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Abstract—The one-sided Exemplar Adjacency Number (EAN)
is a known problem for computing the exemplar similarity
between a generic linear genomeG with gene duplications and an
exemplar genomeH (over the same set ofn gene families). In this
problem, we need to compute an exemplar genomeG, which is a
permutation obtained from G, such that the number of common
adjacencies betweenG and H is maximized. Unfortunately, the
problem is not only NP-hard but also NP-hard to approximate.In
this paper, we approach the problem by relaxing the constraint
such that a sub-permutation G+ obtained from G does not
have to include all the gene families, but still needs to havea
length at least k. HenceG+ is called a pseudo-exemplar genome.
Then, a slightly more general problem (One-sided EAN+) is
defined: compute a pseudo-exemplar genomeG+ from G such
that the number of common adjacencies betweenH and G+

is maximized. Certainly One-sided EAN+ contains One-sided
EAN as a special case; moreover, it presents some flexibilityin
designing algorithms. Firstly, we relax and formulate the One-
sided EAN+ problem as the maximum independent set (MIS) on
a colored interval graph and hence reduce the appearance of each
gene to at most two times. We show that this new relaxation is still
NP-complete, though a simple factor-2 approximation algorithm
can be designed; moreover, we also prove that the problem cannot
be approximated within 2−ε by a local search technique. We then
show that this relaxed version is fixed-parameter tractable(FPT).
Secondly, to ensure that each gene appears inG+ at most once,
we use integer linear programming (ILP) to solve this problem.
Finally, we implement our algorithm and compare it with the
up-to-date software GREDU, with simulated signed and unsigned
genomes. It turns out that our algorithm is more stable and can
process genomes of length up to 12,000 for signed genomes (while
GREDU can falter on such a large signed genome and it cannot
handle unsigned genomes at all).

Keywords: genome comparison, exemplar adjacency number,

maximum independent set, colored interval graph, integer linear
programming.

I. I NTRODUCTION

Computing the distance/similarity of two genomes is essen-
tial for building the evolution history of a genome. In the past
two decades, there have been three general ways to compute
the genomic distance or similarity between general genomes
(with gene duplications): (1) computing the exemplar genomic
distance (i.e., deleting all but one gene for each gene family)
[20], [4], [5], [7], [2], [3], [16], (2) computing the numberof
common adjacencies between them [2], [14], [15], [17], [18],
[22], [13], and (3) computing the minimum common partition
number [9]. As our method somehow falls into (1), we review
the corresponding methods in more detail.

In 1999, Sankoff formulated the exemplar breakpoint dis-
tance problem as follows: select exactly one gene from each
gene family from two generic genomesG andH over the same
set of gene families such that the breakpoint distance between
the two resulting exemplar genomesG and H is minimized
[20]. From a theoretical point of view, computing the exemplar
breakpoint distance is not only NP-hard [4], but also NP-hard
to approximate (regardless of the approximation factor) when
each gene appears inG andH at most three times [5] or twice
[3], [16]. This was shown by proving that deciding whether
the optimal exemplar breakpoint distance is zero, i.e, whether
G = H, is NP-complete. Hence, computing any approximation
solution is NP-hard.
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Nonetheless, several algorithms have been proposed for the
problem. Sankoff first proposed a branch-and-bound approach
for the exemplar breakpoint distance problem [20]. Nguyenet
al. developed a more efficient divide-and-conquer algorithm
for the problem [19]. Angibaudet al. presented an integer
linear programming (ILP) method for computing the exact
breakpoint distance [1]. More recently, Shao and Moret gave
a slightly relaxed formulation for the exemplar breakpoint
distance problem where not all gene families need to show
up in the final (reduced) genomes, and they then implemented
a fast and exact algorithm (named GREDU) using ILP [21].

The exemplar adjacency number problem is simply the
complement of the exemplar breakpoint distance problem
[6], [8]. Formally, the Exemplar Adjacency Number (EAN)
problem can be defined as follows: given two generic linear
genomesG and H over a set ofn gene families, delete
duplicated genes to obtain two exemplar genomesG and H
of length n, such that the number of (common) adjacencies
betweenG andH is maximized. The One-Sided EAN problem
is the special case whenH(= H) is given exemplar.

For the EAN problem, Chenet al. first showed that if
H(= H) is exemplar and the other genomeG is 2-repetitive
(i.e., a gene from each of then gene families appears at most
twice inG), then this version of One-sided EAN admits neither
a polynomial-time factor-n0.5−ε approximation unlessP = NP,
nor an FPT algorithm unless FPT=W[1] [6], [8]. (FPT stands
for fixed-parameter tractable, the formal definition is given
in Section 4.) A factor-n0.5 approximation algorithm was
presented for the EAN problem when each gene appears at
most twice in bothG and H [8]. Intuitively, due to the
hardness result of the EAN problem (especially that a gene
in each gene family must appear inG), it is not convenient to
design efficient algorithms.

In this paper, we investigate the One-sided EAN problem
whose input isG and H, over a set ofn gene families. We
first relax the problem by deleting genes fromG such that the
reduced (pseudo-exemplar) genomeG+ is a sub-permutation
of length at mostn, and the objective is still to maximize the
number of (common) adjacencies betweenG+ andH. We call
this problem One-sided EAN+, which is a generalized version
of One-sided EAN and is at least as hard as the latter. (Note
that the two problems are not exactly the same. For example,
G = 315264 andH = 123456, for the latter problem there
is no common adjacency while in the former we could still
delete 2 to obtain a common adjacency 56.)

