Programming with OpenGL: Advanced Techniques

Organizer:
Tom McReynolds
Silicon Graphics

May 1, 1997

SIGGRAPH ‘97 Course

Abstract

This course moves beyond the straightforward images generated by the
novice, demonstrating the more sophisticated and novel techniques possible
using the OpenGL library.

By explaining the concepts and demonstrating the techniquesrequired to
generateimages of greater realism and utility, the course hel psstudentsachieve
two goals: they gain a deeper insight into OpenGL functionality and com-
puter graphics concepts, while expanding their “toolbox” of useful OpenGL
techniques.

Programming with OpenGL: Advanced Rendering

Speakers

David Blythe

David Blytheis a Principal Engineer with the Advanced Systems Division at
Silicon Graphics. David joined SGI in 1991 and has contributed to the develop-
ment of RealityEngineand InfiniteReality graphics. He has contributed extensively
to implementations of the OpenGL graphics library and OpenGL extension speci-
fications.

Priortojoining SGI, David wasavisualization scientist at the Ontario Centrefor
Large Scale Computation. David received bothaB.S. and M.S. degreein computer
science from the University of Toronto.

Email: blythe@asd.sgi.com

Celeste Fowler

Celeste Fowler isasoftware engineer in the Advanced Systems Divisionat Sil-
icon Graphics. She worked on the OpenGL imaging pipelinefor the InfiniteReality
graphics system and on the OpenGL display listimplementation for InfiniteReality
and RealityEngine.

Before coming to SGI, Celeste attended Princeton University where she did re-
search onradiosity techniquesand TA' d coursesin computer graphicsand program-
ming systems.

Email: celeste@asd.sgi.com

Brad Grantham

Brad Grantham currently contributes to the design and implementation of Sil-
icon Graphics' high-level graphics toolkits, including OpenGL ++, a scene graph
toolkitfor OpenGL. Brad previously worked on the Windows 95 port and Javabind-
ingsfor Cosmo 3D and, before that, worked in the IRIS Performer group.

Before joining SGI, Brad wrote UNIX kernel code and imaging codecs. Here-
ceivedaB.S. fromVirginiaTechin 1992, and hispreviousclaimtofameisMacBSD,
BSD UNIX for the Macintosh.

Email: grantham@sgi.com

Simon Hui

Simon Hui is a software engineer at 3Dfx Interactive, Inc. He currently works
on OpenGL and other graphics libraries for PC and consumer platforms.
Prior to joining 3Dfx, Simon worked on IRIS Performer, a reatime graphics

Programming with OpenGL: Advanced Rendering

toolkit, in the Advanced Systems Division at Silicon Graphics. He has also worked
on OpenGL implementationsfor the RealityEngine and InfiniteReality. Simon re-
ceived aB.A. in Computer Science from the University of Californiaat Berkeley.
Email: simon@3dfx.com

Tom McReynolds

TomMcReynoldsisa software engineer in the Core Rendering group at Silicon
Graphics. He'simplemented OpenGL extensions and done OpenGL performance
work. He currently works on IRIS Performer, areal-time visualization library that
uses OpenGL.

Prior to SGI, he worked at Sun Microsystems, where he developed graphics
hardware support software and graphics libraries, including XGL.

Tom is aso an adjunct professor at Santa Clara University, where he teaches
courses in computer graphics using the OpenGL library. He has aso presented at
the X Technical Conference, SIGGRAPH '96, and SGI’s 1996 Developer Forum.
Email: tomcat@asd.sgi.com

Paula Womack

Paula Womack manages the OpenGL group at Silicon Graphics. Sheisaso a
member of the OpenGL Architectural Review Board (the OpenGL ARB) whichis
responsiblefor defining and enhancing OpenGL.

Prior tojoining Silicon Graphics, Paulaworked on OpenGL at Kubotaand Dig-
ital Equipment. She has a B.S. in Computer Engineering from the University of
Cdliforniaat San Diego.

Email: womack@asd.sgi.com

Programming with OpenGL: Advanced Rendering

Contents

[1 Introduction 1]
1.1 Acknowledgments 1
12 CourseNotesWebSite 2
[2 About OpenGL 2|
[3 Modeling 3]
3.1 Moddling Considerations. 3
3.2 Decompositionand Tessellation 5
3.3 Capping Clipped Solidswith the Stencil Buffer 7
3.4 Constructive Solid Geometry with the Stencil Buffer 8
4 Geometry and Transfor mations 17
41 StereoViewing 17
411 FusonDistance. 18
412 ComputingtheTransforms 19
413 Rotatevs. Shear 20
42 DepthofFed. 21
4.3 TheZ Coordinate and Perspective Projection 21
431 DepthBuffering 22
44 ImageTiling. 26
45 Movingthe Current Raster Position 28
[5 Texture Mapping 28 |
51 Review 29
511 Fltering.o 29
512 TextureEnvironment 30
52 MIPmapGeneration. 32
5.3 View Dependent Filtering. 34
54 FneTuning 36
55 PagingTextures e 36
5.6 Transparency Mapping and Trimming withAlpha 38
57 Billboards 39
58 RenderingText, 41
5.9 ProectiveTextures 42
510 EnvironmentMapping o 42
511 ImageWarpingandDewarping 43
512 3D Textures 43

Programming with OpenGL: Advanced Rendering

5121 Using3D Textures

5122 3D TexturePortability 44
5.12.3 3D Texturesto Render Solid Materials. 45
5.12.4 3D Texturesas Multidimensiona Functions 46
5.13 Procedura TextureGeneration 46
5.13.1 Filtered NoiseFunctions 47
5.13.2 Generating NoiseFunctions 47
5.13.3 HighResolutionFiltering 48
5134 Spectra Synthesis 49
5.135 Other NoiseFunctions 50
5136 Turbulence 50
5.13.7 Example: ImageWarping 51
5138 Generating3DNoise 52
5.13.9 Generating 2D Noiseto Simulate3D Noise 52
5.13.10 Trade-offs Between 3D and 2D Techniques 53
[6 Blending 53 |
6.1 Compositing. 53
6.2 AdvancedBlending 54
6.3 Panting e 54
6.4 Blending withthe AccumulationBuffer 55
[7 Antialiasing 57 |
7.1 AntidiasingPointsandLines. 57
7.2 PolygonAntidiasing, 58
73 Multisampling. 59
74 AntidiasingWithTextures 59
7.5 Antidiasingwith AccumulationBuffer 60
[8 Lighting 63 |
81 PhongShading 63
8.1.1 PhongHighlightswithTexture 63
8.1.2 Spotlight Effects using Projective Textures 64
8.1.3 Phong shading by Adaptive Tessdllation 67
82 LightMaps e 67
821 2D TextureLightMaps. 68
822 3D TextureLightMaps. 70
8.3 BumpMappingwithTextures 71
831 TangentSpace 72
8.3.2 Goingforhigherquaity 76

Programming with OpenGL: Advanced Rendering

84 Blending. 76
84.1 Whydoesthiswork? 77

84.2 Limitations 77

8.5 Choosing Material Properties 78
85.1 ModeingMateria Type 78

8.5.2 ModdingMaterial Smoothness 80

[9 Scene Realism 83|
9.1 MotionBlur 83

92 Depthof Fied. 83

9.3 Réflectionsand Refractions. 85
931 PanarReflectors, 88

932 SphereMapping 93

94 CreatingShadows e 102
94.1 ProjectionShadows. 103

942 ShadowVolumes 105

943 ShadowMaps. 108

9.4.4 Soft Shadowsby JitteringLights. 110

945 Soft ShadowsUsing Textures 110

[10 Transparency 111 |
10.1 Screen-Door Transparency v v v i e e 111
10.2 AlphaBlending 112
103 Sorting. 113
104 UsingtheAlphaFunction. 114
105 UsingMultisampling 114

[11 Natural Phenomena 115 |
111 SmOKe 115
112 Vapor Trails e 115
113 Fire . .. 116
114 Clouds. o 117
115 Water 118
116 LightPoints 118
11.7 Other AtmosphericEffects 119

[12 Image Processing 121
121 Introduction 121
12.1.1 ThePixd Transfer Pipeline. 121

12.1.2 Geometric Drawingand Texturing 122

Vi

Programming with OpenGL: Advanced Rendering

12.1.3 The Frame Buffer and Per-Fragment Operations 122

12.2 ColorsandColor Spaces i 123
12.2.1 The Accumulation Buffer: Interpolation and Extrapolation 123
12.2.2 Pixel Scdeand BiasOperations 125
1223 Look-UpTables 125
12.24 TheColor Matrix Extension 128

123 Convolutions 132
1231 Introduction. 132
12.3.2 TheConvolutionOperation 132
12.3.3 ConvolutionsUsing the Accumulation Buffer 134
12.34 TheConvolutionExtension 137
12.35 Useful ConvolutionFilters 137

124 ImageWarping 141
12.4.1 ThePixel ZoomOperation 141
12.4.2 WarpsUsing TextureMapping 141

[13 Volume Visualization with Texture 144

13.1 Overviewof theTechnique 145

13.2 3D TextureVolumeRendering 146

13.3 2D TextureVolumeRendering 147

134 BlendingOperators 148
1341 Over. . . o 148
1342 Attenuate 148
1343 MIP 149
1344 Under 149

135 SamplingFrequency L 149

13.6 ShrinkingtheVolumelmage 151

13.7 Virtudizing TextureMemory 151

13.8 Mixing Volumetric and GeometricObjects 151

139 Transfer Functions 152

13.10Volume CuttingPlanes 152

13.11ShadingtheVolume L 152

13.12WarpedVolumes 153

[14 Using the Stencil Buffer 153

14.1 DissolveswithStencil 156

14.2 DecdingwithStencil 158

14.3 Finding Depth Complexity with the Stencil Buffer 160

14.4 Compositing ImageswithDepth 161

Vii

Programming with OpenGL: Advanced Rendering

[15 Line Rendering Techniques 162 |
151 HiddenLines 162
15.2 HaoedLines 164
153 SlhouetteEdges 166

16 Tuning Your OpenGL Application 167
16.1 What IsPipdineTuning? 167

16.1.1 Three-Stage Modd of the GraphicsPipeline. 168
16.1.2 Finding Bottlenecksin Your Application 169
16.1.3 FactorsiInfluencing Performance 170

16.2 Optimizing Your ApplicationCode 170
16.2.1 Optimize Cacheand Memory Usage 170
16.2.2 Store Datain aFormat That is Efficient for Rendering . . 171
16.2.3 Per-PlatformTuning 172

16.3 Tuningthe Geometry Subsystem 173
16.3.1 UseExpensive Modes Efficiently 173
16.3.2 Optimizing Transformations 173
16.3.3 Optimizing Lighting Performance 174
16.3.4 Advanced Geometry-Limited Tuning Techniques 176

16.4 TuningtheRaster Subsystem 177
16.4.1 Using Backface/FrontfaceRemovd 177
16.4.2 Minimizing Per-Pixel Cdculations. 177
16.4.3 Optimizing TextureMapping. 178
16.4.4 Clearing the Color and Depth Buffers Smultaneously . . 179

16.5 Rendering Geometry Efficiently 179
16.5.1 Using Peak-Performance Primitives 179
16.5.2 UsingVertex Arrays o oo 180
16,53 UsingDisplay Lists. 181
16.5.4 Baancing Polygon Size and Pixel Operations 182

16.6 Rendering ImagesEfficiently 182
16.7 Tuning Animation. 183
16.7.1 Factors Contributingto AnimationSpeed 183
16.7.2 Optimizing Frame Rate Performance 184

16.8 Taking TimingMeasurements 184
16.8.1 BenchmarkingBasics. 184
16.8.2 Achieving Accurate Timing Measurements 185
16.8.3 Achieving Accurate Benchmarking Results 186

[17 List of Demo Programs 187

viii

Programming with OpenGL: Advanced Rendering

18 Equation Appendix 190
I

18.1 ProjectionMatrices 190
18.1.1 PerspectiveProjection 190
18.1.2 Orthographic Projection 191

18.2 LightingEquations 191
18.21 AttenuationFactor 191
18.2.2 SpotlightEffect 191
1823 AmbientTerm 192
18.2.4 DiffuseTerm 192
1825 Specular Term 192
18.2.6 Puttinglt All Together 193

19 References 193
iX

Programming with OpenGL: Advanced Rendering

List of Figures

O©oO~NO O, WNPF

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35

T-intersection 4
Quadrilateral decomposition 6
Octahedronwith trianglesubdivision. 7
An Example Of Constructive Solid Geometry 8
ACSGtreeinnorma form 9
Thinkingof aCSG treeasasumof products. 12
Examplesof n-convexsolids 13
Stereo ViewingGeometry oo 19
The relationship of window z (depth) to eye z for different far/near

ratios 22
Polygonand OutlineSlopes. 25
TextureTiling 31
Footprintinfull heighttexture 34
Footprintin half heighttexture 34
2DImageRoam 37
Billboard with cylindrical symmetry 39
3D Texturesas 2D TexturesvaryingwithR 46
Inputimage e 49
Outputimage e 49
Rasterizationof awidepoint. 57
Tangent Space Defined at Polygon Vertices 73
Shifting Bump Mapping to Create Normal Components 74
JitteredEyePoints 84

Reflection and refraction. The image on the top shows transmis-
sion from a medium with a lower to a higher index of refraction;
the image on the bottom shows transmission from higher to lower. 85

Totd Internal Reflection 85
Mirror reflection of theviewpoint 88
Mirror reflectionof thescene 88
Creatingaspheremap i 93
Sphere map coordinategeneration L 9
Reflection map created using areflectivesphere 95
Image cube faces captured at acafein Palo Alto, CA 98
Sphere map generated from image cube facesin Figure30 98
Shadow Volume 105
Vapor Trail 116
Sicinga 3D Textureto Render Volume 145
Slicinga 3D TexturewithSpheres 146
X

Programming with OpenGL: Advanced Rendering

36 Usingstencil to dissolvebetweenimages
37 Using stencil to render coplanar polygons
38 HaoedLine.

Xi

Programming with OpenGL: Advanced Rendering

1 Introduction

Sinceitsfirst releasein 1992, OpenGL hasbeen rapidly adopted asthe graphicsAPI

of choicefor rea-timeinteractive 3D graphics applications. The OpenGL state ma-
chineiseasy to understand, but its simplicity and orthogonality enable a multitude
of interesting effects. The goal of this course is to demonstrate how to generate
more satisfying images using OpenGL . There are three general areas of discussion:
generating aesthetically pleasing or realistic looking basic images, computing in-
teresting effects, and generating more sophisticated images.

