; appears inF;. We give an example to illustrate the
unique 2-substring iH). These intervals are the vertices ofonstruction. Assume we have a 3SAT formula Fi A Fa A
the corresponding colored interval gragh Then we try to Fz A Fg, with F1 = (X2 V X2 V X3),F2 = (X4 V X2 V Xa), F3 =
identify the maximum number of disjoint intervals g each (X2 V X3V X4), andF4 = (X1 V X3 V Xa). In Fig. 2, we show the
of a different color. Clearly these intervals form a maximumorresponding construction fgr.
(colored) independent set ih. We show how these intervals We prove next thap is satisfiable if and only if the colored

IIl. ANEW FORMULATION OF THE PROBLEM

are constructed as follows. interval graph has an IS ofd+ ¢ intervals (all with different
For each 2-substringjaj;; in H, we list all the minimal colors).
intervalsa;Ba;,1 or —a;.18—a; (for unsigned genomes, 15a;) “Only if part” Suppose that the 3SAT instangeis satisfi-

in G such that the content8 could be deleted to have aable. If x; is assigned TRUE, we select the top-right intervals

potential adjacencya1 or —ai;1 — & (a+18 for unsigned 4i — 3,4i — 1, the bottom-left intervalsi4- 2, 4i and all other

genomes). Note that a substriggy is minimalif the substring F; intervals in the bottom row under the unselected interval

B does not containx, or y, or a subsequence (potentiali—3 as part of the MIS. (If multiplé~; intervals are selected,

adjacency)-y—x. All the minimal intervals ing corresponding we just arbitrarily keep one of them.) X is assigned FALSE,

to aa.1 in H are given the same color. See Fig. 1 for awe select the top-left intervald 4 3,4i — 1, the bottom-right

example of a colored interval graph where an unsigned genomtervals 4 — 2,4i and all otherF; intervals in the bottom

is used. row under the unselected interval 43 as part of the MIS.
We define the Maximum Independent Set (MIS) problem i@onsequently, we obtain an MIS witlm4- ¢ intervals (all with

a Colored Interval Graph (MIS-CIG for short) as follows. different colors).



. . X
“If part:” Suppose that the colored interval graph contains !

an independent set ofnd+ ¢ intervals, all with different EE, 2
colors. As we have exactlyd+ ¢ different colors, all colors 1T
must appear in the independent set. For the two groups of
interleaving intervals i4- 3, 4i — 2, 4i — 1 and 4 (corresponding 5

to x; and x; respectively), clearly we could only select them =~~~
in two different ways. We could either select the top-right

4i -3, 4i -1 and the bottom-lefti4-2, 4i intervals, or we could

select the top-left 4- 3,4i — 1 and the bottom-righti4- 2, 4i X3
intervals. In the former case, we assigixTRUE, and then

the F; intervals containingg will be in the independentsetas  F:1 10
the top-left interval 4-3 (which intersects all th&; intervals

containing x;) is not selected. In this cas&,; evaluates to 13 4
TRUE and is satisfied. Similarly, we could sh&y containing

Xi is also satisfied if we select the top-left-43, 4i —1 and the

12

g<|

R Fa

16

bottom-right 4-2, 4i intervals, which corresponds to aSSignin@ig. 3. The colored intervals selected based on the trufgrasentx; = x3 =
x=FALSE. As all intervals of colo; must appear in the TRUE, xo = x4 = FALSE. Note that for intervals labelled witfy andF4 we
independent set once (hence all claubg's are satisfied in can select one arbitrarily.
¢), we have a truth assignment for all the variables to satisfy
é.
The reduction obviously take®(m + ¢) time. Hence the
theorem is proven. |
In Fig. 3, we show the selected intervals fRI=TRUE,
X2=FALSE, x3=TRUE, andxs=FALSE.