On the other hand, One-sided EAN+ does give us some
freedom in designing algorithms. We first obtain a new relax-
ation of the problem as the maximum independent set (MIS)
on a colored interval graph — a new variant of interval graph
for linear genomes where the intervals corresponding to the
potential adjacencyab or −b − a in G are given the same
color. While it is well-known that MIS on interval graphs is
polynomially solvable [12], we show in this paper that the
MIS problem on colored interval graphs becomes NP-hard.
On the other hand, a simple factor-2 approximation, a twist
of Gavril’s greedy algorithm [12], can be obtained. We show,
a bit surprisingly, that a simple local search cannot further
improve the 2 factor; moreover, we also show that this MIS

problem on colored interval graphs is fixed-parameter tractable
(FPT).

The above MIS approximation only gives us a re-
duced/relaxed instance for the One-sided EAN+ problem. Let
G′ be the reduced instance forG, obtained by the approximate
MIS solution. InG′, each gene appears at most twice inG′

(and some gene family might not appear inG′ at all). The
next step is to use ILP to compute the number of exemplar
(common) adjacencies between the pseudo-exemplar genome
G+ (obtained from further reducingG′) andH. (We comment
that H is never altered, and this is different from the method
by Shao and Moret [21].)

We implemented the algorithm and tested it on simulated
genomes, generated in very much the same way as in [21].
(We used both signed and unsigned genomes, though in [21]
only signed ones were used.) The comparison with GREDU
[21] indicates that our algorithm is more stable and generates
comparable number of adjacencies (though the definitions of
the adjacencies differ a little, as discussed above). The details
are in Section 4.

This paper is organized as follows. In section 2, we make
necessary definitions. In section 3, we approach the One-
sided EAN+ problem by first reformulating it as the maximum
independent set on colored interval graphs, and then proving
its NP-hardness. In section 4, we first design a simple 2-
approximation algorithm (to obtain a reduced instance). In
addition, we show that the problem is FPT (though the high
running time makes it impractical). Finally we use ILP to solve
the reduced instance exactly. In section 5, we present our
empirical results in comparison with GREDU on simulated
genomes (with enough duplicated genes). In section 6, we
conclude the paper and point out some directions for future
work.

II. PRELIMINARIES

As genomes could be signed or unsigned, in this section
we focus on the former (the latter is clear form the context,
which will be explained in the next section). Given a setF of
n gene families (alphabet), a (signed) genomeG is a sequence
of elements ofF such that each element is with a sign (+ or -).
Given a (signed) genome with a gene in each family appearing
exactly once (which is calledexemplar) G = g1g2 · · ·gn, we
say that the genegi immediately precedesg j, if j = i+1. Given
two exemplar genomesG,H, if genea immediately precedesb
in G and neithera immediately precedesb nor−b immediately
precedes−a in H, then they constitute abreakpointin G. Then
the breakpoint distance is simply the number of breakpoints
in G or H, denoted asbd(G,H). Similarly, given exemplar
genomesG,H, if gene a immediately precedesb in G and
either a immediately precedesb or −b immediately precedes
−a in H, then they constitute a (common)adjacencyin G. The
adjacency number is the number of (common) adjacencies in
G or H, denoted asan(G,H). For exemplar genomesG,H, we
have the equationbd(G,H) + an(G,H) = n− 1. For example,
let G = 12345,H = −5− 4312, then there are two adjacencies
and two breakpoints betweenG and H.

Given two generic genomes (i.e., with gene duplications)
G and H the exemplar breakpoint distance between them,
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denoted asebd(G,H), is the minimum breakpoint distance
bd(G,H) among all exemplar genomesG,H obtained from
G andH . Similarly, the exemplar adjacency number between
G andH , denoted asean(G,H), is the maximum adjacency
numberan(G,H) among all exemplar genomesG,H obtained
from G andH . Again, we have the equationebd(G,H) +
ean(G,H) = n− 1.

The problem of computingean(G,H) is formally defined
as theExemplar Adjacency Number(EAN) problem. When
one of G,H is given exemplar, the corresponding problem
is calledOne-sided EANproblem. Throughout this paper, we
assume thatH is given exemplar and we useH instead of
H henceforth. A genomeG+ with length at leastk (k ≤ n),
obtained fromG by deleting duplicated genes (but each gene
appears at most once inG+), is called apseudo-exemplar
genome. (Note thatG+ is really a sub-permutation and the
definitions of breakpoints and adjacencies between pseudo-
exemplar genomes are the same as for exemplar genomes,
except that they do not necessarily sum ton − 1 anymore.)
Given k, the problem of computingG+ from G such that the
number of adjacencies betweenG+ and H is maximized, is
hence called theOne-sided EAN+problem. (Note that One-
sided EAN+ contains One-sided EAN as a special case when
k = n; hence it is at least as hard as the latter.)

Finally, an interval graphI = (V,E) is a graph whose
vertices have an one-to-one correspondence to a set of intervals
on a line. An intervalu = (l(u), r(u)) is represented by its left
endpoint l(u) and the right endpointr(u). There is an edge
between two verticesu, v ∈ V iff the intervals have a non-
empty intersection. See Fig. 1 for an example.

