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Abstract

Given a set of n points Q in the plane, each colored with one of the k given
colors, a color-spanning set S ⊂ Q is a subset of k points with distinct col-
ors. The minimum diameter color-spanning set (MDCS) is a color-spanning
set whose diameter is minimum. Somehow symmetrically, the largest closest
pair color-spanning set (LCPCS) is a color-spanning set whose closest pair is
the largest. Both MDCS and LCPCS have been shown to be NP-complete,
but whether they are fixed-parameter tractable (FPT) when k is a parame-
ter is open. Motivated by this question, we consider the FPT tractability of
some matching problems under this color-spanning model, where 2k is the
parameter. We show that the following three problems are polynomially solv-
able (hence FPT): (1) MinSum Matching Color-Spanning Set, (2) MaxMin
Matching Color-Spanning Set, and (3) MinMax Matching Color-Spanning
Set. For the k-Multicolored Independent Matching problem, namely, com-
puting a matching of 2k vertices in a graph such that the vertices of the
edges in the matching do not share edges, we show that it is W[1]-hard.
Finally, motivated by this problem, which is related to the parameterized
independent set problem, we are able to prove that LCPCS is W[1]-hard.

Keywords: (Fixed-parameter) Computational geometry, Matching

∗Corresponding Author.
Email addresses: besp@utdallas.edu (Sergey Bereg), maff@ios.ac.cn (Feifei Ma),

whn@ios.ac.cn (Wencheng Wang), zj@ios.ac.cn (Jian Zhang), bhz@montana.edu
(Binhai Zhu)

Preprint submitted to Theoretical Computer Science June 10, 2018



algorithms, FPT algorithms, Color-spanning model, NP-completeness

1. Introduction

Given a set of n points P with all points colored in one of the t given
colors, a color-spanning set (sometimes also called a rainbow set) is a subset
of t points with distinct colors. (In this paper, as we focus on matching
problems on P , we set t = 2k henceforth. For other cases, we use a point set
Q and the parameter k, which does not have to be even.) In practice, many
problems require us to find a specific color-spanning set with certain property
due to the large size of the color-spanning sets. For instance, in data mining
a problem arises where, given a set Q of n points colored in k colors, one
wants to find a color-spanning set whose diameter is minimized, which can
be solved in O(nk) time using a brute-force method [20, 3]. (Unfortunately,
this is still the best bound to this date.)

Since the color-spanning set problems were initiated in 2001 [1], quite
some related problems have been investigated. Many of the traditional prob-
lems which are polynomially solvable, like Minimum Spanning Tree, Diame-
ter, Closest Pair, Convex Hull, etc, become NP-hard under the color-spanning
model [8, 9, 13]. Note that for the hardness results the objective functions
are usually slightly changed. For instance, in the color-spanning model, we
would like to maximize the closest pair and minimize the diameter (among
all color-spanning sets). On the other hand, some problems, like Maximum
Diameter Color-Spanning Set, remain to be polynomially solvable [6].

In [8, 9], an interesting question was raised. Namely, if t is a parameter, is
the NP-complete Minimum Diameter Color-Spanning Set (MDCS) problem
fixed-parameter tractable? This question is still open. In this paper, we try
to investigate some related questions along this line. The base problem we
target at is the matching problem, both under the geometric model and the
graph model. We show that an important graph version is W[1]-hard while
all other versions in consideration are polynomially solvable, hence are fixed-
parameter tractable (FPT). Motivated by this problem, which is somehow
related to the k-independent set problem, we show that Largest Closest Pair
Color-Spanning Set (LCPCS) is W[1]-hard.

This paper is organized as follows. In Section 2, we define the basics
regarding FPT algorithms and the problems we will investigate. In Section 3,
we show that MinSum, MaxMin and MinMax Matching Color-Spanning Set
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are all polynomially solvable by reducing to the minimum weight matching
problem. In Section 4, we show that a special graph version is W[1]-hard
and, on top of that, we show that LCPCS is W[1]-hard. In Section 5, we
conclude the paper.