A. A factor 2-approximation

A factor-2 approximation for MIS-CIG can be obtained
using a twist of the well-known greedy method. Firstly, the
intervals are sorted according to their right endpointer(fr
left to right). Secondly, we scan the intervals from leftight,

- according to the sorted order, and put the first intetyah

1 X1 3 1 1 3 the solution. Then we delete all the intervals of the samercol
- - — — with 11 or intersecting 1, and repeat this process until no more
F, F, 2 4 [ 2 4 . ; .
interval can be put in the solution.
. 2 ;. X , Algorithm 1 Greedy algorithm
o [ 1) m« size of .
F2 ® ° FiFs © ° 2) S 0.
B 3) Sort all intervals inZ according to their right endpoints
. X3 " o X3 u aslq, ..., Im.
oI T T e 4) Delete from7 all the intervals of the same color with
F1 10 12 Fz Fy 10 12 I1 or intersectingl;.
_ 5) Deletel; from 7.
13 X 15 13 X 15 6) S« Su{l}.
[ — m ”-’”’-””14 ””””” m 7) while 7 #0
F3 16 Fa F4 8) Iy « the first interval in7.

9) S« Sul{ly.
10) Delete all the intervals of the same color withor
intersectingl;.
11) Deletel; from 7.
12) ReturnS.

Fig. 2. lllustration for the reduction from the 3SAT instent= F1 A F2 A
F3 A Fa, whereF1 = (X1 VX2V X3),F2 = (Xa VX2 V Xq), F3 = (2 V X3 V Xa),
andF4 = (X1 V X3 V Xa).

IV. ALGORITHMS It is straightforward to see that the algorithm returns aSset

of intervals. We show below th& is a factor-2 approximation

In this section, we design a factor-2 approximation algder MIS-CIG. Letl; € S and letl; be some interval which
rithm for the MIS-CIG problem. (Moreover, we prove that théntersects(l;) (the right endpoint of;). As the algorithm scans
approximation factor cannot be improved to be less than 2 mtervals from left to right, any optimal solution not coimtimg
some simple local search technique.) This gives us a redudgednust either contain an interval of the same color with
instanceg’ where each gene appears at most twice in it. W contain an interval of the same color wikh (inclusive of
then show that MIS-CIG is FPT, though the results is only df), or both. Hence the approximation algorithm would return
theoretical meaning. Finally, we use ILP to efficiently dele at least a half of the optimal solution associated wi¢h).
extra gene duplications ig’ while computing the maximum Applying this argument inductively, we could conclude tBat
number of (common) adjacencies. is a factor-2 approximation for MIS-CIG.



B. A local search improvement? subsection, for theoretical purpose, we describe a simple F

With the greedy algorithm, it is natural to try to improge &lgorithm for the problem.

using local search. Lef be the input intervals for the MIS-
CIG problem. We search for a subsetointervals inS, S;, C. An FPT algorithm
such that puttingS. back to7\S enables us to find locally a
subsetS,, of more thanc independent intervals with different
colors and all the colors i1, do not appear irB\S;. Then
(S\Sc) U S, would give us a better solution the® and we
updateS « (S\S¢)US;. This process will continue until N8
can be found. For a constarjtwe call the corresponding local
search procedure-local search Unfortunately, forc = 1,2,
this local search method cannot improve the result in thesivo
case. We summarize the result as follows.

Theorem 2:Algorithm 1 returns a 2-approximation fork,
MIS-CIG. Forc = 1,2 and some constant, the solution
obtained by Algorithm 1 cannot be improved to have
approximation factor smaller than-2¢ using c-local search.

Proof: We only show the second part, as the first pa
has just been proved. Assume to the contrary that with
local searchc = 1,2, we could obtain a 2 &£ approximation
for the MIS-CIG problem. We construct an instance wit
3n + 2 intervals, with & colors{0,1,...,2n— 1}. The greedy
algorithm would select the intervals at the bottom row wit
colors Q1,2,...,.n. The optimal solution is to select all the
intervals in the top row (except the last interval with col)r
with colors Q1,...,2n—-2,2n - 1. When context is clear, we
just call an interval with color intervali. See Fig. 4.