In the next section, we present a new method for the
One-sided EAN+ problem. We start with a different relax-
ation/formulation of the problem.

III. A N EW FORMULATION OF THE PROBLEM

As discussed earlier, the input for us is a generic linear
genomeG and an exemplar linear genomeH, over the same set
of gene families. First of all, we try to identify some disjoint
intervals inG, one for each color (each corresponding to a
unique 2-substring inH). These intervals are the vertices of
the corresponding colored interval graphI. Then we try to
identify the maximum number of disjoint intervals inG, each
of a different color. Clearly these intervals form a maximum
(colored) independent set inI. We show how these intervals
are constructed as follows.

For each 2-substringaiai+1 in H, we list all the minimal
intervalsaiβai+1 or −ai+1β−ai (for unsigned genomesai+1βai)
in G such that the contentsβ could be deleted to have a
potential adjacencyaiai+1 or −ai+1 − ai (ai+1ai for unsigned
genomes). Note that a substringxβy is minimal if the substring
β does not containx, or y, or a subsequence (potential
adjacency)−y−x. All the minimal intervals inG corresponding
to aiai+1 in H are given the same color. See Fig. 1 for an
example of a colored interval graph where an unsigned genome
is used.

We define the Maximum Independent Set (MIS) problem in
a Colored Interval Graph (MIS-CIG for short) as follows.

2

a   b   c   d   e   f  ......

i  g  f  a  i  d  h  b  c  e  g  e  b  f  d  i  g  f  h  ......  g  a  e  i  h  d  f  b

1 1

22
G

H

Fig. 1. Formulation of the one-sided EAN problem potentially as MIS in a
colored interval graph. Note that inG the two intervals labeled with color 1
correspond to the adjacencyab, while the three intervals labeled with color
2 correspond to the adjacencyde.

Problem: MIS-CIG
Instance: A setI of m intervals on a line, each is colored

by one of thek (k < m) colors, and a parameterk1 ≤ k.
Question: Are therek1 disjoint intervals of different colors?
We show next that MIS-CIG is NP-complete.

A. Hardness of MIS-CIG

Theorem 1:The MIS-CIG problem is NP-complete.
Proof: It is easy to see that MIS-CIG is in NP. To prove

its NP-completeness, we reduce the classic 3SAT problem to
MIS-CIG. Given a Boolean formulaφ in 3-conjunctive normal
form, φ = F1 ∧ F2 ∧ · · · ∧ Fℓ, where each of theℓ clausesFi

has three distinct literals from a set ofm boolean variables
x1, x2, · · · , xm and their negations, the problem is to decide
whetherφ is satisfiable.

For each literal (variablexi and its negation ¯xi), we construct
two copies of interleaving intervals of four different colors
4i −3, 4i −2, 4i −1, 4i. (See Figure 2.) Ifxi is assigned TRUE,
we select 4i − 3, 4i − 1 at the top-right corner and 4i − 2, 4i
at the bottom-left corner. Ifxi is assigned FALSE, we select
4i − 3, 4i − 1 at the top-left corner and 4i − 2, 4i at the bottom-
right corner. For each clauseF j , we create three very small
intervals of the same color (F j). We put the interval with color
F j under the interval 4i − 3 of xi if xi appears inF j , and we
put the interval with colorF j under the interval 4i − 3 of
x̄i if x̄ j appears inF j . We give an example to illustrate the
construction. Assume we have a 3SAT formulaφ = F1∧F2∧

F3 ∧ F4, with F1 = (x1 ∨ x̄2 ∨ x3), F2 = (x̄1 ∨ x2 ∨ x̄4), F3 =

(x̄2∨ x̄3∨ x4), andF4 = (x1∨ x̄3∨ x̄4). In Fig. 2, we show the
corresponding construction forφ.

We prove next thatφ is satisfiable if and only if the colored
interval graph has an IS of 4m+ ℓ intervals (all with different
colors).

“Only if part:” Suppose that the 3SAT instanceφ is satisfi-
able. If xi is assigned TRUE, we select the top-right intervals
4i − 3, 4i − 1, the bottom-left intervals 4i − 2, 4i and all other
F j intervals in the bottom row under the unselected interval
4i−3 as part of the MIS. (If multipleF j intervals are selected,
we just arbitrarily keep one of them.) Ifxi is assigned FALSE,
we select the top-left intervals 4i − 3, 4i − 1, the bottom-right
intervals 4i − 2, 4i and all otherF j intervals in the bottom
row under the unselected interval 4i − 3 as part of the MIS.
Consequently, we obtain an MIS with 4m+ℓ intervals (all with
different colors).
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“ If part:” Suppose that the colored interval graph contains
an independent set of 4m + ℓ intervals, all with different
colors. As we have exactly 4m+ ℓ different colors, all colors
must appear in the independent set. For the two groups of
interleaving intervals 4i−3, 4i−2, 4i−1 and 4i (corresponding
to xi and x̄i respectively), clearly we could only select them
in two different ways. We could either select the top-right
4i−3, 4i−1 and the bottom-left 4i−2, 4i intervals, or we could
select the top-left 4i − 3, 4i − 1 and the bottom-right 4i − 2, 4i
intervals. In the former case, we assignxi=TRUE, and then
the F j intervals containingxi will be in the independent set as
the top-left interval 4i−3 (which intersects all theF j intervals
containing xi) is not selected. In this case,F j evaluates to
TRUE and is satisfied. Similarly, we could showF j containing
x̄i is also satisfied if we select the top-left 4i−3, 4i−1 and the
bottom-right 4i−2, 4i intervals, which corresponds to assigning
xi=FALSE. As all intervals of colorF j must appear in the
independent set once (hence all clausesF j ’s are satisfied in
φ), we have a truth assignment for all the variables to satisfy
φ.