We have assumed that the attendees have a strong working knowledge of
OpenGL. Asmuch as possiblewe havetried to includeinteresting examplesinvol v-
ing only those commands in the most recent version of OpenGL, version 1.1, but
we have not restricted ourselvesto thisversion of OpenGL. OpenGL isan evolving
standard and we havetaken theliberty of incorporating material that uses some mul-
tivendor extensions and some vendor specific extensions. The course notesinclude
reprintsof selected papers describing rendering techniquesrel evant to OpenGL, but
may refer to other APIs such as OpenGL’spredecessor, Silicon Graphics' IRIS GL.
For new material developed for the course notes we use terminology and notation
consistent with other OpenGL documentation.

1.1 Acknowledgments

The authors havetried to compiletogether more than a decade worth of experience,
tricks, hacksand wisdom that has often been communicated by word of mouth, code
fragments or the occasional magazine or journal article. We areindebted to our col-
leagues at Silicon Graphics for providing us with interesting material, references,
suggestionsfor improvement, sample programs and cool hardware.

We'd like to thank some of our more fruitful and patient sources of material:
John Airey, Remi Arnaud, Brian Cabral, Bob Drebin, Phil Lacroute, Mark Peercy,
and David Yu.

Credit should also be given to our army of reviewers. John Airey, Allen
Akin, Brian Cabral, Tom Davis, Bob Drehin, Ben Garlick, Michagel Gold, Robert
Grzeszczuk, Paul Haeberli, Michagl Jones, Phil Keslin, Phil Lacroute, Erik Lind-
holm, Mark Peercy, Mark Young, David Yu, and particularly Mark Segal for having
the endurance to review for ustwo yearsin arow.

Wewouldliketo acknowledge Atul Narkhede and Rob Wheeler for coding pro-
totype agorithms, and Chris Everett for once again providing his invaluable pro-
duction expertise and assistance this year, and Dany Galgani for some really nice
illustrations.

We would aso like to thank John Airey, Paul Heckbert, Phil Lacroute, Mark

Programming with OpenGL: Advanced Rendering

Segal, Michaegl Teschner, and Tim Wiegand for providing material for inclusionin
the reprints section.
Permission to reproduce [50] has been granted by Computer Graphics Forum.
Once again thisyear the IRIS Performer Team receives our gratitudefor “cov-
ering” for two of us while these notes were being written.

1.2 Course NotesWeb Site

We've created a webpage for this course in SGI's OpenGL web site. It contains

an HTML version of the course notes and downloadabl e source code for the demo

programs mentioned in the text. The web addressis:
http://www.sgi.com/Technology/OpenGL /advanced_sig97.html

2 About OpenGL

Before getting into theintricaciesof using OpenGL, we begin with afew comments
about the philosophy behind the OpenGL APl and some of the caveats that come
withit.

OpenGL isaprocedural rather than descriptiveinterface. In order to get aren-
dering of ared sphere the programmer must specify the appropriate sequence of
commands to set up the camera view and modelling transformations, draw the ge-
ometry for a sphere with ared color. etc. Other systems such as VRML [9] are
descriptive; one simply specifies that a red sphere should be drawn at certain co-
ordinates. The disadvantage of using a procedural interface is that the application
must specify all of the operations in exacting detail and in the correct sequence to
get the desired result. The advantage of this approach is that it allows great flex-
ibility in the process of generating the image. The application is free to trade-off
rendering speed and image quality by changing the steps through which theimage
isdrawn. The easiest way to demonstrate the power of the procedural interfaceis
to note that a descriptiveinterface can be built on top of a procedural interface, but
not vice-versa. Think of OpenGL as a “ graphics assembly language”: the pieces
of OpenGL functionality can be combined as building blocks to create innovative
techniques and produce new graphics capabilities.

A second aspect of OpenGL is that the specification is not pixel exact. This
means that two different OpenGL implementations are very unlikely to render ex-
actly the same image. This allows OpenGL to be implemented across a range of
hardware platforms. If the specification were too exact, it would limit the kinds of
hardware acceleration that could be used; limiting its usefulness as a standard. In
practice, the lack of exactness need not be a burden — unless you plan to build a

Programming with OpenGL: Advanced Rendering

rendering farm from a diverse set of machines.

Thelack of pixel exactness shows up even within a single implementation, in
that different paths through the implementation may not generate the same set of
fragments, a though the specification does mandate a set of invariancerulesto guar-
antee repeatable behavior across a variety of circumstances. A concrete example
that one might encounter isan implementation that does not accel erate texture map-
ping operations, but accelerates all other operations. When texture mapping is en-
abled the fragment generation is performed on the host and as a consequence all
other steps that precede texturing likely aso occur on the host. This may result in
either theuse of different algorithmsbeing invoked or arithmetic with different pre-
cision than that used in the hardware accelerator. In such a case, when texturing is
enabled, a slightly different set of pixelsin the window may be written compared
to when texturing is disabled. For some of the algorithms presented in this course
such variability can cause problems, so it isimportant to understand a little about
the underlying details of the OpenGL implementation you are using.

3 Modelling

Rendering isonly half the story. Great computer graphics starts with great images
and geometric models. This section describes some modelling doesand don'’ts, and
describes a high performance way of performing CSG operations.

3.1 Modeling Considerations

OpenGL isarenderer not amodeller. Thereare utility libraries such asthe OpenGL
Utility Library (GLU) which can assist with modelling tasks, but for al practical
purposes is the application’s responsibility. Attention to modelling considerations
is important; the image quality is directly related to the quality of the modelling.
For example, undertessellated geometry produces poor silhouette edges. Other ar-
tifacts result from a combination of the model and OpenGL'’s ordering scheme. For
example, interpolation of colors determined as a result of evaluation of alighting
equation at the vertices can result in aless than pleasing specular highlight if the
geometry is not sufficiently sampled. We include a short list of modelling consid-
erations with which OpenGL programmers should be familiar:

1. Consider using triangles, triangle strips and triangle fans. Primitives such as
polygons and quads are usually decomposed by OpenGL into triangles be-
fore rasterization. OpenGL does not provide controls over how this decom-
position is done, so for more predictable results, the application should do
the tessellation directly. Applicationtessellationisaso more efficient if the

3

Programming with OpenGL: Advanced Rendering

T-intersection at A

Figure 1. T-intersection

same model isto be drawn multipletimes (e.g., multipleinstances per frame,
as part of amultipass algorithm, or for multipleframes). The second release
of the GLU library (version 1.1) includes a very good general polygon tes-
sellator; it is highly recommended.

. Avoid T-intersections (also called T-vertices). T-intersections occur when
one or more triangles share (or attempt to share) a partial edge with another
triangle (Figure 1).

In OpenGL thereis no guarantee that a partial edge will share the same pix-
€s since the two edges may be rasterized differently. This problem typi-
cally manifestsitself during animations when the model ismoved and cracks
along the edges appear and disappear. In order to avoid the problem, shared
edges should share the same vertex positions so that the edge equations are
the same.

Note that this requirement must be satisfied when seemingly separate mod-
elsare sharing an edge. For example, an application may have modelled the
walls and ceiling of the interior of a room independently, but they do share
common edges where they meet. In order to avoid cracking when the room
is rendered from different viewpoints, the walls and ceilings should use the
same vertex coordinates for any triangles aong the shared edges. This of-
ten requires adding edges and creating new trianglesto “stitch” the edges of
abutting objects together seamlessly.

. The T-intersection problem has consequences for view-dependent tessella
tion. Imagine drawing an object in extreme perspective so that some part of
the object maps to alarge part of the screen and an equally large part of the
object (in object coordinates) maps to a small portion of the screen. To min-
imize the rendering time for this object, applicationstessellate the object to
varying degrees depending on the area of the screen that it covers. Thisen-
sures that time is not wasted drawing many triangles that cover only a few

4

Programming with OpenGL: Advanced Rendering

pixels on the screen. Thisis a difficult mechanism to implement correctly;
if the view of the object is changing the changes in tessellation from frame
to frame may result in noticeable motion artifacts. Often it is best to either
undertessellate and live with those artifacts or overtessellate and accept re-
duced performance. The GLU NURBS library is and example of a package
which implements view-dependent tessell ation and provides substantial con-
trol over the sampling method and tolerances for the tessellation.

4. Another problem related to the T-intersection problem occurs with careless
specification of surface boundaries. If a surface is intended to be closed,
it should share the same vertex coordinates where the surface specification
startsand ends. A simple example of thiswould be drawing a sphere by sub-
dividingtheinterval [0, 27] to generate thevertex coordinates Thevertex at 0
must bethe same astheoneat 27. Notethat the OpenGL specificationisvery
strictinthisregard aseventhegl MapG i d routine must evaluate exactly at
the boundaries to ensure that evaluated surfaces can be properly stitched to-
gether.

5. Another consideration is the quality of the attributes that are specified with
the vertex coordinates, in particular, the vertex (or face) normals and texture
coordinates. If these attributes are not accurate then shading techniques such
as environment mapping will exaggerate the errors resulting in unacceptable
artifacts.

6. The final suggestion is to be consistent about the orientation of polygons.
That is, ensure that al polygons on a surface are oriented in the same direc-
tion (clockwise or counterclockwise) when viewed from the outside. There
are at least two reasons for maintaining this consistency. First the OpenGL
face culling method can be used as an efficient form of hidden surface elim-
ination for convex surfaces and, second, several agorithms can exploit the
ability to selectively draw only the frontfacing or backfacing polygons of a
surface.

3.2 Decomposition and Tessellation

Tessellationrefersto the process of decomposing acomplex surface such asasphere
into simpler primitives such as triangles or quadrilaterals. Most OpenGL imple-
mentations are tuned to process triangle strips and triangle fans efficiently. Trian-
gles are desirable because they are planar, easy to rasterize, and can always bein-
terpolated unambiguously. When an implementation is optimized for processing

Programming with OpenGL: Advanced Rendering

A=axb B=cxd

Figure 2. Quadrilateral decomposition

triangles, more complex primitives such as quad strips, quads, and polygons are
decomposed into triangles early in the pipeline.

If the underlying implementation is performing this decomposition, there is
a performance benefit in performing this decomposition a priori, either when the
database is created or at application initialization time, rather than each time the
primitive isissued. A second advantage of performing this decomposition under
the control of the application is that the decomposition can be done consistently
and independently of the OpenGL implementation. Since OpenGL doesn't spec-
ify itsdecomposition a gorithm, different implementations may decomposeagiven
guadrilateral along different diagonals. This can result in an image that is shaded
differently and has different silhouette edges.

Quadrilaterals are decomposed by finding the diagonal that creats two triangles
with the greatest difference in orientation. A good way to find this diagonal isto
computetheanglesbetween thenormal sat opposingvertices, computethedot prod-
uct, then choose the pair with the largest angle (smallest dot product) as shownin
Figure 2. The normals for a vertex can be computed by taking the cross products
of the the two vectorswith originsat that vertex.

Tessdllation of simple surfaces such as spheres and cylindersis not difficult.
Most implementations of the GLU library use a simple lattitude-longitude tessel -
lation for a sphere. While the algorithm is simple to implement, it has the disad-
vantagethat the triangles produced from the tessellation have widely varying sizes.
These widely varying sizes can cause noticeable artifacts, particularly if the object
islit and rotating.

A better algorithm generates triangles with sizes that are more consistent. Oc-
tahedral and Icosahedral tessellationswork well and are not very difficult to imple-
ment. An octahedral tessellation approximates a sphere with an octahedron whose

Programming with OpenGL: Advanced Rendering

Figure 3. Octahedron with triangle subdivision

vertices are all on the unit sphere. Since the faces of the octahedron are triangles
they can easily be split into 4 triangles, as shown in Figure 3.

Each triangleis split by creating a new vertex in the middle of each edge and
adding three new edges. These vertices are scaled onto the unit sphere by divid-
ing them by their distance from the origin (normalizing them). This process can
be repeated as desired, recursively dividing al of the triangles generated in each
iteration.

The same agorithm can be applied using an icosahedron as the base object, re-
cursively dividing all 20 sides. In both cases the algorithms can be coded so that
triangle strips are generated instead of independent triangles, maximizing render-
ing performance.

3.3 Capping Clipped Solidswith the Stencil Buffer

When dealing with solid objectsit is often useful to clip the object against a plane
and observe the cross section. OpenGL'’s user-defined clipping planes allow an ap-
plication to clip the scene by a plane. The stencil buffer provides an easy method
for adding a“cap” to objectsthat are intersected by the clipping plane. A capping
polygonis embedded in the clipping plane and the stencil buffer is used to trim the
polygon to theinterior of the solid.

For more information on the techniques using the stencil buffer, see Section 14.

If some careistaken when constructingthe object, solidsthat have adepth com-
plexity greater than 2 (concave or shelled objects) and lessthan the maximum vaue

Programming with OpenGL: Advanced Rendering

of the stencil buffer can be rendered. Object surface polygons must have their ver-
tices ordered so that they face away from the interior for face culling purposes.

The stencil buffer, color buffer, and depth buffer are cleared, and color buffer
writes are disabled. The capping polygon is rendered into the depth buffer,
then depth buffer writes are disabled. The stencil operation is set to incre-
ment the stencil value where the depth test passes, and the mode is drawn
with gl Cul | Face(GL_BACK) . The stencil operation is then set to decrement
the stencil value where the depth test passes, and the model is drawn with
gl Cul | Face(GL_FRONT) .

At this point, the stencil buffer is 1 wherever the clipping planeis enclosed by
the frontfacing and backfacing surfaces of the object. The depth buffer is cleared,
color buffer writes are enabled, and the polygon representing the clipping planeis
now drawn using whatever material propertiesare desired, with the stencil function
set to GL_EQUAL and the reference value set to 1. This draws the color and depth
values of the cap into the framebuffer only where the stencil values equal 1.

Finally, stenciling is disabled, the OpenGL clipping plane is applied, and the
clipped object isdrawn with color and depth enabled.

34 Constructive Solid Geometry with the Stencil Buffer

Before continuing, the it may help for the reader to be familiar with the concepts
presented in Section 14.

Constructive solid geometry (CSG) models are constructed through the inter-
section (M), union (U), and subtraction (—) of solid objects, some of which may
be CSG abjectsthemselveq[17]. The tree formed by the binary CSG operators and
their operandsisknown asthe CSG tree. Figure 4 shows an example of aCSG tree
and the resulting model.

Therepresentation used in CSG for solid objects varies, but we will consider a
solid to be a collection of polygonsforming aclosed volume. “ Solid”, “primitive’,
and “object” are used here to mean the same thing.

CSG abjects have traditionally been rendered through the use of ray-casting,
which is slow, or through the construction of a boundary representation (B-rep).

B-reps vary in construction, but are generally defined as a set of polygonsthat
form the surface of the result of the CSG tree. One method of generating a B-rep
is to take the polygons forming the surface of each primitive and trimming away
the polygons (or portions thereof) that don’t satisfy the CSG operations. A B-rep
modelsare typically generated once and then manipul ated as a static model because
they are slow to generate.