We show briefly an FPT (fixed-parameter tractable) algo-
rithm for this problem. (An FPT algorithm for a decision
problem with parametek is one which runs irO(f(k)n®) =
O*(f(k)) time, wheref (=) is any computable functiom,is the
input size anat is a constant not related toandk [10], [11].)
The algorithm is very similar to the above greedy algorithm.
Note that here the question is to decide whether therekare
hon-intersection segments spanning all kheolors.

We first take all possible permutations of tkeolors, i.e.,

of them. For each permutatiof) = (iy, i, ..., ik), we check
whether there is a solution & non-intersecting segments all
Alith different colors such that reading their colors frorft te
right, we get exactlyr;. It is straightforward to see that if such
Ysolution exists, then there must be a solution whose leftmo
segment/interval is the leftmost segment/interval witthoco
i1. Then we could repeatedly apply this greedy idea to obtain
lfhe leftmost segment of coldy,, (provided that it does not
intersect the previously selected segment with colpruntil

e obtain the segment with colag. Since we have to try
over all possible permutations of thkecolors, this algorithm
obviously takegO*(k!) time.

The algorithm can clearly be improved. We could use a
standard dynamic programming algorithm. L®ts,, - -, S,
n0 el 3 2n-2 n-2 2n-1 n-1 0 be the list of intervals sorted by their right endpoints aed |

5 — — — . ¢ be the color ofs for i = 1..n. Assume thaK is the set of
k given colors andC ¢ K, we defineU[C, s] as the binary
Fig. 4. lllustration for the proof of Theorem 2. table deciding whether there is a set|Gf disjoint intervals
in the lists;, s, ..., § such that they are all of different colors
To see that-local search does not incur any improvemerand the union of their colors is exacty. Let S[C, 5] be the
for c = 1,2, it is important to notice that any interva(i > 0) corresponding set of the$€| intervals. To be more precise,
at the bottom row contains an intervial 1 at the top row; U[C, s] =TRUE if such a solutior5[C, s] exists; otherwise,
moreover, the two neighboring intervals of intervall at the UJ[C, 5] =FALSE. Initially, U[{ci}, ] =TRUE for alli. Given
top row,n+1i—-1 and 6+i) mod 2, are both intersecting s, let s, be the rightmost interval to the left f that does
with the corresponding neighboring intervals et the bottom not intersects, i.e., i’ is the largest indeX satisfyingj < i
row. (For interval O at the bottom row, it intersects intdrma ands; N's = 0. Let s, be any interval to the left 0§, i.e.,
at the top row.) Hence, for 1-local search, it is impossilble ¥ < i. If s, does not intersect any segment in a set of segments
obtain a larger independent set by swapping intenet the S, we denotes, NS = 0.
bottom row with two intervals in new colors at the top row. We show howU|[C, s] is updated as follows. The update
Similarly, for 2-local search, it is impossible to obtainsader for S[C, s] is trivial, hence omitted.
independent set by swapping two interval§ at the bottom

row with three intervals in new colors at the top row. UIC.s] = (UIC-{cd. s]A(snS[C- e s]=0)1)
For this instance, the approximation factor of the greey v U[C, 5-4] (2)
method is on ) v U[C-{c}s] ®3)
n+1 2= n+1 >2-¢, We explain the three updates in more detail.
whenn > Z2 (i.e., whenn is sufficiently large). Hence, the 1) U[C, s] is updated through an interval to the left of
approximation factor of the greedy algorithm is tight, wiest S wh.eresg does not Intersect any mterval in the current
or notc-local searchg = 1,2, are applied. [ | solution S[C — {c/}, s] and its color is new.