The reduction obviously takesO(m + ℓ) time. Hence the
theorem is proven.

In Fig. 3, we show the selected intervals forx1=TRUE,
x2=FALSE, x3=TRUE, andx4=FALSE.
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Fig. 2. Illustration for the reduction from the 3SAT instance φ = F1 ∧ F2 ∧

F3 ∧ F4, whereF1 = (x1 ∨ x̄2 ∨ x3), F2 = (x̄1 ∨ x2 ∨ x̄4), F3 = (x̄2 ∨ x̄3 ∨ x4),
and F4 = (x1 ∨ x̄3 ∨ x̄4).

IV. A LGORITHMS

In this section, we design a factor-2 approximation algo-
rithm for the MIS-CIG problem. (Moreover, we prove that the
approximation factor cannot be improved to be less than 2 by
some simple local search technique.) This gives us a reduced
instanceG′ where each gene appears at most twice in it. We
then show that MIS-CIG is FPT, though the results is only of
theoretical meaning. Finally, we use ILP to efficiently delete
extra gene duplications inG′ while computing the maximum
number of (common) adjacencies.

2 4
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14 16
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x2 x2

x3 x3

x4 x4

F1

F1
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F2

F3

F4

F4

Fig. 3. The colored intervals selected based on the truth assignmentx1 = x3 =

TRUE, x2 = x4 = FALSE. Note that for intervals labelled withF1 andF4 we
can select one arbitrarily.

A. A factor 2-approximation

A factor-2 approximation for MIS-CIG can be obtained
using a twist of the well-known greedy method. Firstly, the
intervals are sorted according to their right endpoints (from
left to right). Secondly, we scan the intervals from left to right,
according to the sorted order, and put the first intervalI1 in
the solution. Then we delete all the intervals of the same color
with I1 or intersectingI1, and repeat this process until no more
interval can be put in the solution.

Algorithm 1 Greedy algorithm
1) m← size ofI.
2) S← ∅.
3) Sort all intervals inI according to their right endpoints

as I1, ..., Im.
4) Delete fromI all the intervals of the same color with

I1 or intersectingI1.
5) DeleteI1 from I.
6) S← S ∪ {I1}.
7) while I , ∅
8) I t ← the first interval inI.
9) S← S ∪ {I t}.

10) Delete all the intervals of the same color withI t or
intersectingI t.

11) DeleteI t from I.
12) ReturnS.

It is straightforward to see that the algorithm returns a setS
of intervals. We show below thatS is a factor-2 approximation
for MIS-CIG. Let I i ∈ S and let I j be some interval which
intersectsr(I i) (the right endpoint ofI i). As the algorithm scans
intervals from left to right, any optimal solution not containing
I i must either contain an interval of the same color withI i ,
or contain an interval of the same color withI j (inclusive of
I j), or both. Hence the approximation algorithm would return
at least a half of the optimal solution associated withr(I i).
Applying this argument inductively, we could conclude thatS
is a factor-2 approximation for MIS-CIG.
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B. A local search improvement?

With the greedy algorithm, it is natural to try to improveS
using local search. LetI be the input intervals for the MIS-
CIG problem. We search for a subset ofc intervals inS, Sc,
such that puttingSc back toI\S enables us to find locally a
subsetS′c of more thanc independent intervals with different
colors and all the colors inS′c do not appear inS\Sc. Then
(S\Sc) ∪ S′c would give us a better solution thanS and we
updateS← (S\Sc)∪S′c. This process will continue until noSc

can be found. For a constantc, we call the corresponding local
search procedurec-local search. Unfortunately, forc = 1, 2,
this local search method cannot improve the result in the worst
case. We summarize the result as follows.

Theorem 2:Algorithm 1 returns a 2-approximation for
MIS-CIG. For c = 1, 2 and some constantε, the solution
obtained by Algorithm 1 cannot be improved to have an
approximation factor smaller than 2− ε usingc-local search.

Proof: We only show the second part, as the first part
has just been proved. Assume to the contrary that withc-
local search,c = 1, 2, we could obtain a 2− ε approximation
for the MIS-CIG problem. We construct an instance with
3n + 2 intervals, with 2n colors {0, 1, ..., 2n− 1}. The greedy
algorithm would select the intervals at the bottom row with
colors 0, 1, 2, ..., n. The optimal solution is to select all the
intervals in the top row (except the last interval with color0),
with colors 0, 1, ..., 2n− 2, 2n− 1. When context is clear, we
just call an interval with colori interval i. See Fig. 4.

1 n−2 n−1 n

n 0 n−3 n−2 n−1 0...... 2n−2 2n−1
......

n+1

0

Fig. 4. Illustration for the proof of Theorem 2.