DrawingaCSG model using stencil usually means drawing more polygonsthan
aB-rep would containfor thesamemodel. Enabling stencil also may reduce perfor-

Programming with OpenGL: Advanced Rendering

CSG Tree The Resulting Solid

Figure 4. An Example Of Constructive Solid Geometry

mance. Nonetheless, some portionsof aCSG tree may beinteractively manipul ated
using stencil if the remainder of thetreeis cached as aB-rep.

The agorithm presented here isfrom a paper by Tim F. Wiegand describing a
GL-independent method for using stencil in a CSG modelling system for fast inter-
active updates. The technique can also process concave solids, the complexity of
which islimited by the number of stencil planesavailable. A reprint of Wiegand's
paper isincluded in the Appendix.

The agorithm presented here assumes that the CSG tree isin “normal” form.
A treeisin normal form when all intersection and subtraction operators have aleft
subtree which contains no union operators and a right subtree which is simply a
primitive (a set of polygons representing a single solid object). All union opera-
tors are pushed towards the root, and all intersection and subtraction operators are
pushed towardstheleaves. For example, (((ANB)-C)U(((DNE)NG)—F))uH
isin normal form; Figure 5 illustratesthe structure of that tree and the characteris-
tics of atreein normal form.

A CSG tree can be converted to normal form by repeatedly applying the fol-
lowing set of production rulesto the tree and then its subtrees:

- (YUZ) = (X-Y)-Z
2 XNYUuZ) - (XNnY)U(XnZ)
—(YNnZ) > (X-Y)U (X 7)
4. Xni¥YnZzZ) - (XnyY)n

Programming with OpenGL: Advanced Rendering

Unions at top of tree

Left child of K
intersection or N @ ey
#

subtraction is (U) Union

never union .
@ Subtraction

N Right child of (0) Intersection
. intersection or I
-z subtraction always Primitive

a primitive

(AnB)-C)U(DnE)nG)-F)OH)

Figure5. A CSG treein norma form

X—(Y-2Z) 5 (X-Y)U(XNnZ)

L XN(Y-Z) - Z

XnYy) -
XNnZ)—
X-2)U(Y -2)

Y

5
6 (
7.(X-Y)nZ = (
8. (XUY)—Z = (
9

. (XuY)nZ - (Xn2)u(YnZz)

X, Y, and Z here match both primitives or subtrees. Here's the algorithm used
to apply the production rules to the CSG tree:

normal i ze(tree *t)
{
if(isPrimtive(t))
return;

do{
whi |l e(mat chesRul e(t)) /* Using rul es given above */
appl yFi rst Mat chi ngRul e(t);
normal i ze(t->left);
}while(! (isUnionOperation(t) |]
(isPrimtive(t->right) &&

10

Programming with OpenGL: Advanced Rendering

I isUnionQperation(T->left))));
normal i ze(t->right);

Normalization may increase the size of the tree and add primitives which do
not contributeto the final image. The bounding volume of each CSG subtree can
be used to prunethetree asit isnormalized. Bounding volumesfor thetree may be
calculated using the following agorithm:

fi ndBounds(tree *t)
{
if(isPrimtive(t))
return;

fi ndBounds(t->left);
findBounds(t->right);

switch(t->operation){
case union:
t - >bounds = uni onOf Bounds(t - >l ef t - >bounds,
t->right->bounds);
case intersection:
t - >bounds = intersecti onO Bounds(t->| eft->bounds,
t->right->bounds);
case subtraction:
t ->bounds = t->|eft->bounds;

CSG subtreesrooted by the intersection or subtraction operators may be pruned
a each step in the normalization process using the following two rules:

1. if T is an intersection and not i nt ersect s(T->l eft->bounds,
T->ri ght - >bounds) , deleteT.

2. if T is a subtraction and not i nt ersects(T->| eft->bounds,
T->ri ght - >bounds) , replace T with T- >|€ft.

The normalized CSG treeis abinary tree, but it’simportant to think of thetree
rather asa*“sum of products’ to understand the stencil CSG procedure.

Consider all theunionsassums. Next, consider al theintersectionsand subtrac-
tionsas products. (Subtraction is equiva ent to intersection with the complement of

11

Programming with OpenGL: Advanced Rendering

((((AnB)—C)D(((IS-n--ES’n G)-F)) OH) (AnB-C)UDNENG-F)OH

Figure 6. Thinking of a CSG tree as a sum of products

thetermtotheright. For example, A— B = AN B.) Imagineall the unionsflattened
out into asingleunionwith multiplechildren; that unionisthe“sum”. Theresulting
subtrees of that union are all composed of subtractions and intersections, the right
branch of those operationsisalwaysasingle primitive, and theleft branch isanother
operation or asingleprimitive. You shouldread each child subtree of theimaginary
multiple union as a single expression containing al the intersection and subtraction
operations concatenated from the bottom up. These expressionsarethe” products’.
For example, you should think of (AN B) - C)U(((GND)—-E)NF)UH as
meaning (AN B - C)U(GND— ENF)UH. Figure6 illustratesthis process.

At thistime redundant terms can be removed from each product. Where aterm
subtractsitself (A — A), the entire product can be deleted. Where aterm intersects
itself (A4 N A), that intersection operation can be replaced with the term itself.

All unionscan be rendered simply by finding the visible surfaces of the left and
right subtrees and | etting the depth test determine the visible surface. All products
can berendered by drawing the visiblesurfaces of each primitivein the product and
trimming those surfaceswith thevolumes of the other primitivesin the product. For
example, torender A — B, thevisiblesurfacesof A aretrimmed by the complement
of the volume of B, and the visible surfaces of B are trimmed by the volume of A.

The visible surfaces of a product are the front facing surfaces of the operands
of intersections and the back facing surfaces of the right operands of subtraction.
For example, in (A — B N C'), thevisible surfaces are the front facing surfaces of
A and C, and the back facing surfaces of B.

Concave solidsare processed as sets of front or back facing surfaces. The*con-
vexity” of asolidis defined as the maximum number of pairs of front and back sur-

12

Programming with OpenGL: Advanced Rendering

1-Convex 2—Convex 3—-Convex

Figure 7. Examples of n-convex solids

facesthat can be drawn from the viewing direction. Figure 7 shows some examples
of the convexity of objects. Thenth front surface of ak-convex primitiveis denoted
A, ¢, and the nth back surfaceis A,,;,. Because asolid may vary in convexity when
viewed from different directions, accurately representing the convexity of a prim-
itive may be difficult and may also involve reevaluating the CSG tree at each new
view. Instead, the algorithm must be given the maximum possible convexity of a
primitive, and draws the nth visible surface by using a counter in the stencil planes.
The CSG tree must be further reduced to a “sum of partial products’ by con-
verting each product to a union of products, each consisting of the product of the
visible surfaces of the target primitive with the remaining termsin the product.
For example, if A, B, and D are 1-convex and C is 2-convex:

(A-BnCnD
(Agf —BNCND
(BibnANCND
(CofNA=BnND
(CiyNA-=BnND
(DofNANBNC

cC Cccc |

)
)
)
)
)
)

Because the target term in each product has been reduced to a single front or
back facing surface, the bounding volumes of that term will be a subset of the
bounding volume of the original complete primitive. Once the tree is converted to
partial products, the pruning process may be applied again with these subset vol-
umes.

13

Programming with OpenGL: Advanced Rendering

In each resulting child subtreerepresentingapartia product, theleftmost termis
called the “target” surface, and the remaining terms on theright branches are called
“trimming” primitives.

Theresulting sum of partial products reduces the rendering problem to render-
ing each partial product correctly before drawing the union of theresults. Each par-
tial product isrendered by drawing thetarget surface of the partial product and then
“classifying” the pixels generated by that surface with the depth values generated
by each of the trimming primitives in the partia product. If pixels drawn by the
trimming primitives pass the depth test an even number of times, that pixel in the
target primitiveis“out”, and discarded. If thecount isodd, thetarget primitive pixel
is“in”’, and kept.

Because the algorithm saves depth buffer contents between each object, we op-
timizefor depth savesand restores by drawing as many of target and trimming prim-
itivesfor each pass as we can fit in the stencil buffer.

Thealgorithm uses one stencil bit (5,) asatogglefor trimming primitive depth
test passes (parity), n stencil bitsfor counting to the nth surface (S.....¢), wherenis
the smallest number for which 2™ islarger than the maximum convexity of acurrent
object, and asmany bitsare available (S,,) to accumul ate whether target pixelshave
to be discarded. Because S.,.,: Will require the GL_| NCR operation, it must be
stored contiguously in the least-significant bits of the stencil buffer. .S, and Seyn:
are used in two separate steps, and so may share stencil bits.

For example, drawing 2 5-convex primitives would require 1 .5, bit, 3 Seoyns
bits, and 2 S, bits. Because S, and S...,: ae independent, the total number of
stencil bits required would be 5.

Once the tree has been converted to a sum of partial products, the individual
products are rendered. Products are grouped together so that as many partial prod-
ucts can be rendered between depth buffer saves and restores as the stencil buffer
has capacity

For each group, writesto the color buffer are disabled, the contents of the depth
buffer are saved, and the depth buffer is cleared. Then, every target in the group
is classified against its trimming primitives. The depth buffer isthen restored, and
every target in the group is rendered against the trimming mask. The depth buffer
savelrestore can be optimized by saving and restoring only the region containing
the screen-projected bounding volumes of thetarget surfaces.

for each group
gl ReadPi xel s(...);
classify the group

gl Stencil Mask(0); /* so DrawPi xels won’t affect Stencil

gl DrawPi xel s(...);

14

Programming with OpenGL: Advanced Rendering

*/

render the group

Classification consists of drawing each target primitive's depth value and then
clearing those depth values where the target primitive is determined to be outside
the trimming primitives.

gl C earDepth(far);

gl d ear (G._DEPTH BUFFER BIT);

a = 0;

for each target surface in the group

for each partial product targeting that surface
render the depth values for the surface
for each trimming prinmitive in that partial product
trimthe depth values against that primtive

set Sa to 1 where Sa = 0 and Z < Zfar;
a++;

The depth valuesfor the surface are rendered by drawing the primitive contain-
ing the the target surface with color and stencil writesdisabled. (S.,.»:) iS used to
mask out all but the target surface. In practice, most CSG primitivesare convex, so
the algorithm is optimized for that case.

if(the target surface is front facing)
gl Cul | Face(GL_BACK) ;

el se
gl Cul | Face(GL_FRONT) ;

if(the surface is 1-convex)

gl Dept hMask(1);

gl Col or Mask(0, 0O, 0, 0);

gl Stenci | Mask(0);

draw the primtive containing the target surface
el se

gl Dept hMask(1);

gl Col or Mask(0, 0O, 0, 0);

gl Stenci | Mask(Scount) ;

gl Stencil Func(G._EQUAL, index of surface, Scount);

gl Stencil Oo(G._KEEP, G._KEEP, G_INCR);

draw the primtive containing the target surface

gldearStencil (0);

gl d ear (G._STENCI L_BUFFER BI T);

15

Programming with OpenGL: Advanced Rendering

Then each trimming primitive for that target surface is drawn in turn. Depth
testing is enabled and writesto the depth buffer are disabled. Stencil operationsare
masked to .S, and the S, bit in the stencil is cleared to 0. The stencil function and
operation are set so that S, istoggled every time the depth test for afragment from
the trimming primitive succeeds. After drawing the trimming primitive, if this bit
is 0 for uncomplemented primitives (or 1 for complemented primitives), the target
pixel is“out”, and must be marked “discard”, by enabling writesto the depth buffer
and storing the far depth value (Z) into the depth buffer everywhere that the S,
indicates “discard”.

gl Dept hivask(0) ;

gl Col or Mask(0, 0, 0, 0);

gl St enci | Mask(rmask for Sp);
gldearStencil (0);

gl d ear (G._STENCI L_BUFFER BI T);

gl Stencil Func(GL_ALVWAYS, 0, 0);

gl Stencil Op(GL_KEEP, G._KEEP, G._I NVERT);
draw the trinmng primtive

gl Dept hMask(1);

Onceadll thetrimming primitivesare rendered, the valuesin the depth buffer are
Z for all target pixelsclassified as “out”. The S, bit for that primitiveisset to 1
everywhere that the depth value for apixel is not equal to 7, and O otherwise.

Each target primitivein the group isfinally rendered into the frame buffer with
depth testing and depth writes enabled, the color buffer enabled, and the stencil
function and operation set to write depth and color only where the depth test suc-
ceedsand .S, is1. Only the pixelsinsidethe volumes of all thetrimming primitives
are drawn.

gl Dept hivask(1) ;

gl Col or Mask(1, 1, 1, 1);

a = 0;

for each target prinitive in the group
gl Stenci | Mask(0);
gl Stencil Func(G._EQUAL, 1, Sa);
gl Cul | Face(GL_BACK) ;
draw the target primtive
gl Stenci | Mask(Sa);
gldearStencil (0);
gl C ear (G._STENCI L_BUFFER BI T);
a++;

16

Programming with OpenGL: Advanced Rendering

There are further techniques described in [50] for adding clipping planes (half-
spaces), including more normalization rules and pruning opportunities. Thisis es-
pecially important in the case of the near clipping planein the viewing frustum.

A demo program showing complex CSG expressionsrendered using the stencil
buffer is on the website.

Source code for dynamically loadable Inventor objects implement-
ing this technique is available at the Martin Center website at Cambridge,
http://ww. arct. cam ac. uk/ nc/ cadl ab/i nventor/.

4 Geometry and Transformations

OpenGL has a simple and powerful transformation model. Since the transforma-
tion machinery in OpenGL is exposed in theform of the modelview and projection
meatrices, it's possible to develop novel uses for the transformation pipeline. This
section describes some useful transformation techniques, and provides some addi-
tional insight into the OpenGL graphics pipeline.

41 Stereo Viewing

Stereo viewing is a common technique to increase visual realism or enhance user
interaction with 3D scenes. Two views of a scene are created, one for the left eye,
one for theright. Some sort of viewing hardware is used with the display, so each
eye only sees the view created for it. The apparent depth of objectsis a function
of the difference in their positions from the left and right eye views. When done
properly, objects appear to have actual depth, especially with respect to each other.
When animating, theleft and right back buffers are used, and must be updated each
frame.

OpenGL supports stereo viewing, with left and right versions of the front and
back buffers. In normal, non-stereo viewing, when not using both buffers, the de-
fault buffer istheleft onefor both front and back buffers. Since OpenGL iswindow
system independent, there are no interfaces in OpenGL for stereo glasses, or other
stereo viewing devices. Thisfunctionality is part of the OpenGL/Window system
interface library; the style of support varies widely.

In order to render aframe in stereo:

e Thedisplay must be configured to run in stereo mode.
e Theleft eyeview for each frame must be generated in the left back buffer.

e Theright eye view for each frame must be generated in the right back buffer.