Note that wherc > 3, the above argument does not work 2) U[C,s] is updated by not including in the solution.
anymore. On the other hand, a local search with- 3 ~ 3) U[C, s]is updated by includings in the solution.
could incur a high cost. Hence, after a reduced genorfiéen, there is a colored independent set spanning alkthe
G’ is obtained through the MIS approximation, we wouldolors iff U[K, s,] is TRUE. The actual solution can be found
use integer linear programming (ILP) instead. In the nekt S[K, s;]. The running time of this dynamic programming



algorithm is obviouslyO*(2¥) as we have 2 subsets fork
colors. maxz X
Theorem 3:MIS-CIG can be solved with an FPT algorithm ¥

. 5 k .
|nL(J)]E2)t|me.| f licat . v | | Our idea on applying ILP to the reduced instance is as
nfortunately, for our applicatiork is usually large. (ndﬁllows. We identify all the blocks and we then solve them

fact, k COUI.d be_as large as a couple Of thousands.) Hence, (?ally using ILP. Then these local solutions are put togeth
FPT algo_nthm is only of some the(_)retlcal meaning. To han_ 6 have a final solution. We give more details as follows.
the practlpal problem, we .W'" use integer linear programgni First, we perform some preprocessing by computing maximal
(ILP), which will be described next. common substrings ig’ (with respect taH), keep the longest
ones (when there is a conflict) and delete all the correspgndi
D. ILP formulation on the reduced instance duplicated genes. Second, identify all the blocks and afpydy
proups of ILP constraints: overlapping, same-color, asliay,
n&p-adjacency and exemplar constraints.
Preprocessing:

As we use ILP in this subsection, we just use intege
to represent genes. For the ease of description, we focus
unsigned genes here. (In our implementation we in fact cover

both signed and unsigned genomes.) 1) We compute all maximal common substrings (in either
In the reduced genomg’ each gene appears at most twice @ normal or reversed order) betweghandH and keep

after using the MIS approximation in a colored interval drap those with no conflict (i.e., no common intersections).

on the original (generic) genong— where some gene might For instance, withH = 1234567, a substring of’,

not appear ing’ at all. This is due to that each genheould , would be kept. If two maximal common

appear in two intervals, e.g.i € 1,i) and {,i + 1), which substrings have a conflict, we would keep the longer

could be a long distance away. Hence frgh we could one and delete all the duplicated genes in the shorter
only hope to compute a pseudo-exemplar genome (i.e., each substring. For example, leg" = and
gene appears at most once, some might never appear). In the H = 1234567. Then we have two maximal common
the following, we use integer linear programming (ILP) on  substrings:C; = [765432] and C; = [1234 The two

the reduced genom@ to obtain a pseudo-exemplar genome  substrings 4321 and 1234 cause a conflict,{B8, 4} is

with the input being pairs of genes appearing in the form the set of duplicated genes. If we delg@d from Cy, we

(i,i +1) or ( + 1,i). We keep the order of genes in the get| 7651234|. But the optimal solution is 7654321

intervals resulting from the greedy method. For example, by deleting234 in C,.

G =|78|56]43]67] 23 | 12] _ _ 2) If there is a pair between two disjoint-consecutive
Let x denote thek-th interval with content (or simply pairs, we keep the consecutive pairs and delete the pair

color) ij with |j —i| = 1. Asi, j each could appear twice in in the middle. For example, we ke¢@5]| 67| from

G we havek < 4, i.e., we could have at most 4 different |45| 89| 67| While| 89| is deleted.

ways to form the adjacency, ). Note thatj = i -1 or  3) For two sorted-neighboring pairs, we delete one gene

j = i+ 1. We comment that we never altét, while using which appears in the middle. For exampl,

the algorithm in [21]H could be altered. An example is as A

follows, G = 1284565737 — 12345678, With the algorithm _ *© 9etetd 5}

in [21], the optimal solution isG = H = 124567, with five '€ following lemma can be proved.

adjacencies. With our probler is already exemplar so we L€mma 1:The preprocessing procedure cannot reduce the

cannot alter it, and the optimal solution @ = 12845673 number of adjacencies in the optimal solution.

and H = 12345678, with only four adjacencies. MoreoveNVe n_ext illustrate aII_the five groups of const-ramts..

our optimal solution might not be unique and it could be a Adjacency constraints Identify blocks of neighboring and

pseudo-exemplar genome, e@’,= 1245673 0iG’ = 124567 Cconsecutive pairs of genes and the number of distinct genes