To see thatc-local search does not incur any improvement
for c = 1, 2, it is important to notice that any intervali (i > 0)
at the bottom row contains an intervali − 1 at the top row;
moreover, the two neighboring intervals of intervali−1 at the
top row, n + i − 1 and (n + i) mod 2n, are both intersecting
with the corresponding neighboring intervals ofi at the bottom
row. (For interval 0 at the bottom row, it intersects interval n
at the top row.) Hence, for 1-local search, it is impossible to
obtain a larger independent set by swapping intervali at the
bottom row with two intervals in new colors at the top row.
Similarly, for 2-local search, it is impossible to obtain a larger
independent set by swapping two intervalsi, j at the bottom
row with three intervals in new colors at the top row.

For this instance, the approximation factor of the greey
method is

2n
n+ 1

= 2−
2

n+ 1
> 2− ε,

when n > 2−ε
ε

(i.e., whenn is sufficiently large). Hence, the
approximation factor of the greedy algorithm is tight, whether
or not c-local search,c = 1, 2, are applied.

Note that whenc ≥ 3, the above argument does not work
anymore. On the other hand, a local search withc ≥ 3
could incur a high cost. Hence, after a reduced genome
G′ is obtained through the MIS approximation, we would
use integer linear programming (ILP) instead. In the next

subsection, for theoretical purpose, we describe a simple FPT
algorithm for the problem.

C. An FPT algorithm

We show briefly an FPT (fixed-parameter tractable) algo-
rithm for this problem. (An FPT algorithm for a decision
problem with parameterk is one which runs inO( f (k)nc) =
O∗( f (k)) time, wheref (−) is any computable function,n is the
input size andc is a constant not related ton andk [10], [11].)
The algorithm is very similar to the above greedy algorithm.
Note that here the question is to decide whether there arek
non-intersection segments spanning all thek colors.

We first take all possible permutations of thek colors, i.e.,
k! of them. For each permutationπi = 〈i1, i2, ..., ik〉, we check
whether there is a solution ofk non-intersecting segments all
with different colors such that reading their colors from left to
right, we get exactlyπi . It is straightforward to see that if such
a solution exists, then there must be a solution whose leftmost
segment/interval is the leftmost segment/interval with color
i1. Then we could repeatedly apply this greedy idea to obtain
the leftmost segment of colori j+1 (provided that it does not
intersect the previously selected segment with colori j), until
we obtain the segment with colorik. Since we have to try
over all possible permutations of thek colors, this algorithm
obviously takesO∗(k!) time.

The algorithm can clearly be improved. We could use a
standard dynamic programming algorithm. Lets1, s2, · · · , sn

be the list of intervals sorted by their right endpoints and let
ci be the color ofsi for i = 1..n. Assume thatK is the set of
k given colors andC ⊆ K, we defineU[C, si ] as the binary
table deciding whether there is a set of|C| disjoint intervals
in the list s1, s2, ..., si such that they are all of different colors
and the union of their colors is exactlyC. Let S[C, si ] be the
corresponding set of these|C| intervals. To be more precise,
U[C, si ] =TRUE if such a solutionS[C, si ] exists; otherwise,
U[C, si ] =FALSE. Initially, U[{ci}, si ] =TRUE for all i. Given
si , let si′ be the rightmost interval to the left ofsi that does
not intersectsi , i.e., i′ is the largest indexj satisfying j < i
and sj ∩ si = ∅. Let sℓ be any interval to the left ofsi , i.e.,
ℓ < i. If sℓ does not intersect any segment in a set of segments
S, we denotesℓ ∩ S = ∅.

We show howU[C, si ] is updated as follows. The update
for S[C, si ] is trivial, hence omitted.

U[C, si ] = (U[C − {cℓ}, si ] ∧ (sℓ ∩ S[C − {cℓ}, si ] = ∅))(1)

∨ U[C, si−1] (2)

∨ U[C − {ci}, si′ ] (3)

We explain the three updates in more detail.

1) U[C, si ] is updated through an intervalsℓ to the left of
si wheresℓ does not intersect any interval in the current
solutionS[C − {cℓ}, si ] and its color is new.

2) U[C, si ] is updated by not includingsi in the solution.
3) U[C, si ] is updated by includingsi in the solution.

Then, there is a colored independent set spanning all thek
colors iff U[K, sn] is TRUE. The actual solution can be found
in S[K, sn]. The running time of this dynamic programming
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algorithm is obviouslyO∗(2k) as we have 2k subsets fork
colors.

Theorem 3:MIS-CIG can be solved with an FPT algorithm
in O∗(2k) time.

Unfortunately, for our application,k is usually large. (In
fact, k could be as large as a couple of thousands.) Hence, this
FPT algorithm is only of some theoretical meaning. To handle
the practical problem, we will use integer linear programming
(ILP), which will be described next.

D. ILP formulation on the reduced instance

As we use ILP in this subsection, we just use integers
to represent genes. For the ease of description, we focus on
unsigned genes here. (In our implementation we in fact cover
both signed and unsigned genomes.)