17

Programming with OpenGL: Advanced Rendering

e The back buffers must be displayed properly, according to the needs of the
stereo viewing hardware.

Computing the left and right eye views is fairly straightforward. The distance
separating the two eyes, called the interocular distance, must be selected. Choose
this value to give the proper size of the viewer’s head relative to the scene being
viewed. Whether the scene is microscopic or galaxy-wideisirrelevant. What mat-
tersis the size of the imaginary viewer relative to the objects in the scene. This
distance should be correlated with the degree of perspective distortion present in
the scene to produce aredlistic effect.

41.1 Fusion Distance

The other parameter is the distance from the eyes where the lines of sight for each
eye converge. Thisdistanceis called the fusion distance. At this distance objects
in the scene will appear to be on the front surface of the display (“in the glass’).
Objects farther than the fusion distance from the viewer will appear to be “behind
theglass’” whileobjectsin front will appear tofloat in front of the display. Thelatter
illusion is harder to maintain, since real objects visible to the viewer beyond the
edge of thedisplay tend to destroy theillusion.

Instead of assigning unitsto it, think of the fusion distance as a dimensionless
guantity, relative to location of the front and back clipping planes. For example,
you may want to set the fusion distance to be halfway between the front and back
clipping planes. Thisway it isindependent of the application’s coordinate system,
which makes it easier to position objects appropriately in the scene.

To model viewer attention realistically, the fusion distance should be adjusted
to match the object in the scene that the viewer islooking at. This requires know-
ing where the viewer islooking. If head and eye tracking equipment is being used
in the application finding the center of interest is straightforward. A more indirect
approach isto have the user consciously designate the object being viewed. Clever
psychology can sometimes substitute for eye tracking hardware. If the animated
scene is designed in such away asto draw the viewer’s attention in a predictable
way, or if the sceneisvery sparse, intelligent guesses can be made asto the viewers
center of interest.

The view direction vector and the vector separating the left and right eye posi-
tion are perpendicular to each other. The two view points are located along aline
perpendicular to the direction of view and the “up” direction. The fusion distance
is measured aong the view direction. The position of the viewer can be defined to
be at one of the eye points, or halfway between them. In either case, the left and
right eye locations are positioned rlative to it.

18

Programming with OpenGL: Advanced Rendering

<j f angle

IOD

A

!

<j ! Fusion Distance

Figure 8. Stereo Viewing Geometry

If the viewer is taken to be halfway between the stereo eye positions, and as-
suming gl uLookAt has been called to put the viewer position at the originin eye
space, then the fusion distanceis measured along the negative Z axis (like the near
and far clipping planes), and thetwo viewpointsare on either sideof theoriginalong
the X axis, a (-10D/2, 0, 0) and (10D/2, 0, 0).

41.2 Computing the Transforms

Thetransformationsneeded for stereo viewing are simplerotationsand translations.
Computationally, thestereo viewingtransforms happen | ast, after theviewingtrans-
form has been applied to put the viewer at the origin. Since the matrix order isthe
reverse of the order of operations, the viewing matricies should be applied to the
modelview matrix stack first.

The order of matrix operations should be:

1. Transform from viewer position to left eye view.

2. Apply viewing operation to get to viewer position (gl uLookAt or equiva
lent).

3. Apply modeling operations.
4. Change buffers, repeat for right eye.

Assuming that the identity matrix is on the modelview stack:

gl Mat ri xMode(GL_MCDELVI EW ;

19

Programming with OpenGL: Advanced Rendering

gl Loadl dentity(); /* the default matrix */
gl PushMat ri x()

gl DrawBuf f er (G._BACK_LEFT)

gl Translatef (-1002.f, 0, 0)

gl Rotatef(-angle, O0.f, 1.f, 0.f)
<vi ewi ng transfornms>

<nodel i ng transforns>

draw()

gl PopMatri x();

gl PushMatri x()

gl Dr awBuf f er (G._BACK _RI GHT)

gl Translatef (10D 2, 0., 0.)

gl Rotatef(angle, 0.f, 1.f, 0.f)
<vi ewi ng transfornms>

<nodel i ng transforns>

draw()
gl PopMatri x()

Where angle istheinversetangent of theratio between the fusion distance and
half of theinterocular distance. angle = arctan (L4t2pdistancey Eagh viewpoint is

rotated towards the centerline halfway between the two vi ewpoints.

Another approach to implementing stereo transforms is to change the viewing
tranform directly. Instead of adding an extrarotation and transl ation, use a separate
call to gl uLookAt for each eye view. Move fusion distance along the viewing
direction from the viewer position, and use that point for the center of interest of
both eyes. Trandate the eye position to the appropriate eye, then render the stereo
view for the corresponding buffer.

The difficulty with this technique is finding the left/right eye axis to translate
aong from the viewer positionto find theleft and right eye viewpoints. Since your
now computing the left/right eye axis in object space, it isno longer constrained to
bethe X axis. Find theleft/right eye axisin object space by taking the cross product
of the direction of view and the up vector.

413 Rotatevs. Shear

Rotating theleft and right eye view isis not the only way to generate the stereo im-
ages. Theleft and right eye views can be sheared instead. Theleft and eyesremain
oriented aong the direction of view, but each eyes view is sheared along z so that
the two frustums converge at the fusion distance.

20

Programming with OpenGL: Advanced Rendering

Although shearing each eye’s view instead of rotating is less physically accu-
rate, sheared stereo views can be easier for viewers to achieve stereo fusion. This
is because the two eye views have the same orientation and lighting.

For objectsthat arefar fromthe eye, thedifferences between thetwo approaches
are small.

4.2 Depth of Field

Normal viewing tranforms act like a perfect pinhole camera; everything visibleis
infocus, regardless of how close or how far the objects are from the viewer. Toin-
creaserealism, ascene can be rendered to produce sharpnessas afunction of viewer
distance, more accurately simulating a camera with afinite depth of field.

Depth-of-field and stereo viewing are similar. In both cases, there is more than
oneviewpoint, with all view directions converging at afixed distance along the di-
rection of view. When computing depth of field tranforms, however, we only use
shear instead of rotation, and sample a number of viewpoints, not just two, along an
axisperpendicular to the view direction. The resultingimages are blended together.

This process creates images whose the objectsin front of and behind the fusion
distance shift position as a function of viewpoint. In the blended image, these ob-
jects appear blurry. The closer the object isto the fusion distance, the less it shifts,
and the sharper they appear.

The field of view can be expanded by increasing the ratio between the view-
point shift and fusion distance. Thisway objects have to be farther from the fusion
distanceto shift significantly.

For detailson rendering scenesfeaturing alimited field of view see Section 9.1.

4.3 TheZ Coordinate and Per spective Projection

The Z coordinates are treated in the same fashion as the x and y coordinates. Af-
ter transformation, clipping and perspective division, they occupy the range -1.0
through 1.0. The gl Dept hRange mapping specifies a transformation for the z
coordinate similar to the viewport transformation used to map x and y to window
coordinates. Thegl Dept hRange mapping is somewhat different from the view-
port mapping in that the hardware resolution of the depth buffer is hidden from the
application. Theparameterstothegl Dept hRange cal areintherange[0.0, 1.0].
The z or depth associated with afragment representsthe distanceto theeye. By de-
fault the fragments nearest the eye (the ones at the near clip plane) are mapped to
0.0 and the fragments farthest from the eye (those at the far clip plane) are mapped
to 1.0. Fragments can be mapped to a subset of the depth buffer range by using
smaller valuesinthe gl Dept hRange call. The mapping may be reversed so that

21

Programming with OpenGL: Advanced Rendering

fragmentsfurthest from the eye are at 0.0 and fragments closest to theeyeare at 1.0
simply by calling gl Dept hRange(1. 0, 0. 0) . Whilethisreversal is possible,
it may not be practical for the implementation. Parts of the underlying architecture
may have been tuned for the forward mapping and may not produce results of the
same quality when the mapping is reversed.

To understand why there might be this disparity in the rendering quality, its
important to understand the characteristics of the window coordinate z coordinate.
The z value does specify the distance from the fragment to the plane of theeye. The
relationship between distance and z is linear in an orthographic projection, but not
in a perspective projection. In the case of a perspective projection, the amount of
thenon-linearity isproportional to theratio of far to near inthe Frustum call (or zFar
to zNear inthegl uPer spect i ve call). Figure 9 plotsthe window coordinate z
value as afunction of the eye-to-pixe distancefor severa ratios of far to near. The
non-linearity increasesthe resol ution of the z-valueswhen they are closeto the near
clipping plane, increasing the resolving power of the depth buffer, but decreasing
the precision throughout the rest of the viewing frustum, thus decreasing the accu-
racy of the depth buffer in this part of the viewing volume. Empirically it has been
observed that ratios greater than 1000 have this undesired result.

Thesimplest solutionisto improvethefar to near ratio by moving the near clip-
ping plane away from the eye. The only negative effect of doing thisisthat objects
rendered closeto the eye may be clipped away, but thisis seldom a problem in typ-
ical applications. The position of the near clipping plane has no effect on the pro-
jection of the x and y coordinates and therefore has minimal effect on the image.

In addition to depth buffering, the z coordinate is also used for fog computa
tions. Some implementationsmay perform the fog computation on a per-vertex ba
sisusing eye z and then interpol ate the resulting col ors whereas other implementa-
tions may perform the computation for each fragment. In this case, the implemen-
tation may use thewindow z to perform thefog computation. I mplementationsmay
also chooseto convert the computation into a cheaper tablelookup operation which
can al so cause difficultieswith the non-linear nature of window z under perspective
projections. If theimplementation usesalinearly indexed table, large far to near ra-
tioswill leave few table entriesfor thelarge eye z values. Thiscan cause noticeable
Mach bandsin fogged scenes.

4.3.1 Depth Buffering

We have discussed some of the caveats of using depth buffering, but there are sev-
erd other aspects of OpenGL rasteri zation and depth buffering that are worth men-
tioning [2]. One big problem is that the rasterization process uses inexact arith-
metic soit isexceedingly difficult to handle primitivesthat are coplanar unlessthey

22

Programming with OpenGL: Advanced Rendering

08 f

06 L

window z

04 |

0.2 H

f‘ Il Il Il Il Il Il Il
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
eyez

Figure 9. The relationship of window z (depth) to eye z for different far/near ratios

23

Programming with OpenGL: Advanced Rendering

share the same plane equation. This problem is exacerbated by the finite precision
of depth buffer implementations. Many sol utionshave been proposed to handlethis
class of problems, which involve coplanar primitives:

1. decaling

2. hidden line elimination
3. outlined polygons

4. shadows

Many of these problems have el egant solutionsinvolving the stencil buffer, but
it is still worth describing alternative methods to get more insight into the uses of
the depth buffer.

The problem of decaling one coplanar polygoninto another can be solved rather
simply by using the painter’salgorithm (i.e. drawing from back to front) combined
with color buffer and depth buffer masking, assuming thedecal iscontained entirely
within the underlying polygon. The steps are:

1. draw the underlying polygon with depth testing enabled but depth buffer up-
dates disabled.

2. draw thetop layer polygon (decal) aso with depth testing enabled and depth
buffer updates still disabled.

3. draw the underlying polygon one more time with depth testing and depth
buffer updates enabled, but color buffer updates disabl ed.

4. enable color buffer updates and continue on.

Outlining a polygon and drawing hidden linesare similar problems. If we have
an agorithm to outline polygons, hidden lines can be removed by outlining poly-
gonswith onecolor and drawing thefilled polygonswiththebackground color. Ide-
aly a polygon could be outlined by simply connecting the vertices together with
line primitives. This seems similar to the decaling problem except that edges of
the polygon being outlined may be shared with other polygonsand those polygons
may not be coplanar with the outlined polygon, so the decaling a gorithm can not
be used, sinceit relies on the coplanar decal being fully contained within the base
polygon.

The solution most frequently suggested for this problem is to draw the outline
as a series of lines and translate the outline a small amount towards the eye. Al-
ternately, the polygon could be translated away from the eye instead. Besides not

24

Programming with OpenGL: Advanced Rendering

Z -

Figure 10. Polygon and Outline Slopes

being a particularly elegant solution, there is a problem in determining the amount
to translate the polygon (or outline). In fact, in the general case thereis no constant
amount that can be expressed as asimple translation of the z object coordinate that
will work for al polygonsin a scene.

Figure 10 showstwo polygons(solid) with outlines (dashed) in the screen space
y-z plane. One of the primitive pairs has a45-degree slopein the y-z plane and the
other has a very steep slope. During the rasterization process the depth value for
a given fragment may be derived from a sample point nearly an entire pixel away
from the edge of the polygon. Therefore thetranslation must be as large as the max-
imum absolute change in depth for any single pixel step on theface of the polygon.
Thefigure showsthat the steeper the depth slope, thelarger the required trandl ation.
If an unduly large constant value is used to deal with steep depth slopes, then for
polygonswhich have a shallower slopethereisan increased likelihood that another
neighboring polygon might end up interposed between the outline and the polygon.
S0 it seemsthat atranslation proportional to the depth slopeis necessary. However,
atrangdlation proportional to slopeis not sufficient for a polygon that has constant
depth (zero slope) since it would not be translated at all. Therefore abiasis aso
needed. Many vendors have implemented the EXT_pol ygon_of f set extension
that provides a scaled slope plus bias capability for solving outline problems such
as these and for other applications. A modified version of this polygon offset ex-
tension has been added to the core of OpenGL 1.1 aswell.

25

Programming with OpenGL: Advanced Rendering

44 ImageTiling

When rendering ascenein OpenGL, the resolution of theimageisnormally limited
to theworkstation screen size. For interactiveapplicationsthisisusually sufficient,
but there may be timeswhen a higher resol utionimageis needed. Examplesinclude
color printing applicationsand computer graphicsrecorded for film. 1nthese cases,
higher resolutionimages can be divided intotilesthat fit on the workstation’sframe
buffer. Theimageisrenderedtileby tile, withtheresultssavedinto off screen mem-
ory, or perhaps afile. The image can then be sent to a printer or film recorder, or
undergo further processing, such has downsampling to produce an antialiased im-
age.

Onevery straightforwardway totileanimageisto manipulatethegl Fr ust um
call’sarguments. Thescenecan berendered repeatedly, onetileat atime, by chang-
ing the left, right, bottom and top arguments arguments of gl Fr ust umfor each
tile.

Computing the argument values is straightforward. Divide the origina width
and height range by the number of tiles horizontally and verticaly, and use those
values to parametrically find the | eft, right, top, and bottom values for each tile.

tile(t,7);0:0 = nTilesporiz, j 1 0 = nTilesyer
rightorig - leftorig
nTilesyoris

) rightorig - leftorig
le ftigeq(?) = leftyms *
f tzled() f orig T nTilesy ;.

righttiled(i) = leftorig + * (’L + 1)

toporig — bottome,

toptited () = bottomy,;y + FG 4 1)

nTileSyert
toporig — bottome,g

bOttOm . 1) = bottam 3
tzled(]) orig T nTileSyert

In the equations above, each value of i and j corresponds to atile in the scene.
If the original sceneisdivided into nTilesy i, Dy nTiles,. .+ tiles, then iterating
through the combinations of : and j generate the left, right top, and bottom values
for gl Fr ust umto create thetile.