(while H = 12345678). involved. In each block, we apply some adjacency constraint
In @, there could be two genes from each gene family. LEOT exgmple with four distinct genes. In this

vij (j = 1,2) represent each gene from its gene fargilyTwo ~ Case, it can form .at most 3 adjacencies using the following

adjacent pairsi(i+1), (i+1,i+2) are callecheighboringpairs. adjacency constraint.

and two adjacent pairs, {(+1), (i+2, i1+3) are callecconsecutive

pairs. (Note that one or both of them could be in reverse

order.) If these pairs are all sorted, then we call trearted-

neighboringand sorted-consecutiveespectively. If two adja-  Non-adjacency constraints For every pairi(i+1), find the

cent pairs have other pairs separating them, disjoint-neighboring pairi@ 1,1+ 2) in other blocks such that

we define them adisjoint-neighboring pairs or disjoint- there are more than two genes between them. In this case,

consecutivegpairs — depending on whether they share a geome of them could be selected. Likewise, for two disjoint-

or not. A blockis composed of a sequence of neighboring @onsecutive pairs,(i + 1), (i + 2,i + 3) in different blocks with

consecutive pairs. For example12 ] 23| 45| 56| 76| 89 | more than two genes between them, both of them could be

Our objective function is to maximize the number of adjacerselected. The corresponding constraints are as followse He

cies we have 1< p,q,r,s< 4.

R+ X 4 Xy X+ Xy Xy 1 <3 @




H of size n, comprising of an integer sequence.fl. Each
P q number in [1.n] represents a unique gene. Then, it constructs
Xirs + Xz S 1 ®) some generic genom@ by mutatingH in m rounds, where
X1+ X2ira < 2 (6) mis a user-defined integer that roughly corresponds to the
number of generations betweéh and G. A mutation cycle
a genome is performed by traversing each ggnm the
ome, and mutating the substring aroupdwith some
probability. Our generator can perform up to nine different

Overlapping constraints: For a set of overlapping intervals,
at most one could be selected. For example, for a substril
of G’, 457689, we have three overlapping intervals and t
constraint is as follows.

mutations:
P\ . . . .
Xsg + Xg7 + X7g < 1 (M . Unit Reversal : Given a gene, switch the locations of
Same-color constraints Given a set of identical intervals, gk andgyg, with a probability of p;.

only one of them could be selected. Note that these intervalg Unit Insertion : Insert an arbitrary gene at locatiowith

cannot all come from the MIS solution. For example, the @& Probability (_)fp2- _ _ N
optimal solution id 67| 45| 65| 78 | is| 45678|. We use the * Unit Deletion : The gene is removed with a probability

- R i of ps.
same color constraint to delete the first intefar | - Unit Duplication : The geneg is copied and then inserted

at locationk + 1 in the genome with a probability qds.

x27 + xg7 + X5+ X, <1 (8) . Segment Reversal : Given some lengitand a geneyy,

the ordering of the genome between gegesnd gk, IS
reversed with a probability ops.

. Tandem Duplication : Given some lendtand a geney,

Exemplar constraints: It is required that at most one gene
from each family could appear in the final solution.

Vit+y<1 (9) the genes betweegy and gy, are copied and placed at
locationk + | + 1 with a probability ofps.
1 10
yar+Ya2 = (10) . Segment Deletion : Given some lengénd a geney, the
: (11) genes betweegy andgy, are removed with a probability
Y1ty <1 (12) of pr.

. Segment Duplication : Given some lendtland a gene
Finally, if the variable x}‘j which represents an interval Ok, the sequence of the genome betwegrand gy, is
(formed by a pair of genes) is selected, we also require that copied and then inserted at a random location out of the

the two variablesy;), andyjj,, which are the elements (x{‘J interval [k, k+1—1] in the genome with a probability of
be selected as well. If the geng, forming the adjacency Ps.

x}‘j is not selected, therx}‘j should also be discarded. The . Transposition: Given some lengthand a genegy, a
corresponding constraints are as follows. transposition operation is performed on a segment of

length| starting atgx with a probability of pe.

