
A 2k-Kernelization Algorithm for Vertex Cover Based

on Crown Decomposition

Wenjun Lia, Binhai Zhub,∗

aHunan Provincial Key Laboratory of Intelligent Processing of Big Data on

Transportation, Changsha University of Science and Technology, Changsha, China.
bGianforte School of Computing, Montana State University, Bozeman, MT 59717-3880,

USA.

Abstract

We revisit crown decomposition for the Vertex Cover problem by giving a
simple 2k-kernelization algorithm. Previously, a 2k kernel was known but
it was computed using both crown decomposition and linear programming;
moreover, with crown decomposition alone only a 3k kernel was known. Our
refined crown decomposition carries some extra property and could be used
for some other related problems.

Keywords: Vertex cover, Crown decomposition, Kernelization, FPT
algorithms, NP-completeness

1. Introduction

Vertex Cover is a classic NP-complete problem which has been used to
model conflicts in many applications [8, 9]. Due to its importance, a lot of
research has been done on it and in this paper we focus on the parameterized
version of the problem. The problem is defined as follows.

Vertex Cover

Given: A simple undirected graph G = (V, E), and a positive
integer k;
Parameter: k;

∗Corresponding Author.
Email addresses: lwjscu@163.com (Wenjun Li), bhz@montana.edu (Binhai Zhu)

Preprint submitted to Theoretical Computer Science April 5, 2018

Question: Decide if there is a subset V ′ ⊆ V with |V ′| ≤ k such
that for any edge 〈u, v〉 ∈ E at least one of u, v is in V ′.

For a parameterized problem (Π, k), we say that (Π, k) is Fixed-Parameter
Tractable (FPT) if it can be solved in O(f(k)nc) = O∗(f(k)) time, where n is
the input length, c is a fixed constant and f(−) is some computable function.
(Up to now, the best FPT algorithm for Vertex Cover runs in O∗(1.2738k)
time [4].) (Π, k) admits a kernel Π′ if a polynomial time algorithm A can
convert (Π, k) to an instance (Π′, k′) such that (1) (Π, k) is a Yes-instance if
and only if (Π′, k′) is a Yes-instance; (2) |Π′| ≤ |Π|, k′ ≤ k; and (3) |Π′| ≤ g(k)
where g(−) is some function. We also say that Π has a kernel of size g(k).
And if g(−) is a polynomial function, then we say Π has a polynomial kernel.
(More information on FPT algorithms can be found in [5, 7].) In this paper,
we focus further on the kernelization of the Vertex Cover problem.

It is known that with the famous technique of crown decomposition, to-
gether with linear programming, one can compute a 2k kernel for Vertex
Cover; moreover, with crown decomposition alone, a 3k kernel can be com-
puted [3]. We believe that the reason why a 2k kernel cannot be computed
only using crown decomposition is that the technique in [3] cannot induce
(or, enumerate) all the crown structures (—hence linear programming must
be used). In this paper, we explore Vertex Cover along this direction to ob-
tain a 2k kernel with a (refined) crown decomposition. The idea is to find
and delete all crowns so that the reduced graph is composed of a disjoint set
of odd cycles and a subgraph admitting a perfect matching — which could
induce all the crown structures. The technique might also be used to solve
other problems related to Vertex Cover, like P2-packing.

The paper is organized as follows. In Section 2 we give necessary defini-
tions on graphs and crown decomposition. In Section 3 we give the algorithm
together with the analysis and proofs. In Section 4 we conclude the paper.

2. Preliminaries

2.1. Graph Basics

Let G = (V, E) be a simple undirected graph; moreover, let G contain
no isolated vertices. For u ∈ V , let N(u) be the neighboring vertices of u,
i.e., N(u) = {v|(u, v) ∈ E}. For a subset V ′ ⊆ V , N(V ′) = ∪u∈V ′N(u)\V ′.
For a subgraph H of G, we use V (H) to denote the set of vertices of H . A
matching M of G is a subset of pairwise disjoint edges of E, where V (M)

2

is the set of vertices (endpoints) of the edges in M . It is well known that if
V \V (M) is an independent set, then M is a maximal matching. If there does
not exist a matching larger than M , then M is a maximum matching of G.
An M-alternating cycle is one whose edges can be arranged sequentially so
that the edges in M appear alternatively on the cycle. Finally, for u ∈ V (M),
if 〈u, v〉 ∈ M then define NM(u) = v.