Since gl gl Fr ust umhas a shearing component in the matrix, the tiles stitch
together seamlessly to form the scene. Unfortunately, thistechniquewould haveto
be modified for use with gl uPer spect i ve or gl Ot ho. Thereisabetter ap-
proach, however. Instead of modifying the perspective transform cal directly, ap-
ply tranformsto theresults. Thearea of normalized device coordinate(NDC) space
corresponding to thetile of interest istranslated and scaled soiit fillsthe NDC cube.

26

Programming with OpenGL: Advanced Rendering

Working in NDC spaceinstead of eye space makes finding thetiling tranforms eas-
ier, and is independent of the type of projective transform.

Eventhoughit’seasy to visualizethe operations happening in NDC space, con-
ceptually, you can “push” the transforms back into eye space, and the technique
maps into thegl Fr ust umapproach described above.

Tor the transform operations to happen after the projection transform, the
OpenGL callsmust happen beforeit. Here isthe sequence of operattions:

gl Mat ri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

gl Scal ef (xScal e, yScal e);

gl Transl atef (xOf fset, yOfset, 0.f);
set Projection();

The scale factors xScale and yScal e sca e thetile of interest to fill the the entire
scene:

Seale — sceneWdth
PO = Nilewidth
Seale — sceneHeight
yoeate = tileHeight

The offsets xOffset and yOffset are used to offset thetileso it is centered about
theZ axis. In thisexample, thetiles are specified by their lower |eft corner relative
to their positionin the scene, but the translation needsto move the center of thetile
into the origin of the X-Y planein NDC space:

—2xleft 1
Offset = — 212 S
2O [[se sceneWdth (nTilesy ;.
—2 % bottom 1
Of fset = —= 222790 S
yoffse sceneHeight nTileSyert

Asbefore nT'ilesy,,;, isthe number of tiles that span the scene horizontally,
while nT'iles,,;., isthe number of tilesthat span the scene verticaly.

Some care should be taken when computing le ft, bottom, tileWidth and
tile Height values. It'simportant that each tileis abutted properly withit's neigh-
bors. Ensure this by guarding against round-off errors. Some code that properly
computes these valuesis given below:

27

Programming with OpenGL: Advanced Rendering

[* tileWdth and til eHeight are G.floats */
GLint bottom top;

Gint left, right;

Gint width, height;

for(j =0; j < numwvertical tiles; j++) {
for(i = 0; i < numhorizontal tiles; i++) {
left =i * tileWdth;
right = (i + 1) * tileWdth;
bottom=j * tileHeight;

top = (j + 1) * tileHeight;
width = right - left;
height = top - bottom

/* compute xScale, yScale, xOfset, yOfset

Note that the parameter values are computed so that le ft + tileWidth is guar-
anteed to beequal to right and equal tole ft of thenexttileover, evenif tileWidth
has a fractional component? If the frustum technique is used, similar precautions
should betaken withthele ft, right, bottom, and top parametersto gl Fr ust um

45 Movingthe Current Raster Position

Usingthegl Rast er Pos command, theraster positionwill beinvalidif the speci-
fied positionwas culled. Sincegl Dr awPi xel s andgl CopyPi xel s operations
appliedwhentheraster positionisinvaliddo not draw anything, it may seemthat the
lower left corner of apixel rectanglemust beinsidetheclip rectangle. Thisproblem
may be overcome by using the gl Bi t map command. Thegl Bi t map command
takes arguments xoff and yoff which specify an increment to be added to the current
raster position. Assuming the raster positionisvalid, it may be moved outside the
clipping rectangle by agl Bi t map command. gl Bi t map isoften used witha 0
size rectangle to move the raster position.

5 TextureMapping

Texture mapping is one of the main techniques to improve the appearance of ob-
jects shaded with OpenGL's simple lighting model. Texturing is typically used to
provide color detail for intricate surfaces., e.g, woodgrain, by modifying the sur-
face color. Environment mapping is a view dependent texture mapping technique
that modifies the specul ar and diffusereflection, i.e. theenvironment isreflected in

28

Programming with OpenGL: Advanced Rendering

the object. More generaly texturing can be thought of as a method of perturbing
parameters to the shading equation such as the surface normal (bump mapping), or
even the coordinates of the point being shaded (displacement mapping). OpenGL
1.1 readily supportsthefirst two techniques (surface color manipulation and envi-
ronment mapping). Texture mapping can also solve some rendering problemsin
less obviousways. This section reviews some of the details of OpenGL texturing
support, outline some considerationswhen using texturing and suggest someinter-
esting algorithms using texturing.

5.1 Review

OpenGL supportstextureimages which are 1D or 2D and have dimensionsthat are
apower of two. Some implementations have been extended to support 3D and 4D
textures. Texture coordinates are assigned to the vertices of all primitives (includ-
ing pixel images). The texture coordinates are part of athree dimensiona homoge-
neous coordinate system (s;t,r,q). When a primitiveis rasterized a texture coordi-
nateis computed for each pixe fragment. Thetexture coordinateis used to look up
atexe valuefrom the currently enabled texture map. The coordinates of thetexture
map range from [0..1]. OpenGL can treat coordinate values outsidethe range [0,1]
in one of two ways. clamp or repeat. In the case of clamp, the coordinates are sim-
ply clamped to [0,1] causing the edge values of the texture to be stretched across
the remai ning parts of the polygon. In the case of repeat the integer part of the co-
ordinate is discarded resulting in atexture tile that repeats across the surface. The
texel value that results from the lookup can be used to modify the original surface
color value in one of several ways, the simplest being to replace the surface color
withtexel color, either by modulating awhite polygon or simply replacing the color
value. Simplereplacement was added as an extension by some vendorsto OpenGL
1.0 and isnow part of OpenGL 1.1.

5.1.1 Filtering

OpenGL aso provides a number of filtering methods to compute the texel value.
There are separatefilters for magnification (many pixel fragment values map to one
texel value) and minification (many texel values map to one pixel fragment). The
simplest of the filters is point sampling, in which the texel vaue nearest the tex-
ture coordinates is selected. Point sampling seldom gives satisfactory results, so
most applications choose some filter which does interpolation. For magnification,
OpenGL 1.1 only supports linear interpolation between four texel values. Some
vendors have also added support for bicubic filtering in which the aweighted sum
of 4x4 array of texelsis used (Filter4 is a more appropriate name for it sinceitis

29

Programming with OpenGL: Advanced Rendering

only performing cubic filtering when used as a magnification filter). For minifica-
tion, OpenGL 1.1 supportsvarioustypes of mipmapping [51], with the most useful
(and computationally expensive) being trilinear mipmapping (4 samplestaken from
each of the nearest two mipmap levels and then interpolating the two sets of sam-
ples). OpenGL does not provide any built-in commands for generating mipmaps,
but the GLU provides some simpleroutinesfor generating mipmaps using asimple
box filter.

5.1.2 Texture Environment

The process by which the final fragment color valueis derived is called the texture
environment function (gl TexEnv) Several methods exist for computing the fina
color, each capable of producing a particular effect. One of the most commonly
used isthemodulatefunction. For al practical purposesthe modulatefunction mul-
tiplies or modulates the original fragment color with the texel color. Typically, ap-
plications generate white polygons, light them, and then use thislit value to mod-
ulate the texture image to effectively produce allit, textured surface. Unfortunately
when thelit polygon includes a specular highlight, the resulting modul ated texture
will not look correct since the specular highlight simply changes the brightness of
the texture at that point rather than the desired effect of adding in some specular
illumination. Some vendors have tried to address this problem with extensionsto
perform specular lighting after texturing. We will discuss some other techniques
that can be used to address this problem later on.

The decal environment function performs simple a pha-blending between the
fragment color and an RGBA texture; for RGB texturesit simply replaces the frag-
ment color. Decal mode is undefined for luminance (L) and luminance apha (LA)
textures. The blend environment function uses the texture value to control the mix
of theincoming fragment col or and a constant texture environment color. OpenGL
1.1 adds a replace texture environment which substitutesthe texel color for thein-
coming fragment color. This effect can be achieved using the modulate environ-
ment, but replace has alower computational burden.

Another useful (and sometimes misunderstood) feature of OpenGL is the tex-
ture border. OpenGL supportseither a constant texture border color or aborder that
isaportion of the edge of the textureimage. The key to understanding texture bor-
dersis understanding how textures are sampled when the texture coordinate values
are near the edges of the [0,1] range and the texturewrap modeis set to GL_CLAMP.
For point sampled filters, the computation is quite simple: the border is never sam-
pled. However, when the texture filter islinear and the texture coordinate reaches
the extremes (0.0 or 1.0), however, the resulting texel value is a 50% mix of the
border color and the outer texel of the texture image at that edge.

30

Programming with OpenGL: Advanced Rendering

(0.,1.) (1.,1)
(.1,7)
(.1,.1) (.8,.1)
(0.0,0.) (1.,0.)
Figure 11. Texture Tiling

Thisismost useful when attempting to use a single high resolution texture im-
agewhichistoo large for the OpenGL implementation to support as asingletexture
map. For this case, the texture can be broken up into multipletiles, each with a1l
pixel wide border from the neighboring tiles. The texture tiles can then be loaded
and used for rendering in severa passes. For example, if a 1K by 1K textureis
broken up into 4 512 by 512 images, the 4 images would correspond to the texture
coordinate ranges (0-0.5,0-0.5), (0.5,1.0,0-0.5), (0-0.5,0.5,1.0) and (.5-1.0,.5-1.0).
As each tileisloaded, only the portions of the geometry that correspond to the ap-
propriate texture coordinate ranges for a given tile should be drawn. If we had a
singletriangle whose texture coordinates were (.1,.1), (.1,.7), and (.8,.8) wewould
clip thetriangle against the 4 tile regions and draw only the portion of the triangle
that intersectswith that region as shownin Figure 11. At the sametime, theoriginal
texture coordinates need to be adjusted to correspond to the scaled and translated
texture space represented by the tile. Thistransformation can be easily performed
by loading the appropriate scal e and translation onto the texture matrix stack.

Unfortunately, OpenGL doesn’'t provide much assistance for performing the
clipping operation. If the input primitives are quads and they are appropriately
aligned in object space with the texture, then the clipping operation istrivia; oth-
erwise, it issubstantially more work. One method to assist with the clipping would

31

Programming with OpenGL: Advanced Rendering

involve using stenciling to control which textured fragments are kept. Then we are
left with the problem of setting the stencil bits appropriately. The easiest way to do
thisisto produce alphavaluesthat are proportiona to the texture coordinate values
and use gl Al phaFunc to reject apha vaues that we do not wish to keep. Un-
fortunately, we can't easily map a multidimensional texture coordinate value (e.g.
s,t) to an alphavalue by simply interpolating the original vertex aphavalues, so it
would be best to use a multidimensional texture itself which has some portion of
the texture with zero alpha and some portion with it equal to one. The texture co-
ordinates are then scaled so that the textured polygon map to texels with an alpha
of 1.0 for pixelsto be retained and 0.0 for pixelsto be rejected.

5.2 MIPmap Generation

Having explored the possibility of tiling low resolutiontexturesto achievethe effect
of high resolution textures, we can next examine methodsfor generating better tex-
turing resultswithout resorting to tiling. Again, OpenGL supportsamodest collec-
tion of filtering algorithms, the highest quality of the minification algorithms being
GL_LI NEAR.M PMAP_LI NEAR. OpenGL does not specify a method for generat-
ing the individual mipmap levels (LODs). Each level can be loaded individually,
so it is possible, but probably not desirable, to use adifferent filtering algorithm to
generate each mipmap level.

The GLU library provides a very simple interface (gl uBui | d2DM praps)
for generating all of the 2D levelsrequired. The algorithm currently employed by
most implementationsisabox filter. There are anumber of advantagesto using the
box filter; it is simple, efficient, and can be repeatedly applied to the current level
to generate the next level without introducing filtering errors. However, the box
filter has a number of limitationsthat can be quite noticeable with certain textures.
For example, if a texture contains very narrow features (e.g., lines), then aiasing
artifacts may be very pronounced.

Thebest choiceof filter functionsfor generating mipmap level sissomewhat de-
pendent on the manner in whichthetexturewill be used andit isal so somewhat sub-
jective. Some possibilitiesincludeusing alinear filter (sum of 4 pixelswithweights
[1/8,3/8,3/8,1/8]) or acubicfilter (weighted sum of 8 pixels). Mitchell and Netravali
[30] proposeafamily of cubicfiltersfor general image reconstruction which can be
used for mipmap generation. The advantage of the cubic filter over the box isthat
it can have negative side lobes (weights) which help maintain sharpness while re-
ducing theimage. Thiscan help reduce some of the blurring effect of filtering with
mipmaps.

When attempting to use afiltering agorithm other than the one supplied by the
GLU library, it isimportant to keep a couple of thingsin mind. The highest res-

32

Programming with OpenGL: Advanced Rendering

olution image of the mipmap (LOD 0) should aways be used as the input image
source for each level to be generated. For the box filter, the correct result is gen-
erated when the preceding level is used as the input image for generating the next
level, but thisis not true for other filter functions. Each time anew level is gener-
ated, thefilter needs to be scaled to twice the width of the previous version of the
filter. A second considerationisthat in order to maintain a strict factor of two re-
duction, filters with widths wider than 2 need to sample outside the boundaries of
theimage. Thisis commonly handled by using the value for the nearest edge pixel
when sampling outside the image. However, a more correct algorithm can be se-
lected depending on whether the image isto be used in atexture in which a repeat
or clamp wrap mode isto be used. In the case of repeat, requestsfor pixelsoutside
the image should wrap around to the appropriate pixel counted from the opposite
edge, effectively repeating the image.

MIPmaps may be generated using the host processor or using the OpenGL
pipelineto perform some of thefiltering operations. For example, the GL_LI NEAR
minification filter can be used to draw an image of exactly half the width and height
of animagewhich has been |oaded into texture memory, by drawing aquad withthe
appropriatetransformation (i.e., the quad projectsto arectangle onefourth the area
of theoriginal image). Thiseffectivdy filterstheimagewith abox filter. Theresult-
ing image can then be read from the color buffer back to host memory for later use
as LOD 1. This process can be repeated using the newly generated mipmap level
to produce the next level and so on until the coarsest level has been generated.

The above scheme seems a little cumbersome since each generated mipmap
level needs to be read back to the host and then loaded into texture memory be-
fore it can be used to create the next level. Thegl CopyTex| mage(c) apahility,
added in OpenGL 1.1, allows an image in the color buffer to be copied directly to
texture memory.