In the reduced genomeG′ each gene appears at most twice
after using the MIS approximation in a colored interval graph
on the original (generic) genomeG— where some gene might
not appear inG′ at all. This is due to that each genei could
appear in two intervals, e.g., (i − 1, i) and (i, i + 1), which
could be a long distance away. Hence fromG′ we could
only hope to compute a pseudo-exemplar genome (i.e., each
gene appears at most once, some might never appear). In the
the following, we use integer linear programming (ILP) on
the reduced genomeG′ to obtain a pseudo-exemplar genome
with the input being pairs of genes appearing in the form
(i, i + 1) or (i + 1, i). We keep the order of genes in the
intervals resulting from the greedy method. For example,
G′ = 78 56 43 67 23 12 .

Let xk
i j denote thek-th interval with content (or simply

color) i j with | j − i| = 1. As i, j each could appear twice in
G′ we havek ≤ 4, i.e., we could have at most 4 different
ways to form the adjacency (i, j). Note that j = i − 1 or
j = i + 1. We comment that we never alterH, while using
the algorithm in [21]H could be altered. An example is as
follows, G = 128456573,H = 12345678. With the algorithm
in [21], the optimal solution isG = H = 124567, with five
adjacencies. With our problemH is already exemplar so we
cannot alter it, and the optimal solution isG = 12845673
and H = 12345678, with only four adjacencies. Moreover,
our optimal solution might not be unique and it could be a
pseudo-exemplar genome, e.g.,G′ = 1245673 orG′ = 124567
(while H = 12345678).

In G′, there could be two genes from each gene family. Let
yi j ( j = 1, 2) represent each gene from its gene familyyi . Two
adjacent pairs (i, i+1), (i+1, i+2) are calledneighboringpairs.
and two adjacent pairs (i, i+1), (i+2, i+3) are calledconsecutive
pairs. (Note that one or both of them could be in reverse
order.) If these pairs are all sorted, then we call themsorted-
neighboringand sorted-consecutiverespectively. If two adja-
cent pairs have other pairs separating them, say45 89 67 ,
we define them asdisjoint-neighboringpairs or disjoint-
consecutivepairs — depending on whether they share a gene
or not. A block is composed of a sequence of neighboring or
consecutive pairs. For example,12 23 45 56 76 89 .
Our objective function is to maximize the number of adjacen-
cies

max
∑

i, j

xk
i j .

Our idea on applying ILP to the reduced instance is as
follows. We identify all the blocks and we then solve them
locally using ILP. Then these local solutions are put together
to have a final solution. We give more details as follows.
First, we perform some preprocessing by computing maximal
common substrings inG′ (with respect toH), keep the longest
ones (when there is a conflict) and delete all the corresponding
duplicated genes. Second, identify all the blocks and applyfive
groups of ILP constraints: overlapping, same-color, adjacency,
non-adjacency and exemplar constraints.

Preprocessing:

1) We compute all maximal common substrings (in either
a normal or reversed order) betweenG′ andH and keep
those with no conflict (i.e., no common intersections).
For instance, withH = 1234567, a substring ofG′,
45 67 , would be kept. If two maximal common

substrings have a conflict, we would keep the longer
one and delete all the duplicated genes in the shorter
substring. For example, letG′ = 7654321234 and
H = 1234567. Then we have two maximal common
substrings:C1 = 7654321 and C2 = 1234. The two
substrings 4321 and 1234 cause a conflict, but{2, 3, 4} is
the set of duplicated genes. If we delete432 from C1, we
get 7651234 . But the optimal solution is 7654321
by deleting234 in C2.

2) If there is a pair between two disjoint-consecutive
pairs, we keep the consecutive pairs and delete the pair
in the middle. For example, we keep45 67 from
45 89 67 , while 89 is deleted.

3) For two sorted-neighboring pairs, we delete one gene
which appears in the middle. For example in45 56 ,
we delete 5 .

The following lemma can be proved.
Lemma 1:The preprocessing procedure cannot reduce the

number of adjacencies in the optimal solution.
We next illustrate all the five groups of constraints.

Adjacency constraints: Identify blocks of neighboring and
consecutive pairs of genes and the number of distinct genes
involved. In each block, we apply some adjacency constraint.
For example, 56 76 87 with four distinct genes. In this
case, it can form at most 3 adjacencies using the following
adjacency constraint.

xi1
56 + xi2

56 + x j1
67 + x j2

67+ x j3
67+ xk1

78+ xk2
78 ≤ 3 (4)

Non-adjacency constraints: For every pair (i, i+1), find the
disjoint-neighboring pair (i +1, i +2) in other blocks such that
there are more than two genes between them. In this case,
one of them could be selected. Likewise, for two disjoint-
consecutive pairs (i, i + 1), (i + 2, i +3) in different blocks with
more than two genes between them, both of them could be
selected. The corresponding constraints are as follows. Here
we have 1≤ p, q, r, s≤ 4.
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xp
i,i+1 + xq

i+1,i+2 ≤ 1 (5)

xr
i,i+1 + xs

i+2,i+3 ≤ 2 (6)

Overlapping constraints: For a set of overlapping intervals,
at most one could be selected. For example, for a substring
of G′, 457689, we have three overlapping intervals and the
constraint is as follows.

xp
56 + xq

67 + xr
78 ≤ 1 (7)