2.2. Crown Decomposition

Definition 1. Given a graph G = (V, E) with no isolated vertices, if V
can be decomposed into three components I, H and R such that the following
conditions hold:

• I is an independent set,

• N(I) = H (there is no edge between I and R), and

• there is a matching M for G[I ∪ H] saturating (i.e., covering all the
vertices in) H;

then (I, H) is called a crown of G. |H| is called the width of the crown
(I, H).

I

H

R

Figure 1: A crown of width 4.

An example of a crown with width 4 is given in Figure 1. The following
lemma is well-known regarding crown decomposition [6]:

Lemma 1. For Vertex Cover, given G = (V, E) and a crown decomposition
(I, H, R) of G, there is a vertex cover of size k for G if and only if the induced
subgraph G′ = G[V \(I ∪ H)] has a vertex cover of size k′ = k − |H|.

3

Intuitively, this lemma implies that it is possible to compute an optimal
vertex cover by putting H in the solution, delete H from G, recompute the
crown decomposition for G[V \(I ∪ H)] and repeat the process on G[V \(I ∪
H)]. Note that given I and N(I) with |N(I)| ≤ |I|, it is easy to compute
a crown of G by starting with the maximum matching between I and N(I)
and gradually building up the crown (I, H) [6].

We note that crown decomposition is closely related to (but different
from) the Nemhauser-Trotter theorem on Vertex Cover [10]. Besides Vertex
Cover, the technique has been applied on d-hitting set, P2-packing and r-set
packing (and the special case — triangle packing) [1, 2, 11, 12].

3. The Algorithm and Its Analysis

3.1. The General Idea

The idea of the algorithm is as follows. When computing and deleting
all crowns (H ’s), we make sure that the reduced graph is composed of a set
of vertex-disjoint odd cycles and a subgraph admitting a perfect matching.
This is done by first computing a maximum matching M of the graph. Let
CY be the set of such odd cycles which is initially empty. Then, starting
from a vertex v not in V (M) ∪ V (CY) we decompose the vertices of V into
I0 (= {v}), H0, I1, H1, · · · , Ii, Hi, · · · . Finally, we try to find M-alternating
odd cycles when there is an edge between nodes in Ii or when there is a
matching edge in M between the nodes in Hi. Such an odd cycle cy will be
identified and the procedure will be run recursively on the ‘reduced’ graph
(with the odd cycles left intact and the corresponding maximum matching
updated). When Hi is empty, the algorithm computes the crown (I, H), with
I =

⋃i

j=0 Ij and H =
⋃i−1

j=0 Hj. Then it reduces the graph by putting H in
the solution, deleting I∪H from the graph, and updating M and CY ; finally,
it makes a further recursive call on the reduced graph.

3.2. The Algorithm

We now present the detailed algorithm as follows. The main steps in the
recursive procedure Find-CROWN() are Step 5.1 (when there is an edge in
M between two vertices in Hi) and Step 5.3 (when there is an edge between
two nodes in Ii). The matching M and the set of odd cycles CY are then
updated accordingly before the next round of recursive calls. Step 5 will only
terminate under the condition Hi = ∅.

4

VC-KERNEL(G = (V, E), k)
1. Let CY be a set of M-alternating odd cycles. Initially CY = ∅.
2. Find a maximum matching M of G.
3. Find-CROWN(G, M, CY, k)

Find-CROWN(G, M, CY, k)
1. Delete all the isolated vertices from G.
2. If V = V (CY) ∪ V (M), then return (G, k);
3. Pick a vertex v ∈ V \(V (CY) ∪ V (M)) arbitrarily;
4. Let I0 = {v}, H0 = N(I0), i = 0;
5. While (Hi 6= ∅) {
5.1 If (there is an edge e = 〈ui, wi〉 ∈ M in G[Hi]) then {

Let q = i;
While (there are different neighbors u′

q, w
′

q of uq, wq in Iq respectively)
{uq−1 = NM (u′

q), wq−1 = NM(w′

q), q = q − 1;};
Assume {xq} = N(uq)∩Iq = N(wq)∩Iq, then cy = 〈xq, uq, NM(uq), . . . , NM(ui−1),
ui, wi, NM(wi−1), . . . , NM(wq), wq, xq〉 is an M-alternating odd cycle;
While (q 6= 0)

{M = M\{〈xq, NM(xq)〉} ∪ {〈NM(xq), xq−1〉}, where
xq−1 ∈ Iq−1 ∩ N(NM (xq)); q = q − 1;}

Return Find-CROWN(G, M\V (cy), CY ∪ {cy}, k);}
5.2 else {Ii+1 = NM(Hi), i = i + 1; };
5.3 If (there is an edge e = 〈ui, wi〉 in G[Ii]) then {