Thisprocesscan still be slightly difficultin OpenGL 1.0 asit only dlowsasin-
gle texture of a given dimension (1D, 2D) to exist at any one time, making it dif-
ficult to build up the mipmap texture while using the non-mipmapped texture for
drawing. This problemis solved in OpenGL 1.1 with texture objects which alow
multi pletexture definitionsto coexist at the sametime. However, it would be much
simpler if we could use the most recent level loaded as part of the mipmap as the
current texture for drawing. OpenGL 1.1 only alows complete textures to be used
for texturing, meaning that al mipmap levels need to be defined. Some vendors
have added yet another extension which can dea with this problem (though that
was nhot the original intent behind the extension). Thisthird extension, the texture
LOD extension, limits the selection of mipmap image arrays to a subset of the ar-
rays that would normally be considered; that is, it allows an application to specify
a contiguous subset of the mipmap levelsto be used for texturing. If the subset is

33

Programming with OpenGL: Advanced Rendering

complete then the texture can be used for drawing. Therefore we can use this ex-
tension to limit the mipmap images to the level most recently created and use this
to create the next smaller level. The other capability of the LOD extension is the
ability to clamp the LOD to a specified floating point range so that the entire filter-
ing operation can berestricted. Thisextensionwill be discussedin more detail later
on.

Theabove method outlinesan agorithmfor generating mipmap level susing the
existing texture filters. There are other mechanisms within the OpenGL pipeline
that can be combined to do the filtering. Convolution can be implemented using
the accumulation buffer (thiswill be discussed in more detail in the section on the
accumul ation buffer). A texture image can be drawn using a point sampling filter
(GL_NEAREST) and the result added to the accumulation buffer with the appropri-
ate weighting. Different pixels (texels) from an NxN pattern can be selected from
the texture by drawing a quad that projects to a region /N x 1/N of the original
texture width and height with a slight offset in the s and t coordinates to control
the nearest sampling. Each time a textured quad is rendered to the color buffer it
isaccumulated with the appropriate weight in the accumulation buffer. Combining
point sampled texturing with the accumul ation buffer all ows theimplementation of
nearly arbitrary filter kernels. Sampling outsidethe image, however, still remainsa
difficulty for widefilter kernéls. If the outside samples are generated by wrapping
to the opposite edge, then the GL_REPEAT wrap mode can be used.

5.3 View Dependent Filtering

OpenGL specifies an isotropic filter for texture minification. This means that the
amount of filtering done along the s and t axes of the texture isthe same, and isthe
maximum of the filtering needed along each of thetwo axesindividually. Thiscan
lead to excessive blurring when atextureisviewed at an angle. If it isknownthat a
texture will always be viewed at a given angle or range of angles, it can be created
in away that reduces overfiltering.

Suppose a textured square is rendered as shown in the left of Figure 12. The
textureis shownin theright. Consider the fragment that is shaded dark. Itsideal
footprint is shown in the diagram of the texture as the dark inner region. But since
the minification filter is isotropic, the actual footprint is forced to a square that en-
closesthedark region. A mipmap level will be choseninwhichthissquarefootprint
isproperly filtered for the fragment; in other words, amipmap level will be selected
inwhichthesizeof thissquareisclosest to thesize of thefragment. That mipmapis
not level zero but level 1 or higher. Hence, at that fragment morefiltering is needed
aong t than along s, but the same amount of filtering is done in both.

To avoid this problem, we do the extrafiltering along t oursel veswhen we cre-

34

Programming with OpenGL: Advanced Rendering

u ' 7]

Fragment Level O Level 1

Figure 12. Footprint in full height texture

N L

Fragment Level O

Figure 13. Footprint in half height texture

35

Programming with OpenGL: Advanced Rendering

ate the texture, and make the texture have the same width but only half the height.
See Figure 13. The footprint now has an aspect ratio that is more square, so the en-
closing square is not much larger, and is closer to the size to the fragment. Level
0 will be used instead of a higher level. Another way to think about thisisthat by
using a texture that is shorter along t, we reduce the amount of minification that is
required along t.

54 FineTuning

In addition to issues concerning the maximum texture resolution and the methods
used for generating texture images there are also some pragmatic details with us-
ing texturing. Many OpenGL implementations hardware accelerate texture map-
ping and have finite storage for texture maps being used. Many implementations
will virtualize this resource so that an arbitrarily large set of texture maps can be
supported within an application, but as the resource becomes oversubscribed per-
formance will degrade. In applicationsthat need to use multipletexture maps there
isatension between the availabl e storage resources and the desire for improved im-
age quality.

Thissimply meansthat it isunlikely that every texture map can have an arbitrar-
ily high resolution and still fit within the storage constraints; therefore, applications
need to anticipate how textures will be used in scenes to determine the appropriate
resolutionto use. Note that texture maps need not be square; if atextureistypically
used with an object that isprojected to anon-square aspect ratio then theaspect ratio
of thetexturecan be scaled appropriately to make more efficient use of theavailable
storage.

5.5 Paging Textures

Imagine trying to draw an object which is covered by aportion of an arbitrary large
2D texture. This type of problem typically occurs when rendering terrain or at-
tempting to pan over very large images. If the textureis arbitrarily large it will not
entirely fit into texture memory unless it is dramatically reduced in size. Rather
than suffer the degradation in image quality by using the smaller texture, it might
be possibleto only use the subregion of the texturethat is currently visible. Thisis
somewhat similar to the texturetiling problem discussed earlier, but rather than se-
guencethrough all of thetilesfor each frame only the set of tiles necessary to draw
the image need to be used [41].

There are two different approaches that could be used to address the problem.
The first is to subdivide the texture into fixed sized tiles and selectively draw the
portion of the geometry that intersects each tile asthat tileis loaded. As discussed

36

Programming with OpenGL: Advanced Rendering

previoudly, thisisdifficult for GL_LI NEAR filters since the locations where the ge-
ometry crosses tile boundaries need to be resampled properly. The problem could
be addressed by clipping thegeometry so that thetexture coordinatesare kept within
the[0.0, 1.0] range and then use bordersto handlethe edges, or asinglelargetexture
consisting of al of thetiles could be used and the clipping step could be avoided.

Thislatter solutionisnot very practical with OpenGL 1.0 sincetheentiretexture
needsto berel oaded each timeanew tile needsto be added, but it isaddressed by the
incremental |oading capability added to OpenGL 1.1 and added to several OpenGL
1.0implementationsasan extension. Thisgl TexSubl mage routinealowsasub-
region within an existing texture image to be updated. This makesit simpletoload
new tilesinto areas that are no longer needed to draw the image. The ability to up-
date portionsof thetexturedoesn’'t compl etely solvethe problem. Consider thecase
of atwo dimensional image roam, illustratedin Figure 14, inwhichtheview ismov-
ing to theright. Asthe view pans to the right, new texture tiles must be added to
the right edge of the current portion of the texture and old tiles could be discarded
from the left edge.

Tilesdiscarded on theright side of theimage create holeswhere new tilescould
beloaded into the texture, but there is a problem with the texture coordinates. Tiles
loaded at the left end will correspond to low values of the t texture coordinate, but
the geometry may be drawn with a singlecommand or perhaps using automati c tex-
ture coordinate generation expecting to index those tiles with higher vaues of the
t coordinate. The solution to the problem is to use the repeat texture mode and let
thetexture coordinatesfor thegeometry extend past 1.0 Thetexture memory simply
wraps back onto itself in atoroidal topology. The origin of the texture coordinates
for the geometry must be adjusted asthe leading and trailing edges of thetilescycle
through texture memory. Thetrandlation of the origin can be doneusing thetexture
meatrix.

Thealgorithmworks for both mipmap and non-mipmapped textures but for the
former, tiles corresponding to each leve of detail must be |loaded together.

The ability toload subregionswithinatexture has other uses besidesthese pag-
ing applications. Without this capability textures must be loaded in their entirety
and their widths and heights must be powers of two. In the case of video data, the
images are typically not powers of two so a texture of the nearest larger power of
two can be created and only therelevant subregion needsto beloaded. When draw-
ing geometry, the texture coordinates are simply constrained to the fraction of the
texturewhich isoccupied with valid data. M1Pmapping can not easily be used with
non-power-of-two image data since the coarser levelswill contain image datafrom
theinvalid region of the texture.

37

Programming with OpenGL: Advanced Rendering

t

00)——7T——————r——7J—————1 Vvisible
tles +—m— | | | | | / region

| i i i i :

R A

: | | | | | :

s SN T S IR ERNURNN RN R

M | | | | | 1

| | | | | | |

| | | | | | |

A A B

| | : : : : '

[R IR R A SRR

roam - (1,1)
Figure 14. 2D Image Roam

5.6 Transparency Mappingand Trimming with Alpha

The a phacomponent in textures can be used to solveanumber of interesting prob-
lems. Intricate shapes such as an image of atree can be stored in texture memory
with the alpha component acting as a matte (1.0 where there the image is opague,
0. whereit istransparent, and afractiona value along the edges). When thetexture
is applied to geometry, blending can be used to composite the image into the color
buffer or the aphatest can be used to discard pixelswith a zero al pha component
using the GL_EQUALS test. The advantage of using the alphatest over blendingis
that blending typically degrades the performance of fragment processing. With a-
phatesting fragmentswith zero alphaare rej ected before they get to the col or buffer.
A disadvantage of alphatestingisthat the edgeswill not be blended into the scene
so the edges will not be properly antialiased.

The apha component of a texture can be used in other ways, for example, to
cut holesin polygonsor to trim surfaces. Animage of thetrimregionisstoredina
texture map and when it is applied to the surface, aphatesting or blending can be
used to reject the trimmed region. Thismethod can be useful for trimming complex
surfaces in scientific visualization applications.

38

Programming with OpenGL: Advanced Rendering

5.7 Billboards

It is often desirable to replace intricate geometry with simpler texture mapped ge-
ometry to increase realism and performance. Billboarding is atechnique in which
complex objects such astrees are drawn with simple planar texture mapped geom-
etry and the geometry is transformed to face the viewer. The transformation typi-
cally consistsof arotation to orient the object towards the viewer and a translation
to place the object in the correct position. For the case of the tree, an object with
roughly cylindrical symmetry, an axial rotation is used to rotate the geometry for
the tree, typically a quadrilateral, about the axis running parallél to the tree trunk.

For the simple case of the viewer looking down the negative z-axis and the up
vector equd to the positive y-axis, the angle of rotation can be determined by com-
puting the eye vector from the model view matrix M

0
- 4]0
Vege = M1 1

0

and the rotation # about the y axisis computed as

—

cosf = ‘761/6 : Vfront
sinff = Veye : ‘_/;’ight
where
Vfront = (07 07 1)

Vright = (17 0, 0)

Once # has been computed arotation matrix R can be constructed for the rota-
tion about the y-axis (Vup) and combined with the model view matrix as M R and
used to transform the billboard geometry.

To handle the more general case of an arbitrary billboard rotation axis, an in-
termediate alignment rotation A of the billboard axisinto the Vup axisis computed
as

aris = Vup X ‘/billboard
cosf = Vup : ‘/billboard
sinf = |lazis||

and the matrix transformation is replaced with M A R. Note that the preceding cal-
culations assume that the projection matrix contains no rotational component.

39

Programming with OpenGL: Advanced Rendering

A

eye

, axis of

rotation

z

Figure 15. Billboard with cylindrical symmetry

40

Programming with OpenGL: Advanced Rendering

In additionto objectswhich arecylindrically symmetric, it isal so useful tocom-
pute transformations for spherically symmetric objects such as smoke, clouds and
bushes. Spherical symmetry alows billboards to rotate up and down as well as
left and right, whereas cylindrical behavior only allowsrotation to the left or right.
Cylindrical behavior is suited to objects such as trees which should not bend back-
ward as the viewer's altitude increases.

Objects which are spherically symmetric are rotated about a point to face the
view and thus provide more freedom in computing the rotations. An additiona
alignment constraint can be used to resolve this freedom. For example, an align-
ment constraint which keeps the object oriented in a consistent fashion, such as up-
right. This constraint can be enforced in object coordinates when the objectiveis
to maintain scene realism, perhaps to maintain the orientation of plume of smoke
consistently with other objects in a scene. The constraint can also be enforced in
eye coordinates which can be used to maintain alignment of an object relative to
the screen, for example, keeping annotations such as text aligned horizontally on
the screen.

The computations for the spherically symmetric case are a minor extension of
the computations for the arbitrarily aligned cylindrical case. First an aignment
transformation, A, is computed to rotate the alignment axis onto the up vector fol-
lowed by a rotation about the up vector to align the face of the billboard with the
eye vector. A iscomputed as

aris = Vup X Valignment
cosf = Vup : Valignment
sinf = |lazis||

where Valignmem isthebillboard aignment axiswiththe component in the direction
of the eye direction vector removed

—

Valignment = ‘/billboard - (Veye : ‘/billboard)veye

A rotation about the up vector isthen computed as for the cylindrical case.

5.8 Rendering Text

A novel usefor texturing isrendering antialiased text [20]. Charactersare stored in
a 2D texture map asfor the tree image described above. When a character isto be
rendered, a polygon of the desired size is texture mapped with the character image.
Sincethetextureimageisfiltered as part of the texture mapping process, the quality
of the rendered character can be quite good. Text strings can be drawn efficiently

41

Programming with OpenGL: Advanced Rendering

by storing an entire character set within a single texture. Rendering a string then
becomes rendering a set of quads with the vertex texture coordinates determined
by the position of each character in the texture image. Another advantage of this
method is that strings of characters may be arbitrarily oriented and positioned in
three dimensions by orienting and positioning the polygons.

The competing methods for drawing text in OpenGL include bitmaps, vector
fonts, and outlinefontsrendered as polygons. Thetexture methodistypically faster
than bitmaps and comparabl eto vector and outlinefonts. A disadvantage of thetex-
ture method is that the texturefiltering may make the text appear somewhat blurry.
This can be dleviated by taking more care when generating the texture maps (e.g.
sharpening them). If mipmapsare constructed with multiplecharacters storedinthe
same texture map, care must be taken to ensure that map levels are clamped to the
level where theimage of acharacter has been reduced to 1 pixel on aside. Charac-
ters should also be spaced far enough apart that the color from one character does
not contributeto that of another when filtering the images to produce the levels of
detail.

5.9 Projective Textures

Projectivetextures[44] usetexture coordinateswhich are computed as the result of
aprojection. Theresult is that the texture image can be subjected to a separate in-
dependent projection from the viewing projection. This technique may be used to
simul ate effects such as slide projector or spotlight illumination, to generate shad-
ows, and to reproject a photograph of an object back onto the geometry of the ob-
ject. Severa of these techniques are described in more detail in later sections of
these notes.