Vi, > XIK (13 Every mutation cycle is performed on the mutated genome
" kJ from the previous cycle, untiin cycles have completed. Both
Yilz 2 X (14)  the exemplar genomkl and the genomg are then saved.
Of coursexk andy;; must all be binary variables, represent] Nesé t1.G) pairs are then used as test datasets for our
i ) ; i dageedy-ILP algorithm, and also for the GREDU software that
ing every pair of genes and every single gene in the reducetf '

genome. we compare against.
B} _ _ Throughout our simulations we use four different settings:
%; €10, (i=12---,mj=12--,m (15) Py, P,, P3 and P4, which are further defined as follows.
yij€{0,1} (i=21,2---,mj=12) (16)  « P, = {p; = 0.05 p; = 0.10,p3 = 0.05, ps = 0.05, ps =
0.03, ps = 0.06, p7 = 0.03, pg = 0.10, pg = 0.07,| = 5}
V. SIMULATION RESULTS e P> ={p1 =020 p; =015 p; = 0.15 ps = 0.10, ps =

Our simulation is composed of two parts. In the first part, .05 Ps = 0.08, p7 = 0.04, pg = 0.12, po = 0.10,1 = 1}
we perform data generation and greedy exemplar selections P3 = {p1 = 0.20,p; = 0.18,p3 = 0.10, p4 = 0.10, ps
This part was coded in Java. The second part applies the 0-05 ps=0.09, p7 = 0.05 pg = 0.10, pg = 0.00.1 = 10}
ILP implementation to compute the pseudo-exemplar genomes P4 = {p1 = 0.20,p> = 0.18,p3 = 0.10,ps = 0.10,ps =
which was coded in Matlab (using CPLEX for ILP). (On the ~ 0.05,ps = 0.09, p7 = 0.05, pg = 0.10, pg = 0.00.1 = 5}
other hand, the GREDU software was coded in C++ whidWhile these cases are not exhaustive with regard to the
is usually much faster; moreover, instead of CPLEX, the ILEoverage of genome generations, they do provide the three
package GUROBI was used in GREDU.) We ran our Greedynique cases of genomes that we are interested in for our
ILP algorithm as well as GREDU on a PC with 2.5 GHz Intetomparison of our algorithm and GREDU. The first caBe,
Core processor and 4 GB of memory. is designed to not mutate aggressively, and is designed to

Our simulated data are generated in a similar way as in [2thange slowly. This means that most of the gene families will
The dataset generator first constructs an exemplar gencstif be in the same ordering as the exemplar genome, and



many aligned pairs should be found. The second daseis
designed for rapid mutations. Higher mutation rates C(mple[l]
with a smalll value mean that the genome generated will
likely have a vastly different relative ordering of gene fhes

compared to the exemplar genome, and few adjecencies shotgp

be found compared witlP;. The last two cases?; and Py,
are somewhat of a mixture ¢, and P,. The mutation rates
are still set relatively high, but the value bis varied to 10
in P3, and 5 inP4. This means that not only the genome
is changing rapidly, large sections of it will also be moved
copied and deleted. We do not expect too many adjacenci@;
to be computed compared wit. In fact, the corresponding
empirical results are slightly worse than that frém 5

Even though the platforms (together with the adjacency
definitions) between our implementation and GREDU are
quite different, we compare them using the same simulat
data in Table 1. All the numbers are averaged over 10 tries.
Although GREDU is much faster as it is written in C++, our
implementation, which is based on Java and Matlab, does nf?.
need more than 20 minutes for any case we tested (whic
should be fine with this kind of application). However, as can
be seen in Table 1, for mank; datasets GREDU cannot 8
run to completion. Our implementation is much stable and
the number of adjacencies computed do not differ too much
between the two (even though the definitions of adjacencié%]
differ a bit).

We also obtained similar results for unsigned genomes, thél
details are listed in Table 2. Note that GREDU only handlqﬁ]
signed genomes, hence no comparison is available.