Same-color constraints: Given a set of identical intervals,
only one of them could be selected. Note that these intervals
cannot all come from the MIS solution. For example, the
optimal solution in 67 45 65 78 is 45678 . We use the
same color constraint to delete the first interval67 :

xp
67 + xq

67 + xr
67 + xs

67 ≤ 1 (8)

Exemplar constraints: It is required that at most one gene
from each family could appear in the final solution.

y11 + y12 ≤ 1 (9)

y21 + y22 ≤ 1 (10)
... (11)

yn1 + yn2 ≤ 1 (12)

Finally, if the variable xk
i j which represents an interval

(formed by a pair of genes) is selected, we also require that
the two variablesyi,l1 andy j,l2, which are the elements ofxk

i j ,
be selected as well. If the geneyi,l1 forming the adjacency
xk

i j is not selected, thenxk
i j should also be discarded. The

corresponding constraints are as follows.

yi,l1 ≥ xk
i j (13)

y j,l2 ≥ xk
i j (14)

Of course,xk
i j andyi j must all be binary variables, represent-

ing every pair of genes and every single gene in the reduced
genome.

xk
i j ∈ {0, 1} (i = 1, 2, · · · , n; j = 1, 2, · · · ,m) (15)

yi j ∈ {0, 1} (i = 1, 2, · · · , n; j = 1, 2) (16)

V. SIMULATION RESULTS

Our simulation is composed of two parts. In the first part,
we perform data generation and greedy exemplar selection.
This part was coded in Java. The second part applies the
ILP implementation to compute the pseudo-exemplar genome,
which was coded in Matlab (using CPLEX for ILP). (On the
other hand, the GREDU software was coded in C++ which
is usually much faster; moreover, instead of CPLEX, the ILP
package GUROBI was used in GREDU.) We ran our Greedy-
ILP algorithm as well as GREDU on a PC with 2.5 GHz Intel
Core processor and 4 GB of memory.

Our simulated data are generated in a similar way as in [21].
The dataset generator first constructs an exemplar genome

H of size n, comprising of an integer sequence [1..n]. Each
number in [1..n] represents a unique gene. Then, it constructs
some generic genomeG by mutatingH in m rounds, where
m is a user-defined integer that roughly corresponds to the
number of generations betweenH andG. A mutation cycle
on a genome is performed by traversing each genegk in the
genome, and mutating the substring aroundgk with some
probability. Our generator can perform up to nine different
mutations:

• Unit Reversal : Given a gene,gk, switch the locations of
gk andgk+l with a probability ofp1.

• Unit Insertion : Insert an arbitrary gene at locationk with
a probability ofp2.

• Unit Deletion : The genegk is removed with a probability
of p3.

• Unit Duplication : The genegk is copied and then inserted
at locationk+ 1 in the genome with a probability ofp4.

• Segment Reversal : Given some lengthl and a genegk,
the ordering of the genome between genesgk andgk+l is
reversed with a probability ofp5.

• Tandem Duplication : Given some lengthl and a genegk,
the genes betweengk and gk+l are copied and placed at
locationk+ l + 1 with a probability ofp6.

• Segment Deletion : Given some lengthl and a genegk, the
genes betweengk andgk+l are removed with a probability
of p7.

• Segment Duplication : Given some lengthl and a gene
gk, the sequence of the genome betweengk and gk+l is
copied and then inserted at a random location out of the
interval [k, k+ l − 1] in the genome with a probability of
p8.

• Transposition: Given some lengthl and a genegk, a
transposition operation is performed on a segment of
length l starting atgk with a probability ofp9.

Every mutation cycle is performed on the mutated genome
from the previous cycle, untilm cycles have completed. Both
the exemplar genomeH and the genomeG are then saved.
These (H,G) pairs are then used as test datasets for our
Greedy-ILP algorithm, and also for the GREDU software that
we compare against.

Throughout our simulations we use four different settings:
P1,P2, P3 and P4, which are further defined as follows.

• P1 = {p1 = 0.05, p2 = 0.10, p3 = 0.05, p4 = 0.05, p5 =

0.03, p6 = 0.06, p7 = 0.03, p8 = 0.10, p9 = 0.07, l = 5}
• P2 = {p1 = 0.20, p2 = 0.15, p3 = 0.15, p4 = 0.10, p5 =

0.05, p6 = 0.08, p7 = 0.04, p8 = 0.12, p9 = 0.10, l = 1}
• P3 = {p1 = 0.20, p2 = 0.18, p3 = 0.10, p4 = 0.10, p5 =

0.05, p6 = 0.09, p7 = 0.05, p8 = 0.10, p9 = 0.00, l = 10}
• P4 = {p1 = 0.20, p2 = 0.18, p3 = 0.10, p4 = 0.10, p5 =

0.05, p6 = 0.09, p7 = 0.05, p8 = 0.10, p9 = 0.00, l = 5}

While these cases are not exhaustive with regard to the
coverage of genome generations, they do provide the three
unique cases of genomes that we are interested in for our
comparison of our algorithm and GREDU. The first case,P1

is designed to not mutate aggressively, and is designed to
change slowly. This means that most of the gene families will
still be in the same ordering as the exemplar genome, and
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many aligned pairs should be found. The second case,P2, is
designed for rapid mutations. Higher mutation rates coupled
with a small l value mean that the genome generated will
likely have a vastly different relative ordering of gene families
compared to the exemplar genome, and few adjecencies should
be found compared withP1. The last two cases,P3 and P4,
are somewhat of a mixture ofP1 and P2. The mutation rates
are still set relatively high, but the value ofl is varied to 10
in P3, and 5 in P4. This means that not only the genome
is changing rapidly, large sections of it will also be moved,
copied and deleted. We do not expect too many adjacencies
to be computed compared withP2. In fact, the corresponding
empirical results are slightly worse than that fromP2.