OpenGL generdizesthe two component texture coordinate (s,t) to a four com-
ponent homogeneous texture coordinate (s;t,r,q). The g coordinate is analogousto
the w component in the vertex coordinates. The r coordinate is used for three di-
mensional texturing inimplementationsthat support that extensionandisiteratedin
manner similartosandt. Theaddition of theqcoordinateaddsvery littleextrawork
to the usua texture mapping process. Rather than iterating (s,t,r) and dividing by
1/w at each pixel, thedivisionbecomesadivisionby g/w. Thus, inimplementations
that perform perspective correction there isno extrarasterization burden associated
with processing g.

5.10 Environment Mapping

OpenGL directly supports environment mapping using spherical environment
maps. A sphere map isasingle texture of a perfectly reflecting spherein the envi-

42

Programming with OpenGL: Advanced Rendering

ronment wheretheviewer isinfinitely far from the sphere. Theenvironment behind
the viewer (ahemisphere) ismapped to acirclein the center of the map. The hemi-
sphereinfront of the viewer ismapped to aring surroundingthecircle. Spheremaps
can be generated using a camera with an extremely wide-angle (or fish eye) lens.
Sphere map approximations can a so be generated from a six-sided (or cube) envi-
ronment map by using texture mapping to project the six cube faces onto a sphere.

OpenGL provides a texture generation function (GL_SPHERE_MAP) which
maps a vertex normal to apoint on the sphere map. Applicationscan use this capa-
bility to do simple reflection mapping (shade totally reflective surfaces) or use the
framework to do more elaborate shading such as Phong lighting [45]. We discuss
thisalgorithmin alater section.

5.11 Image Warping and Dewar ping

Image warping or dewarping may be implemented using texture mapping by defin-
ing a correspondence between a uniform polygonal mesh and a warped mesh. The
points of the warped mesh are assigned the corresponding texture coordinates of
the uniform mesh and the mesh is texture mapped with the origina image. Using
this technique, simple transformations such as zoom, rotation or shearing can be
efficiently implemented. The technique also easily extends to much higher order
warps such as those needed to correct distortionin satellite imagery.

5.12 3D Textures

Three dimensional textures are a logical extension of 2D textures. In 3D textures,
texels become unit cubesin texel space. They are packed into arectangular paral-
lel piped, each dimension contrained to be a power of two. This texture map occu-
pies avolume, rather than arectangular region, and is accessed using three texture
coordinates, S, T, and R. Aswith 2D textures, texture coordinates range from zero
to 1in each dimension. Filtering is controlled in the same fashion as 2D textures,
using texture parameters and texture environment.

5.12.1 Using 3D Textures

In OpenGL, 3D textures have much in common with 2D and 1D textures.
Texture parameters and texture environment cals are the same, using the
GL_TEXTURE_3D_EXT target in place of G._TEXTURE_2D or GL_TEXTURE_1D.
Internal and External Formats and Types are the same, although a particular
OpenGL implementation may limit the 3D texture formats.
3D textures need to be accessed with S, T, and R texture coordinates instead
of just S and T. The additional texture coordinate complexity, combined with the

43

Programming with OpenGL: Advanced Rendering

common uses for 3D textures, means texture coordinate generation is used more
commonly for 3D textures than for 2D and 1D.

3D texture maps take up alarge amount of texture memory, and are expensive
to change dynamically. This can affect multipass algorithms that require multiple
passes with different textures.

The texture matrix operates on 3D texture coordinates in the same way that it
doesfor 2D and 1D textures. A 3D texturevolumecan betransl ated, rotated, scaled,
or have other transforms applied to it. Applying atransformationto the texture ma-
trix is a convenient and high performance way to manipulate a 3D texture when it
istoo expensiveto alter the texel valuesdirectly.

3D Texturesvs. MIPmaps A clear distinction should be made between 3D tex-
tures and MIPmapped 2D textures. 3D textures can be thought of as a solid block
of texture, requiring athird texture coordinate R, to access any given texel. A 2D
MIPmap isaseries of 2D texture maps, each filtered to a different resolution. Tex-
els from the appropriate level(s) are chosen and filtered, based on the relationship
between texel and pixel size on the primitive being textured.

Like 2D textures, 3D texture maps can be MIPmapped. Instead of resampling
a 2D layer, the entire texture volume is filtered down to an eighth of its volume
by averaging eight adjacent texels on onelevel down to asingletexel on the next.
MIPMapping serves the same purposein both 2D and 3D texture maps; it provides
ameans of accuratdly filtering when the projected texel sizeissmall relativeto the
pixels being rendered.

3D texture mipmapping is not widely supported, mostly becauseit is unneces-
sary for the most common use of 3D textures, volume visualization. Nevertheless,
some systems support it, and it can be used for rendering solids as discussed bel ow.

5.12.2 3D Texture Portability

3D Texturesaren’t currently acorefeaturein OpenGL, but can be accessed as an ex-
tension. It isan EXT extension, indicating more than one vendor supportsit. Even
when 3D texture maps are supported, the application writer must be careful to con-
sider thelevel of support present in the application. Texture map size may be lim-
ited, and 3D MIPmapping is often not supported. Available internal and externa
formats and types may be restricted. All of these restrictions can be queried at run
time, and with care, portable code can be produced.

Consider writing your 3D texture applications so that they revert to a 2D tex-
turing mode if 3D textures aren’'t supported. See the volume visualization section
for an example of a 3D texture algorithm that will work, with lower quality, using
2D textures.

Programming with OpenGL: Advanced Rendering

5.12.3 3D Texturesto Render Solid Materials

A direct 3D texture application is rendering solid objects composed of heteroge-
neous material. An example is rendering a statue made of marble or wood. The
objectitself iscomposed of polygonsor NURBS surfaces boundingthe solid. Com-
bined with proper texgen val ues, rendering the surface using a 3D textureof thema-
terial makesthe object appear cut out of thematerial. With 2D texturesobjectsoften
appear to have the material |laminated on the surface. Thedifference can be striking
when there are obvious 3D coherenciesin the material, combined with sharp angles
in the object’s surface.
Rendering a solid with 3D textureis straightforward:

Createthe 3D texture The texture data for the materia is organized as a three
dimensional array. Often the materia is generated proceduraly. As with
2D textures, proper filtering and sampling of the data must be done to
avoid aliasing. A MIPmapped 3D texture will increase realism of the ob-
ject. OpenGL doesn’t support a gl uBui | d3DM prmap command, so the
mipmaps need to created by the application. Be sure to check to see if the
size of the texture you want to create is supported by the system, and there
is sufficient texture memory available by calling gl Tex| mage3DEXT with
GL_PROXY_TEXTURE_3D_EXT to find a supported size. You can aso call
gl Get with GL_MAX_3D_TEXTURE_SI ZE_EXT to find the maximum al-
lowed size of any dimension in a 3D texture for your implementation of
OpenGL, though the result may be more conservative than the result of a
PROXY query.

Create Texture Coordinates For a solid surface, using gl TexGen to create the
texture coordinates is the easiest approach. Define planesfor S, T, and R in
eye space. Adjusting the scale has more effect on texture quality than the
position and orientation of the planes, since scaling affects how thetextureis
sampled.

Enable Texturing Use gl Enabl e(GL_TEXTURE_3D_EXT) to enable 3D tex-
ture mapping. Be sure to set the texture parameters and texture environment
appropriately. Check to see what restrictions your implementation puts on
these values.

Render the Object Once configured, rendering with 3D texture is no different
than other texturing.

45

Programming with OpenGL: Advanced Rendering

R
)/ZD Texture varies

as a function of R

Figure 16. 3D Textures as 2D Texturesvarying with R

5.12.4 3D Textures as Multidimensional Functions

Instead of thinking of a 3D texture as a 3D volume of data, it can be thought of as
a 2D texture map that varies as a function of the R coordinate value. Since the 3D
texturefiltersin three dimensions, changing the R value smoothly blendsfrom one
2D texture image to the next.

An obvious application is animated 2D textures. A 3D texture can animate a
sequence of images by using the R value astime. Sincetheimagesare interpolated,
temporal aliasing is reduced.

Another applicationis generalized billboards. A normal billboardisa 2D tex-
ture applied to a polygon that always faces the viewer. Billboards of objects such
astrees behave poorly when the viewer viewsthe object from above. A 3D texture
billboard can change the textured image as a function of viewer elevation angle,
blending a sequence of images between side view and top view, depending on the
viewer's position.

5.13 Procedural Texture Generation

Procedurally generated textures are a diverse topic; we concentrate on those based
on filtered noise functions. They are commonly used to simulate effects from phe-

46

Programming with OpenGL: Advanced Rendering

nomena such as fire, smoke, clouds, and marble formation. These textures are de-
scribed in detail in [13], which providesthe basis for much of this section.

5.13.1 Filtered Noise Functions

A filtered noisefunctionissimply afunction created by filtering impul sesof random
amplitude over the domain. There are avariety of ways to distribute the impul ses
spatially and to filter those impul ses; these methods determine the character of the
function and, in turn, the character of the procedural texture created from the func-
tion. Regardless of the method chosen, afiltered noisefunction should have certain
properties[13], some of which are:

e |tisarepestable pseudorandom function of itsinputs.
¢ It hasaknown range, typically -1 to 1.
e Itisband-limited, with a maximum frequency of about 1 per domain unit.

Given such afunction, we can build a more interesting function by making dilated
versions of the original such that each one has a frequency of 2, 4, 8, etc. These
are called the octaves of the origina function. The octaves are then composited
together with the original noise function using some set of weights. Theresultisa
band-limited functionwhich givestheimpression of controlled randomnessin each
frequency band.

One way of distributing noise impulses is to space them uniformly along the
coordinate axes, as in alattice. In value noise, the function itself interpolates the
values at the lattice points, whilein gradient noise the gradient of the function in-
terpolatesthe values at the lattice points[13]. Gradient noiseissimilar to the noise
function implemented in the RenderMan shading language.

L attice noises can exhibit axis-aligned artifacts. Lewis [29] describes sparse
convolution , a way to avoid such artifacts by distributing the impulses using a
stochastic process, and van Wijk [47] describes a similar technique called spot
noi se.

Althoughthe noisefunctionsdescribedin[13] are generaly 3D, wefirst discuss
how to generate a2D noisefunction, becauseit ismore straightforward to construct
ina2D framebuffer and because some simpl einteresting effects can be created with
it.

5.13.2 Generating Noise Functions

Filtered noisefunctionsare typically implemented as continuousfunctionsthat can
be sampled at an arbitrary domain value. However, for some applications a set of

47

Programming with OpenGL: Advanced Rendering

uniformly spaced samples of the function may suffice. In these cases, a discrete
version of the function can be created in the framebuffer using OpenGL. In thefol-
lowing, we do not distinguish between the terms noise function and discrete noise
function .

A simpleway to createlattice noiseisto create atexturewith random valuesfor
the texdls, and then to draw atextured rectangle with a bilinear texture filter at an
appropriate magnification. However, bilinear interpolation produces poor results,
especially when creating the lower octaves, where values are interpol ated across a
large area. Some OpenGL implementations support bicubic texturefiltering, which
may produceresults of acceptable quality. However, a particular implementation of
bicubic filtering may have limited subtexel precision, causing noticeable banding
at the lower octaves. Both bilinear and bicubic filters also have the limitation that
they produce only vaue noise; gradient noise is not possible. We suggest another
approach.

5.13.3 High Resolution Filtering

The accumulation buffer can be used to convolve ahigh resolution filter with arel-
atively small image under magnification. That iswhat we need to make the differ-
ent octaves; the octave representing the lowest frequency band will be created from
avery small input image under large magnification. Suppose we want to create a
512x512 output image by convolving a 64x64 filter with a 4x4 input image. Our
filter takesa2x2 array of samplesfrom the input image at atime, but is discretized
into 64x64 values in order to generate an output image of the desired size. Thein-
put image is shown on the left in Figure 17 with each texel numbered. The output
image is shown on the left in Figure 18. Note that each texel of the input image
will make a contribution to a 64x64 region of the output image. Consider thesere-
gionsfor texels 5, 7, 13, and 15 of the input image; they are adjacent to each other
and have no overlap, as shown by the dotted lines on theleft in Figure 18. Hence,
these four texels can be evaluated in the same pass without interfering with each
other. Making use of this fact, we redistribute the texels of the input image into
four 2x2 textures as shown in theright of Figure 17. We also create a 64x64 texture
that containsthe filter function; thistexture will be used to modulate the contribu-
tion of theinput texel over a64x64 region of the color buffer. The stepsto eva uate
thetexelsin Texture D are:

1. Using thefilter texture, draw four filter functions into the apha planes with
the appropriate x and y offset, as shown on theright in Figure 18

2. Enablealphablending and set the source blend factor to GL_DST_AL PHA and
the destination blend factor to GL_ZERO,

48

Programming with OpenGL: Advanced Rendering

A 12 | 14 13 | 15
|12 |13 |14 | 15

4 Texture C Texture D

8 10 9 11
0 1 2 3
v o |2 1|3
4 »
4 Texture A Texture B

Figure 17. Input Image

3. Set the texture magnification filter to G._NEAREST.

4. Draw arectangle to the dotted region with Texture D, noting the offset of 64
pixelsin both x andy.

5. Accumulate the result into the accumul ation buffer.

Repeat the above procedure for Textures A, B, and C with the appropriate x and y
offsets, and return the contents of the accumul ation buffer to the color buffer.

A wider filter requires more passes of the above procedure, and also requires
that the original texture be divided into more small textures. For example, if we
had chosen afilter that coversa4x4 array of input samplesinstead of 2x2, wewould
have to make 16 passesinstead of 4, and we would haveto distributethetexelsinto
16 1x1 textures. Increasing the size of either the output image or the input image,
however, has no effect on the number of passes.

5.13.4 Spectral Synthesis

Now that we can create a single frequency noise function using the framebuffer,
we need to create the different octaves and to composite them into one texture. For
each octave:

1. Scalethetexture matrix by a power of 2 in bothsand t.

2. Trandlate the texture matrix by a random offset in both sand t.

49

Programming with OpenGL: Advanced Rendering

512

ek EEEE Tl i
1
P DR I PR R

Figure 18. Output Image

3. Set the texture wrap mode to GL _REPEAT for sand t.
4. Draw atextured rectangle.
5. Accumulate the color buffer contents.

The random tranglation is an attempt to minimize the amount of overlap between
each octave' stexels; without it, every octave would use texels from the same cor-
ner of the input image. The accumulation is typically done with a scale factor that
controls the weight we want to give each octave.

5.13.5 Other Noise Functions

Gradient noise can be created using the same method described above, but with
a different filter. The technique described above can also create noise that is not
aligned on alattice. To create sparse convolution noise [29] or spot noise [47], in-
stead of drawing the entire point-sampled texture at once, draw one texel and one
copy of thefilter at atime for each random location.