2. Preliminaries

We make the following definitions regarding this paper. A Fixed-Parameter
Tractable (FPT) algorithm is an algorithm for a decision problem with input
size n and parameter k whose running time is O(f(k)nc) = O∗(f(k)), where
f(−) is any computable function on k and c is a constant. FPT algorithms
are efficient tools for handling some NP-complete problems as they introduce
an extra dimension k. If an NP-complete problem, like Vertex Cover, ad-
mits an FPT algorithm, then it is basically polynomially solvable when the
parameter k is a small constant [5, 10].

Of course, it is well conceived that not all NP-hard problems admit FPT
algorithms. It has been established that

FPT ⊆ W [1] ⊆ W [2] ⊆ · · ·W [z] ⊆ XP,

where XP represents the set of problem which must take O(nk) time to
solve (i.e., not FPT), with k being the parameter. Typical problems in
W[1] include Independent Set and Clique, etc. For the formal definition and
foundation, readers are referred to [5, 10].

Given a set Q of n points in the plane with k colors, a color-spanning set
S ⊂ Q is a subset of k points with distinct colors. If S satisfies a property
Π among all color-spanning sets of Q, we call the corresponding problem of
computing S the Property-Π Color-Spanning Set. For instance, the Mini-
mum Diameter Color-Spanning Set (MDCS) is one where the diameter of S

is minimized (among all color-spanning sets of Q) and the Largest Close Pair
Color-Spanning Set (LCPCS) is one where the closest pair of S is maximized
(among all color-spanning sets of Q). The distance measure for two points
in the plane is the Euclidean (or L2) distance. We next define the matching
problems we will investigate in this paper.

Given a set P of n points in the plane with t = 2k colors, let S ⊂ P be
a color-spanning set of 2k distinct colors. Then the (disjoint pairs of) points
in S always induce a perfect matching, i.e., a set M of k edges connecting
the 2k points in S. Among all these matchings (over all color-spanning sets),
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if a matching M satisfies a property Π, we call the problem the Property-Π
Matching Color-Spanning Set or Property-Π Color-Spanning Matching. The
three properties we focus on are MinSum, MinMax and MaxMin.

MinSum means that the sum of edge lengths in M is minimized, MinMax
means that the maximum edge length in M is minimized, and MaxMin means
that the minimum edge length in M is maximized. One of the the main
purposes of this paper is to investigate the FPT tractability of the three
problems: MinSum Matching Color-Spanning Set, MinMax Matching Color-
Spanning Set, and MaxMin Matching Color-Spanning Set. We show that all
these problems are in fact polynomially solvable (hence FPT).

Finally, we will study a special version on graphs where the (vertices of
the) edges in M cannot share edges in G. We call the problem k-Multicolored
Independent Matching, and we will show that this problem is W[1]-hard.
This problem eventually helps us prove that Largest Closest Pair Color-
Spanning Set (LCPCS) is W[1]-hard. In the next section, we first show the
positive results. The negative W[1]-hardness results will be shown in Section
4.

3. MinSum, MaxMin and MinMax Matching Color-Spanning Set
Problems

3.1. MinSum and MaxMin Matching Color-Spanning Set are in P

We first consider the MinSum Matching Color-Spanning Set problem.
Formally, given a set P of n points in the plane, each colored with one of the
2k colors, we need to identify 2k points with distinct colors such that they
induce a matching with certain property (e.g., the minimum total weight).
Recall that the weight of an edge (pi, pj) is the Euclidean distance between
pi and pj . For a point pi, let color(pi) be the color of pi.