Even though the platforms (together with the adjacency
definitions) between our implementation and GREDU are
quite different, we compare them using the same simulated
data in Table 1. All the numbers are averaged over 10 tries.
Although GREDU is much faster as it is written in C++, our
implementation, which is based on Java and Matlab, does not
need more than 20 minutes for any case we tested (which
should be fine with this kind of application). However, as can
be seen in Table 1, for manyP3 datasets GREDU cannot
run to completion. Our implementation is much stable and
the number of adjacencies computed do not differ too much
between the two (even though the definitions of adjacencies
differ a bit).

We also obtained similar results for unsigned genomes, the
details are listed in Table 2. Note that GREDU only handles
signed genomes, hence no comparison is available.

VI. CONCLUSION

In this paper, we approach the One-sided EAN problem by
considering a generalized version, i.e., One-sided EAN+. We
handle the One-sided EAN+ problem by first relaxing it as the
maximum independent set (MIS) in a colored interval graph,
which open a new research direction to deal with the exemplar
genomic distance problems for linear genomes. Although this
new version of MIS in a colored interval graph is NP-hard,
it admits a 2-approximation with the standard greedy method.
We subsequently designed agreedy+ ILP algorithm for One-
sided EAN+. Simulation results indicate that our algorithmcan
handle large scale (singed and unsigned) genomic data with
deep evolution depth.

For the future work, it is natural to approach the EAN
problem by formulating the problem as MIS in a colored 2-
interval graph for two generic input genomes. When the input
genomes are circular, we can also define similarly MIS in a
colored circular-arc graph. However, in these cases, the greedy
algorithm cannot produce a 2-approximation in these settings.
Hence, a different method needs to be designed.
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m n P1 P2 P3 P4

n1 n2 n1 n2 n1 n2 n1 n2

500
1 247 242 216 224 204 198 178 182
3 87 41 34 34 19 20 36 33
5 17 12 23 8 8 2 27 22

1000
1 512 481 391 406 301 297 354 365
3 106 96 66 61 54 47 73 64
5 24 23 33 29 23 18 30 29

3000
1 1552 1442 1231 1244 703 756 1022 1075
3 360 330 232 222 171 164 228 218
5 80 78 97 73 64 50 101 92

5000
1 2441 2307 2044 2067 1532 — 1742 1830
3 658 568 439 397 204 196 310 311
5 163 159 272 197 110 91 148 130

7000
1 3471 3433 2495 2525 2010 — 2400 2450
3 823 740 630 512 515 409 585 486
5 223 208 249 139 151 128 179 174

9000
1 4563 4296 3507 3588 3355 — 3129 3306
3 1103 969 933 828 583 — 724 619
5 257 249 276 154 177 152 253 208

12000
1 6183 5756 5217 5322 3423 — 4987 5021
3 1383 1287 1247 1112 279 237 928 816
5 365 332 379 239 257 205 342 318

TABLE I
COMPARISON RESULTS(SIGNED GENOME) BETWEEN THE NUMBER OF ADJACENCIESn1 FROM OUR ALGORITHMS AND THE NUMBER OF ADJACENCIESn2
FROM GREDU. THE GAP — INDICATES THAT WE GET A CORE DUMPED WARNING FROMGREDUAND CAN NOT OBTAIN THE RESULTS AFTER10 TIMES

OF TRIES.
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m n P1 P2 P3 P4

t1 n1 t1 n1 t1 n1 t1 n1

500
1 0 237 0 223 0 207 0 210
3 0 86 0 96 0 82 0 85
5 0 20 0 43 0 27 0 39

1000
1 0 497 0 425 0 377 0 380
3 0 116 0 165 0 133 0 135
5 0 41 1 82 0 49 0 51

3000
1 29 1450 30 1281 22 1189 25 1204
3 6 398 27 467 2.5 434 2.5 431
5 3 127 33 207 0 181 0 196

5000
1 127 2214 142 2181 88 2025 111 2076
3 30 662 105 726 15 431 21 469
5 8 159 145 328 2 178 3.5 211

7000
1 368 3317 398 3097 260 2694 312 2723
3 70 768 326 998 30 614 43 741
5 26 263 435 453 10 235 21 279

9000
1 765 4368 868 4179 446 3650 722 3876
3 207 985 799 1245 80 857 112 911
5 64 310 879 632 25 345 41 434

12000
1 1691 5789 1877 5564 1006 4822 1552 5107
3 409 1321 1521 1532 158 1017 233 1112
5 120 465 1945 913 58 397 77 498

TABLE II
THE RUNNING TIME t1 (SECONDS) AND THE NUMBER OF ADJACENCIESn1 FOR UNSIGNED GENOMES, AVERAGED OVER 10 TRIES. NO COMPARISON IS

DONE WITH GREDUAS IT ONLY HANDLES SIGNED GENOMES.