Let q = i;
While (there are different neighbors uq−1, wq−1 of NM(uq), NM(wq)

in Iq−1 respectively)
q = q − 1;

Assume {xq} = N(NM (uq)) ∩ Iq−1 = N(NM (wq)) ∩ Iq−1, then
cy = 〈xq, NM(uq), uq, . . . , NM(ui), ui, wi, NM(wi), . . . , wq, NM(wq), xq〉
is an M-alternating odd cycle;
While (q > 1)

{M = M\{〈xq, NM(xq)〉} ∪ {〈NM(xq), xq−1〉},
where xq−1 ∈ Iq−2 ∩ N(NM(xq)); q = q − 1;};

Return Find-CROWN(G, M\V (cy), CY ∪ {cy}, k);}
5.4 else Hi = N(Ii)\

⋃i−1

j=0 Hj; }
6. Return Find-CROWN(G\(I ∪ H), M\(I ∪ H), CY, k − |H|), where

H =
⋃i−1

j=0 Hj and I =
⋃i

j=0 Ij form a crown.

5

3.3. Correctness

The correctness of the algorithm hinges on Step 5, where an M-alternating
odd cycle is computed and excluded from the recursive calls at the same step.
There are two cases (5.1 and 5.3, shown in Figure 2 and 3 respectively), cov-
ering the situation when there is an edge in M in G[Hi] and when there is
an edge in G[Ii] respectively. Note that when the odd cycle is identified, M
is updated accordingly, making sure that it is still a maximum matching in
the ‘reduced’ graph not including those odd cycles found. Starting with a
vertex v not in an odd cycle and not in the matching M , this procedure is
run recursively until Hi is empty for some i. Then a crown (I, H) is found,
with I =

⋃i

j=0 Ij and H =
⋃i−1

j=0 Hj. (Note that at Step 5.4, N(Ii) cannot
contain a vertex which is in V (CY) — as long as CY is not empty. This
property is important for the correctness of the algorithm, as once an odd
cycle cy is identified it will remain intact and the subsequent recursive calls
will not touch it. We prove this separately as a lemma.) At Step 6, when H
is deleted from the graph, the algorithm will run recursively on the reduced
graph (starting possibly from a different v).

u

v

xq

I0

I1

I2

H0

H1

H2
ui wi

cy

Figure 2: Illustration for case 5.1 (with i = 2), where bold edges are edges in the matching
M . Here cy is the low-left cycle. NM (xq) = u and 〈u, v〉 will be swapped with the edge
〈xq, u〉 in the (initial) matching M .

Lemma 2. In the algorithm Find Crown, after some odd cycle cy is iden-
tified at Step 5.3, in the subsequent recursive calls N(Ii) (at Step 5.4) cannot
contain any node of the cycle cy.

Proof. We prove this lemma by contradiction. Assume that after some odd
cycle cy is identified, a recursive call of Find Crown selects some node w not

6

u

v

xq

I0

I1

I2

I3

H0

H1

H2

ui wi

cy

Figure 3: Illustration for case 5.3 (with i = 3), where bold edges are edges in the matching
M . Here cy is the low-left cycle. NM (xq) = u and 〈u, v〉 will be swapped with the edge
〈xq, u〉 in the (initial) matching M .

in V (CY)∪V (M); moreover, for some node a ∈ Ii (computed at Step 5.4) it
connects to b ∈ V (cy). Then, following the odd path from such a vertex b to
w, we could update edges in the matching (by putting 〈a, b〉 in the matching,
then updating the remaining ones alternatively) to have a matching whose
size is larger than the maximum matching. This gives us the contradiction.
(Note that the matching edges in cy can be updated accordingly, e.g., moving
〈b, c〉 out of the matching and putting 〈c, d〉 in the matching, etc. Hence the
matching in the odd cycle cy will maintain its size.) 2

u

v

xq

Ii

Hi

a

b

c d

w

cy

Figure 4: Illustration for the proof of Lemma 2.

7

3.4. Time Complexity

Let |V | = n, |E| = m. Computing the maximum matching takes O(n2.5)
time. In the Find Crown algorithm, within Step 5, computing the neigh-
bors of vertices takes O(n + m) time and dominates the whole cost. Hence
for one run (starting with a v not in V (CY ∪V (M))) the total running time
is O(n + m). As there could be O(n) such v’s, we could have O(n) recursive
calls. Hence, the total time the algorithm takes is O(n(n + m)), which is
O(n3) in the worst case.