For MaxMin Matching Color-Spanning Set, the first attempt is to try to
see its relation to the MinSum Matching Color-Spanning Set problem. In Fig-
ure 1, we show an example where MaxMin Matching Color-Spanning Set is
not necessarily related to the MinSum (or MaxSum) Color-Spanning Match-
ing. In Figure 1, the MinSum Color-Spanning Matching is {(a, c), (b, f)},
with a total weight of 2 − 2ǫ. The MaxSum Color-Spanning Matching is
{(a, b), (d, e)}, which has a total weight of 1 +

√
5. The optimal solution for

MaxMin Color-Spanning Matching is {(a, d), (b, e)}, with a solution value of√
2 (while the total weight is 2

√
2). Note that (a, d) and (b, e) do not form

the closest pairs among the subsets of respective colors.
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Figure 1. An example of a 4-colored set of 6 points in the plane. The
edges of both squares have length 1. Points c, f are ǫ distance away from
the corresponding closest square corners. The MinSum Color-Spanning
Matching is {(a, c), (b, f)}, with a minimum edge weight of 1 − ǫ. The

MaxMin Color-Spanning Matching is {(a, d), (b, e)}, with a minimum edge
weight of

√
2.

For the same point set {a, b, c, d, e, f}, the color-spanning set {a, b, d, e}
(which happens to correspond to the point set for MaxMin Color-Spanning
Matching), gives the solution for LCPCS (largest closest pair color-spanning
set). The corresponding closest pair in the set has length 1, while the solu-
tion value for MaxMin Color-Spanning Matching is

√
2. Hence, LCPCS and

MaxMin Color-Spanning Matching are not the same and the claim we made
in the conference version [2] is not correct. In fact, as we will see a bit later,
not only that the two problems are not the same, they are quite different: the
former problem is W[1]-hard while the latter is polynomially solvable (hence
FPT).

Nonetheless, we show next that MinSum and MaxMin Matching Color-
Spanning Set have the following property.

Lemma 1. In an optimal solution of MinSum (resp. MaxMin) Matching
Color-Spanning, let pi and pj form a (resp. minimum) matched edge in
the optimal matching, then (pi, pj) must be the closest (resp. farthest) pair
between points of color(pi) and color(pj).

Proof. The proof for the two cases are almost identical, so we only consider
the maxmin case. Let d1(pi, pj) be the length of the minimum matched edge.
Let d2(pi, pj) be the length of the farthest pair between points of color(pi)
and color(pj). Then we could replace d1(pi, pj) by d2(pi, pj) to have a new
matching whose minimum matched edge length is longer.
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Using this property, we show that MinSum Matching Color-Spanning Set
can be solved in polynomial time (hence FPT). First, for all

(

2k

2

)

pairs of
colors, compute the bichromatic closest pair of points of the selected colors.
This can be done in O(n log n) time [19] for each pair of colors. The total
time for all pairs of colors is O(k2n log n). It can be reduced to O(kn logn) as
follows. Suppose that the colors are 1, 2, . . . , 2k. For each i = 1, 2, . . . , 2k−1,
do the following steps.

(1) Make a graph G = (V, E) with V = {1, 2, . . . , 2k} and E = ∅.
(2) For points of color i, construct the Voronoi diagram and a data struc-

ture Di for point location with O(log n) query time.

(3) For each color j ∈ {i+1, i+2, . . . , 2k} and each point p of color j, find
its nearest neighbor q in Di. For each color j ∈ {i + 1, i + 2, . . . , 2k},
compute a pair (p, q) with minimum Euclidean distance and add it to
E.

Finally, we compute a perfect matching in G of minimum weight using
a variation of Edmonds algorithm with running time O(n3), where n is the
number of vertices of G [14, 11]1. We hence have the following theorem.

Theorem 1. A minsum matching color-spanning set can be computed in
O(k3 + kn log n) time.

Similarly, we show that MaxMin Matching Color-Spanning Set is polyno-
mially solvable (hence FPT). With Lemma 1, we construct a complete graph
G1 over k vertices each corresponding to one of the k colors and between two
colors ci, cj we have an edge whose weight (length) w(ci, cj) is the farthest
pair (distance) between points of color ci and cj. The cost for constructing
G1 is O(kn logn) time.