(3]

[12]

VI. CONCLUSION [13]

In this paper, we approach the One-sided EAN problem
considering a generalized version, i.e., One-sided EANe.
handle the One-sided EAN+ problem by first relaxing it as the
maximum independent set (MIS) in a colored interval grapt’l,5
which open a new research direction to deal with the exemp a|J
genomic distance problems for linear genomes. Although thi
new version of MIS in a colored interval graph is NP-hard2®!
it admits a 2-approximation with the standard greedy methqgl
We subsequently designedgeeedy+ ILP algorithm for One-
sided EAN+. Simulation results indicate that our algorittam
handle large scale (singed and unsigned) genomic data Wit
deep evolution depth.

For the future work, it is natural to approach the EAN'
problem by formulating the problem as MIS in a colored 2-
interval graph for two generic input genomes. When the inpizf]
genomes are circular, we can also define similarly MIS in[gl]
colored circular-arc graph. However, in these cases, thedyr
algorithm cannot produce a 2-approximation in these ggtin
Hence, a different method needs to be designed. 22]

4]
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m n Py P2 P3 Py
n n2 n n2 n n2 n n2

1 247 242 216 224 204 198 178 182
500 3 87 41 34 34 19 20 36 33

5 17 12 23 8 8 2 27 22

1 512 481 391 406 301 297 354 365
1000 3 106 96 66 61 54 a7 73 64

5 24 23 33 29 23 18 30 29

1 1552 1442 1231 1244 703 756 1022 1075
3000 3 360 330 232 222 171 164 228 218

5 80 78 97 73 64 50 101 92

1 2441 2307 2044 2067 1532 — 1742 1830
5000 3 658 568 439 397 204 196 310 311

5 163 159 272 197 110 91 148 130

1 3471 3433 2495 2525 2010 — 2400 2450
7000 3 823 740 630 512 515 409 585 486

5 223 208 249 139 151 128 179 174

1 4563 4296 3507 3588 3355 — 3129 3306
9000 3 1103 969 933 828 583 — 724 619

5 257 249 276 154 177 152 253 208

1 6183 5756 5217 5322 3423 — 4987 5021
12000 3 1383 1287 1247 1112 279 237 928 816

5 365 332 379 239 257 205 342 318

TABLE |

COMPARISON RESULTS(SIGNED GENOME) BETWEEN THE NUMBER OF ADJACENCIE$); FROM OUR ALGORITHMS AND THE NUMBER OF ADJACENCIE$)
FROMGREDU. THE GAP — INDICATES THAT WE GET A CORE DUMPED WARNING FROMGREDUAND CAN NOT OBTAIN THE RESULTS AFTER1O TIMES
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m n Pl Pz P3 P4
t1 ng t1 ng t1 ng t1 Ny

1 0 237 0 223 0 207 0 210
500 3 0 86 0 96 0 82 0 85

5 0 20 0 43 0 27 0 39

1 0 497 0 425 0 377 0 380
1000 3 0 116 0 165 0 133 0 135

5 0 41 1 82 0 49 0 51

1 29 1450 30 1281 22 1189 25 1204
3000 3 6 398 27 467 2.5 434 2.5 431

5 3 127 33 207 0 181 0 196

1 127 2214 142 2181 88 2025 111 2076
5000 3 30 662 105 726 15 431 21 469

5 8 159 145 328 2 178 35 211

1 368 3317 398 3097 260 2694 312 2723
7000 3 70 768 326 998 30 614 43 741

5 26 263 435 453 10 235 21 279

1 765 4368 868 4179 446 3650 722 3876
9000 3 207 985 799 1245 80 857 112 911

5 64 310 879 632 25 345 41 434

1 1691 5789 1877 5564 1006 4822 1552 5107
12000 3 409 1321 1521 1532 158 1017 233 1112

5 120 465 1945 913 58 397 7 498

TABLE I

THE RUNNING TIME t; (SECOND9Y AND THE NUMBER OF ADJACENCIES); FOR UNSIGNED GENOMESAVERAGED OVER 10 TRIES. NO COMPARISON IS

DONE WITH GREDUAS IT ONLY HANDLES SIGNED GENOMES