3.5. Kernel Size Analysis

Lemma 3. Given any Vertex Cover instance 〈G, k〉, let G′ = 〈G′, k′〉 be the
reduced instance returned by the algorithm VC-Kernel, then G′ is composed
of two parts: (1) a vertex-disjoint set of odd cycles, and (2) a subgraph with
a perfect matching.

Proof. According to the algorithm, given a maximum matching M , starting
with a vertex v not in V (CY) ∪ V (M), FIND CROWN keeps finding
M-alternating odd cycles and updating M accordingly. When this is done
FIND CROWN returns a crown at Step 6 (and deletes it from G before
the next round of recursive call). The recursive algorithm terminates at Step
2, when all vertices are either in the set of M-alternating odd cycles or in the
maximum matching (i.e., when such a v cannot be found). This completes
the proof. 2

Theorem 1. Given any Vertex Cover instance 〈G, k〉, let G′ = 〈(V ′, E ′), k′〉
be the reduced instance returned by the algorithm VC-Kernel. If 〈G, k〉 is a
Yes-instance, then |V ′| ≤ 2k′.

Proof. By the previous lemma, G′ is partitioned into two parts: (1) a disjoint
set of odd cycles, and (2) a subgraph admitting a perfect matching. For any
odd cycle cy, it contains |cy| edges. Hence the vertex cover for the induced
subgraph G[cy] has size at least (|cy|+ 1)/2. On the other hand, for a graph
GM with a perfect matching M , its vertex cover has size at least |M |.

Hence, the vertex cover for G′ has size at least |V ′|/2. Moreover, if 〈G, k〉
is a Yes-instance (i.e., G has a vertex cover of size k), then 〈G′, k′〉 is also a
Yes-instance, with k′ ≥ |V ′|/2 or |V ′| ≤ 2k′. 2

8

4. Concluding Remarks

In this paper, we give a 2k kernel for Vertex Cover, by only using the
(refined) crown decomposition method. Previously, a 2k kernel is known,
but the method is a combination of crown decomposition and linear pro-
gramming. (With crown decomposition alone, only a 3k kernel is known for
the problem before this work.) The method is to enforce that the reduced
graph maintains some special property which could induce or enumerate all
possible crown structures for the problem (in this case, Vertex Cover). We
believe that similar methods could be used on some problems related to Ver-
tex Cover, like P2-packing.

Acknowledgments

This research is supported by National Natural Science Foundation of
China under grants 61502054 and 61628027. WL is also supported by the
Natural Science Foundation of Hunan Province (grant no. 2017JJ3333). We
also thank the anonymous referee whose comments greatly improve the pre-
sentation of the paper.

References

[1] F. Abu-Khzam. An improved kernelization algorithm for r-Set Packing.
Information Processing Lett., 110(6):621-624, 2010.

[2] F. Abu-Khzam. A kernelization algorithm for d-Hitting Set. J. of Com-
put. and System Sci., 76(7):524-531, 2010.

[3] F. Abu-Khzam, M. Fellows, M. Langston and W. Suters. Crown struc-
tures for vertex cover kernelization. Theory Comput. Sys., 41(3):411-430,
2007.

[4] J. Chen, I. Kanj and G. Xia. Improved upper bounds for vertex cover.
Theoretical Computer Science, 411(40-42):3736-3756, 2010.

[5] R. Downey and M. Fellows. Parameterized complexity. Springer New
York, 1999.

[6] M. Fellows. Blow-ups, win/win’s, and crown rules: some new direc-
tions in FPT. Proc. 29th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG’03), pp. 1-12, 2003.

9

[7] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-
Verlag, 2006.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[9] S. Khuller. Algorithms column: the vertex cover problem. ACM
SIGACT News, 33(2):31-33, 2003.

[10] G. Nemhauser and L. Trotter Jr. Vertex packings: structural properties
and algorithms. Mathematical Programming, 8(1):232-248, 1975.

[11] J. Wang, D. Ning, Q. Feng and J. Chen. An improved kernelization for
P2-packing. Information Processing Lett., 110(5):188-192, 2010.

[12] Y. Yang. Towards optimal kernel for edge-disjoint triangle packing.
Information Processing Lett., 114(7):344-348, 2014.

10

	Introduction
	Preliminaries
	Graph Basics
	Crown Decomposition

	The Algorithm and Its Analysis
	The General Idea
	The Algorithm
	Correctness
	Time Complexity
	Kernel Size Analysis

	Concluding Remarks