To solve the problem, we sort all edges in G1. Then for any given edge
e = (ci, cj) ∈ E(G1), we delete all edges of lengths smaller than w(e) and we
delete ci, cj as well from G1. Let G′

1 be the resulting graph (containing 2k−2
colors). Then the problem is to test whether G′

1 contains a perfect matching
saturating the remaining 2k − 2 colors. The total cost for this decision
problem is O(k3) [14, 11]. We then could use binary search to find the best
e∗ in O(k3 log k) time. The total cost of this algorithm is O(k3 log k+kn logn)
time.

1Notice that the problems of finding the matchings of minimum weight and of maximum
weight are equivalent.
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Corollary 1. MaxMin Matching Color-Spanning Set can be solved in O(k3 log k+
kn log n) time.

3.2. MinMax Matching Color-Spanning Set is in P

In this subsection, we consider MinMax Matching Color-Spanning Set.
Not surprisingly, such a matching has nothing to do with the MinSum Color-
Spanning Matching or the MaxSum Color-Spanning Matching. In Figure 2,
the MinSum Color-Spanning Matching is {(a, b), (c, d)}, with a total weight
of 3. The MaxSum Color-Spanning Matching has a weight at least that of
{(a, c), (b, d)} or {(c, d), (e, f)}, each having a total weight of 4 + 2ǫ. For
the MinMax Color-Spanning Matching problem, all of the above matchings
give a solution value of 2 + ǫ. The optimal solution is {(c, e), (d, f)}, with a
solution value of 1.5 + ǫ (while the total weight is 3 + 2ǫ). Also, note that
(c, e) and (d, f) do not form the farthest pairs among the subsets of respective
colors.

b

e

c d

f

a

Figure 2. A simple multicolored point set, the dotted, dashed and solid
segments have lengths 1 − ǫ, 2 + ǫ and 1.5 + ǫ respectively. The MinSum
color-spanning matching is {(a, b), (c, d)}, with a maximum edge weight of

2 + ǫ. The MinMax color-spanning matching is {(c, e), (d, f)}, with a
maximum edge weight of 1.5 + ǫ.

We next state that MinMax Matching Color-Spanning Set has the fol-
lowing property, which is a corollary of Lemma 1.

Corollary 2. In an optimal solution of MinMax Color-Spanning Matching,
let pi and pj be the maximum matched edge, then (pi, pj) must be the closest
pair between points of color(pi) and color(pj).
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We could solve MinMax Color-Spanning Matching in very much the same
way as in Corollary 1, in O(k3 log k + kn log n) time. However, after a graph
G2, over 2k colors and the edge weights between two colors being the closest
pair between the corresponding colors, is constructed, we note that the prob-
lem is really the Bottleneck Matching problem on G2. For a graph with nV

vertices and nE edges, it is known that such a matching can be computed in
O(

√
nV log nV ·nE) time [12]. Hence, in our case the MinMax Color-Spanning

Matching can be solved in O(k2.5
√

log k +kn log n) time. Therefore, we have
the following corollary.

Corollary 3. MinMax Color-Spanning Matching can be solved in O(k2.5
√

log k+
kn log n) time.

In the next section, we show that a special matching problem on graphs
is in fact W[1]-hard. This helps us find some ideas to prove that Largest
Closest Pair Color-Spanning Set is W[1]-hard.

4. k-Multicolored Independent Matching is W[1]-hard

The k-Multicolored Independent Matching problem is defined as follows.
INSTANCE: An undirected graph G = (V, E) with each vertex colored

with one of the 2k given colors.
QUESTION: Is there an independent matching E ′ ⊆ E including all the

k colors? That is, are there k edges in E ′ such that all the vertices of the
edges in E ′ have different colors, and for any two edges (x1, x2) and (y1, y2)
in E ′, (xi, yj) 6∈ E (with i, j = 1..2).

The problem originates from an application in shortwave radio broadcast,
where the matched nodes represent the shortwave channels which should not
directly affect each other [15]. (We also comment that this problem seems
to be related to the uncolored version of ‘Induced Matching’ which is known
to be W[1]-hard as well [17, 18].) We will show that this problem is not
only NP-complete but also W[1]-hard. The problem to reduce from is the
k-Multicolored Independent Set, which is defined as follows.

INSTANCE: An undirected graph G = (V, E) with each vertex colored
with one of the k given colors.

QUESTION: Is there an independent set V ′ ⊆ V including all the k

colors? That is, are there k vertices in V ′ incurring no edge in E, and all the
vertices in V ′ have different colors.
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When U ⊆ V contains exactly k vertices of different colors, we also say
that U is colorful.

For completeness, we first prove the following lemma, similar to what was
done by Fellows et al. on k-Multicolored Clique problem [7].

Lemma 2. k-Multicolored Independent Set is W[1]-hard.

Proof. The proof can be done through a reduction from k-Independent Set.
Let G = (V, E) be a general connected graph. Given an instance (G =
(V, E), k) for k-Independent Set, we first make k copies of G, Gi’s, such that
the vertices in each Gi are all colored with color i, for i = 1..k. For any u ∈ V ,
let ui be the corresponding mirror vertex in Gi. Then, for each (u, v) ∈ E and
for each pair of i, j, with 1 ≤ i 6= j ≤ k, we add four edges (ui, uj), (vi, vj),
(ui, vj) and (uj, vi). Let the resulting graph be G′. It is easy to verify that G

has a k-independent set if and only if G′ has a k-multicolored independent
set. As k-Independent Set is W[1]-complete [5], the lemma follows.

The following theorem shows that k-Multicolored Independent Matching
is not only NP-complete but also W[1]-hard.

Theorem 2. k-Multicolored Independent Matching is W[1]-hard.

Proof. We reduce k-Multicolored Independent Set (IS) to the k-Multicolored
Independent Matching problem.

Given an instance of k-Multicolored IS problem, i.e., a connected graph
G = (V, E) with each vertex in V = {v1, v2, ..., vn} colored with one of the k

colors {1, 2, ..., k}, the question is whether one could compute an IS of size
k, each with a distinct color.

We construct an instance for the k-Multicolored Independent Matching as
follows. First, make a copy of G (with the given coloring of k colors). Then,
construct a set U = {u1, u2, ..., uk} such that ui has color k + i. Finally, we
connect each ui ∈ U to each vj ∈ V such that color(vj) = i, i.e., we construct
a set E ′ = {(ui, vj)|ui ∈ U, vj ∈ V, 1 ≤ i ≤ k, 1 ≤ j ≤ n, i = color(vj)}.
(Note that each ui ∈ U is connected to nodes in V of exactly one color.) Let
the resulting graph be G′ = (V ∪ U, E ∪ E ′), with each vertex in G′ colored
with one of the 2k colors. We claim that G has a colorful independent set of
size k if and only if G′ has a colorful independent matching of size k. The
details are given as follows.

If G has a colorful independent set V ′ ⊆ V of size k, we select the k

vertices in V ′ and match them up with the k vertices in U to obtain k edges
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(in E ′). The vertices in V ′ are independent and no two vertices in U share
an edge (i.e., vertices in U are also independent); moreover, by the definition
of E ′, the vertices of these k edges contain color pairs {(1, k + 1), ..., (i, k +
i), ..., (k, 2k)}. Therefore, among these k edges, no two edges can have their
vertices directly connected (by edges in E ∪ E ′). Hence, these k edges form
a colorful independent matching for G′.

If G′ has a colorful independent matching of size k, then the k edges must
be obtained by matching exactly k vertices of V with the k vertices in U .
(Otherwise, assume that two vertices vi and vj in V form an edge in the
optimal colorful matching. Then we cannot have k edges in the matching.
This is because at least two vertices in U , of colors color(vi)+k and color(vj)+
k respectively, cannot match up with vertices in V ∪ U by the definition of
E ′. Hence, the colorful matching would contain at most k − 1 edges, a
contradiction.) By the definition of colorful independent matching, among
the k edges, the k corresponding vertices from V cannot share any edge hence
form an independent set for G.

As the reduction takes polynomial time, the theorem is proved.

Motivated by the above negative result, we take a more closer look at
Largest Closest Pair Color-Spanning Set (LCPCS). It is basically a multicol-
ored independent set problem on a unit disk graph: given a set Q of n points,
each colored with one of the k colors, centered at each point qi ∈ Q with
color(qi), we put a disk with radius γ and with color color(qi), Di(γ), then
we have the corresponding intersection graph G(γ) of these disks. (There
is an edge between two unit disks Di(γ) and Dj(γ) centered at qi and qj

respectively if and only if d(qi, qj) < 2γ.) The LCPCS problem is exactly
the multicolored independent set problem on this unit disk graph when γ is
maximized to γ∗. More precisely, G(γ∗) has a multicolored independent set
of size k if and only if the Largest Closest Pair Color-Spanning Set on Q

has a solution value 2γ∗ (i.e., the corresponding LCPCS solution S ⊂ Q has
a largest closest pair of value 2γ∗). Of course, to show the W[1]-hardness
of LCPCS, it is only necessary to look at its decision version, i.e., whether
there is a colorful subset of points S ⊂ Q such that the closest pair of S has
a value at least r, where r is part of the input.

Marx showed that the k-Independent Set problem on unit disk graphs is
W[1]-hard [16]. We can use this result and the standard method (similar to
Lemma 2) to have the following lemma.

Lemma 3. k-Multicolored Independent Set on a unit disk graph is W[1]-hard.
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Proof. The proof can be done by a reduction from k-Independent Set on a
unit disk graph which is W[1]-hard [16]. Given a unit disk graph G repre-
sented by a set D of n unit disks, for each disk D ∈ D, we make k copies
of colors {1, ..., k}, with the same center as D. Let the resulting set of disks
be Dk. Similar to Lemma 2, it is easy to see that the intersection graph G

of D has an independent set of size k if and only if the intersection graph
of Dk has a multicolored independent set of size k. The reduction takes
O(k|G|) = O(kn2) time.

We then have the following theorem regarding Largest Closest Pair Color-
Spanning Set.

Theorem 3. Largest Closest Pair Color-Spanning Set is W[1]-hard.

Proof. As discussed above, we reduce k-Multicolored Independent Set on a
unit disk graph to Largest Closest Pair Color-Spanning Set (LCPCS). Let
Dk be the set of unit disks (with radii γ and each is colored in one of the
k given colors) for the corresponding unit disk graph Gk(γ). The centers of
these disks form the point set Q, where a point qi ∈ Q inherits the color
of the corresponding disk, i.e., each qi ∈ Q is colored in one of the k given
colors. It is easy to see that Gk(γ) has a multicolored independent set if and
only if G has a color-spanning set S whose closest pair is at least 2γ. The
reduction obviously takes linear time.

The above result implies that LCPCS does not admit any FPT algorithm
unless FPT=W[1]. One temptation is to apply the same idea to reduce the
k-clique problem on a unit disk graph to MDCS. But, unfortunately, this
does not work. The reason is that the maximum clique on a unit disk graph
is polynomially solvable [4].

5. Closing Remarks

Motivated by the open question of Fleischer and Xu, we studied the FPT
tractability of some related matching problems under the color-spanning
model. We showed in this paper that most of these problems are polyno-
mially solvable (hence FPT), except one version on graphs which can be
considered as a generalization of the multicolored independent set problem.
And, motivated by this last problem, we made a connection between Largest
Closest Pair Color-Spanning Set (LCPCS) and the multicolored independent
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set problem on unit disk graphs and were able to show that it is W[1]-
hard. The original question on the FPT tractability of Minimum Diameter
Coloring-Spanning Set (MDCS), is, unfortunately, still open.
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