5.13.6 Turbulence

To create anillusion of turbulent flow, first-derivativediscontinuitiesare introduced
into the noise function by taking the absolute value of the function. Although
OpenGL does not include an absolute value operator for framebuffer contents, the
same effect can be achieved by the following:

50

Programming with OpenGL: Advanced Rendering

gl Accum(GL_LQAD, 1. 0) ;
gl Accun(GL_ADD, - 0. 5) ;
gl Accun(GL_MULT, 2. 0);
gl Accum(GL_RETURN, 1. 0) ;

a > W bdpPF

Save theimage in the color buffer to atexture, main memory, or other color
buffer.

o

gl Accum(GL_RETURN, - 1. 0) ;

7. Draw the saved image from Step 4 using GL_ONE as both the source blend
factor and the destination blend factor.

The calls with G._ADD and GL_MULT map the values in the accumulation buffer
from therange[0,1] to[-1,1]; thisisneeded because valuesretrieved from the col or
buffer into the accumulation buffer are positive. Since vaues from the accumu-
lation buffer are clamped to [0,1] when returned, the first GL_RETURN clamps all
negativevaluesto 0 and returnsthe positivevaluesintact. The second GL_RETURN
clamps the positive values to 0, and negates and returns the negative values. The
color buffer needs to be saved after the first G._RETURN because the second
GL _RETURN overwrites the color buffer; OpenGL does not define blending for ac-
cumulation buffer operations.

5.13.7 Example: Image Warping

A common use of a2D noisetextureisto distort the texture coordinateswhile draw-
ing a 2D image, thus warping theimage. A noise functionis created in the frame-
buffer as described above, read back to the host, and used as texture coordinates (or
offsets to texture coordinates) to render the image. Since color values in OpenGL
are normalized to the range 0.0 to 1.0, if one is careful the image returned to the
host may be used without much conversion; assuming that the model view and tex-
ture matrixes are set up to accept valuesin thisrange, the returned datamay be used
directly for rendering.

Another similar use of a2D noisetextureisto distort the reflection of animage.
In OpenGL, reflections on aflat surface can be done by reflecting a scene acrossthe
surface. The results can be copied from the framebuffer to texture memory, and in
turn drawn with distorted texture coordinates. The shape and form of the distortion
can be controlled by modulating the contents of the framebuffer after the noise tex-
tureisdrawn but beforeit is copied to texture memory. Thiscan produceinteresting
effects such as water ripples.

51

Programming with OpenGL: Advanced Rendering

5.13.8 Generating 3D Noise

Using the techniques described above for generating a 2D noise function, we can
generating a 3D noise function by making 2D slices and filtering them. A 2D slice
spansthe sand t axes of thelattice, and correspondsto aslice of thelattice at afixed
r.

Suppose we want to make a 64x64x64 noi se function with afrequency of 1 per
domain unit, using the same filtering (but one that now takes 2x2x2 input samples)
asinthe 2D example above. Wefirst create 2 dlices, onefor r=0.0 and onefor r=1.0.
Thenwe createthe 62 slicesin between 0 and 1 by interpol atingthetwo slices. This
interpolation can take placein the col or buffer using blending, or it can take placein
the accumul ation buffer. Functionswith higher frequencies are created in asimilar
way. Widening the filter dramatically increases the number of passes; going from
a 2x2x2 filter to 4x4x4 requires 16 times as many passes.

To synthesize afunction with different frequencies, we create a 3D noise func-
tion for each frequency, and composite the different frequencies using a set of
weights, just aswedointhe 2D case. Itisclear that alarge amount of memory isre-
quired to storethe different 3D noise functions. These operationsmay bereordered
so that less total memory is required, perhaps at the expense of more interpolation
passes.

5.13.9 Generating 2D Noiseto Simulate 3D Noise

We have described a method for creating 2D noise functions. In the case of lattice
noise, these 2D functions correspond to a 2D dlice of the lattice. There are cases
where we want to model a3D noisefunction and where such a 2D functionisinad-
equate. For example, to draw avasethat lookslikeit was carved from asolid block
of marble, we cannot use alattice 2D noise function.

However, we can create a 2D noise function that approximates the appearance
of atrue 3D noise function, using spot noise [47]. We take into account the object
space coordinates of the geometry, and generate only spots that are close enough
to the geometry to make a contribution to the 3D noise at those points. The diffi-
culty is how to render the spot in such away that at each fragment the value of the
spot is determined by the object space distance from the center of the spot to that
fragment. Depending on the complexity of the geometry, we may be able to make
an acceptabl e approximation to the correct spot value by distorting the spot texture.
One possibleway to improve the approximation isto compensate for anonuniform
mapping of the noise texture to the geometry. Van Wijk describes how he doesthis
by nonuniformly scaling a spot. Approximating the correct spot value is most im-
portant when generating the lower octaves, where the spots are largest and errors

52

Programming with OpenGL: Advanced Rendering

are most noticeable.

5.13.10 Trade-offsBetween 3D and 2D Techniques

A 3D texture can be used with arbitrary geometry without much additional work
if your OpenGL implementation supports 3D textures. However, generating a 3D
noise texture requires alarge amount of memory and alarge number of passes, es-
pecidly if you use afilter that convolvesalarge number of input values at atime.
A 2D texture as we just described doesn't require nearly as many passes to create,
but it does require knowledge of the geometry and additional computation in order
to properly shape the spot.

6 Blending

OpenGL providesarich set of blending operationswhich can be used to implement
transparency, compositing, painting, etc. Rasterized fragments are linearly com-
bined with pixelsin the selected color buffers, clamped to 1.0 and written back to
the color buffers. Thegl Bl endFunc command is used to select the source and
destination blend factors. The most frequently used factorsare G- _ZERO, GL_ONE,
GL_SRC_ALPHA and GL_ONE_M NUS_SRC_ALPHA. OpenGL 1.1 specifies addi-
tive blending, but vendorshave added extensionsto allow other blending equations
such as subtraction and reverse subtraction.

Most OpenGL implementations use fixed point representations for color
throughout the fragment processing path. The color component resolution is typi-
cally 8 or 12 bits. Resolution problemstypically show up when attempting to blend
many images into the color buffer, for example in some volume rendering tech-
niques or multilayer composites. Some of these problems can be alleviated using
the accumulation buffer instead, but the accumul ation buffer does not provide the
same richness of methods for building up results.

OpenGL does not require that implementations support a destination alpha
buffer (storagefor apha). For many applicationsthisisnot alimitation, but thereis
aclass of multipass operationswhere maintai ning the current computed al phavaue
iS necessary.

6.1 Compositing

The OpenGL blending operation does not directly implement the compositing op-
erations described by Porter and Duff [38]. Thedifferenceisthat in their composit-
ing operationsthe colors are premultiplied by the alphavalue and the resulting fac-
tors used to scale the colors are simplified when this scaling has been done. It has

53

Programming with OpenGL: Advanced Rendering

been proposed that OpenGL be extended to include the ability to premultiply the
source color values by aphato better match the Porter and Duff operations. In
the meantime, it's certainly possibleto achieve the same effect by computing the
premultiplied valuesin the color buffer itself. For example, if thereisanimagein
the color buffer, a new image can be generated which multiplies each color com-
ponent by its alpha value and leaves the alpha value unchanged by performing a
gl CopyPi xel s operationwith blending enabled and the blending function set to
(GL_SRC_ALPHA,G._ZERQO). To ensure that the original aphavalueis left intact,
use thegl Col or Mask command to disable updates to the al pha component dur-
ing the copy operation.

6.2 Advanced Blending

OpenGL 1.1 blending only allows simple additive combinations of the source and
destination color components. Two ways in which the blending operations have
been extended by vendorsincludethe ability to blend with a constant color and the
ability to use other blending equations. The blend color extension adds a constant
RGBA color state variablewhich can be used asablendingfactor in the blend equa-
tion. This capahility can be very useful for implementing blends between two im-
ages without needing to specify theindividual source and destination a pha compo-
nentson aper pixel basis.

The blend equation extension provides the framework for specifying alternate
blending equations, for example subtractive rather than additive. In OpenGL 1.1,
the accumulation buffer is the only mechanism which alows pixel values to be
subtracted, but there is no easy method to include a per-pixel scaling factor such
as apha, so its easy to imagine a number of uses for a subtractive blending equa-
tion. Other equati onswhich have been implemented include min and max functions
which can be useful inimage processing algorithms(e.g., for computing maximum
intensity projections).

6.3 Painting

Two dimensional painting applications can make interesting use of texturing and
blending. An arbitrary image can be used as a paint brush, using blending to accu-
mul ate the contribution over time. Theimage (or paint brush) source can be geom-
etry or apixel image. A texture mapped quad under an orthographic projection can
be used in the same way as apixel image and often more efficiently (when texture
mapping is hardware accel erated).

Aninteresting way to implement the painting processis to precompute the ef-
fect of painting the entireimage with the brush and then use blending to selectively

54

Programming with OpenGL: Advanced Rendering

expose the painted area as the brush passes by the area. This can be implemented
efficiently with texturing by using the fully painted image as a texture map, blend-
ing the image of it mapped on the brush with the current image stored in the color
buffer. The brush is some simple geometric shape and the (st) texture coordinates
track the (X,y) coordinates as they move across the image. The main advantage of
this techniques is that elaborate paint/brush combinations can be efficiently com-
puted across the entireimage all at once rather than performing localized computa-
tionsin the area covered by the brush.

6.4 Blending with the Accumulation Buffer

The accumulation buffer is designed for integrating multiple images. Instead of
simply replacing pixel values with incoming pixel fragments, the fragments are
scaled, then added to the existing pixel value. In order to maintain accuracy over
a number of blending operations, the accumulation buffer has a higher number of
bits per color component than a typical color buffer.

The accumulation buffer can be cleared like any other buffer. You can
use gl d ear Accum to set the red, green, blue, and apha components
of its clear color. Clear the accumulation buffer by bitwise or’ing in the
GL_ACCUM BUFFER BI T valueto the parameter of thegl O ear command.

You can’'t render directly into the accumulation buffer. Instead you render into
aselected color buffer, then usegl Accumto accumulate that image into the accu-
mulation buffer. The gl Accumcommand reads from the currently selected read
buffer. You can set the buffer you want it to read from using the gl ReadBuf f er
command.

Thegl Accumcommand takestwo arguments, op and value. The possible set-
tings for op are described in Tabl e reftab:accumop.

Sinceyou must render to another buffer before accumulating, atypical approach
to accumulating images is to render images to the back buffer some number of
times, accumulating each image into the accumulation buffer. When the desired
number of images have been accumulated, the contents of the accumulation buffer
are copied into the back buffer, and the buffers are swapped. This way, only the
final, accumulated imageis displayed.

Hereis an example procedure for accumulating n images.

1. Cdl gl Dr awBuf f er (GL_BACK) to render to the back buffer only

2. Cdl gl ReadBuf f er (GL_BACK) so that the accumulation buffer will read
from the back buffer.

55

Programming with OpenGL: Advanced Rendering

| OpValue [Action \
GL_ACCUM | read from selected buffer, scale by value, then add into ac-
cumulation buffer

G _LQAD read from selected buffer, scale by value, then use image
to replace contents of accumulation buffer

GL_RETURN | scale image by value, then copy into buffers selected for
writing

G._ADD add valueto R, G, B, and A components of every pixel in
accumulation buffer

GL_MULT clampvaluetorange-1to1,thenscaeR, G, B, and A com-
ponents of every pixel in accumulation buffer.

Table 1: gl Accumop values

Note that the first two steps are only necessary if the application has changed
the selected draw and read buffers. If the visua is double buffered, these settings
are the default.

3. Clear the back buffer with gl Cl ear , then render thefirst image

4. Call gl Accun{ G._LOAD, 1.f/n); thisalowsyou to avoid a separate
step to clear the accumulation buffer.

Alter the parameters of your image, and re-render it
Cal gl Accun(GL_ACCUM 1. f/ n) toadd the second image into thefirst.

Repeat the previoustwo stepsn - 2 more times...

© N o u

Cal gl Accun(GL_RETURN, 1.f) tocopy thecompleted imageinto the
back buffer

9. Cal gl ut SwapBuf f er s if your using GLUT, or whatever’ sappropriateto
swap thefront and back buffers.

The accumul ation buffer provides away to do “multiple exposures’ in ascene,
while maintaining good color resolution. There are a number of image effects that
can be done using the accumul ation buffer to improvetherealism of arendered im-
age [21, 33]. They include antialiasing, motion blur, soft shadows, and depth of
field. To create these effects, the image is rendered multiple times, making small,
incremental changesto the scene position (or selected objectswithinthe scene), and
accumul ating the results.

56

Programming with OpenGL: Advanced Rendering

Figure 19. Rasterization of awide point.

7 Antialiasing

Aliasing artifacts appear when rasterizing primitivesbecause primitives are approx-
imated by a series of pixelsthat lie on an integer grid. Aliasing is especially bad
when rendering diagonal lines (or edges of polygonsthat are on the diagonal) and
wide points. Figure 19 shows how awide point covers more of some pixel squares
than others.

Antiaiasingisatechniquethat reducesaliasing artifacts (or jaggies) by modify-
ingtheintensity of aprimitive sfragment based on how much the primitiveoverlaps
that pixel fragment. When performing antialiasing, OpenGL calculates a coverage
value for each pixel fragment based on the how much the primitive overlaps that
pixel.

7.1 Antialiasing Pointsand Lines

To antiaias points or lines, you need to enable antialiasing by calling gl Enabl e
and passing in GL_PA NT_SMOOTH or G-_LI NE_SMOOTH, as appropriate. You
can aso provide a quality hint by calling gl Hi nt. The hint parameter can
be GL_FASTEST to indicate that the most efficient option should be cho-
sen, GL_NI CEST to indicate the highest quality option should be chosen, or
GL _DONT _CARE to indicate no preference.

When antialiasing is enabled, OpenGL computes thefraction of each pixel that

57

Programming with OpenGL: Advanced Rendering

is covered by the point or line. The setting of the GL_LI NE_SMOOTH and the
GL_PA NT_SMOOTH hints determine how accurate the cal cul ation iswhen render-
ing linesand points, respectively. Whenthehintisset to GL_NI CEST, alarger filter
function may be applied causing more fragments to be generated and rendering to
slow down.

If you are using RGBA rendering, OpenGL will set the apha value accord-
ing to the pixel coverage. You need to enable blending so that the incoming
pixel fragment will be combined with the value already in the framebuffer, de-
pending on the apha value. You will probably want to set the blending factors
to AL _SRC_ALPHA (source) and GL_ONE_M NUS_SRC_AL PHA (destination). You
can also use GL_ONE for the destination factor to make linesalittle brighter where
they intersect.

Antiaiasing in color index mode is trickier because you have to load the color
map correctly to get primitive edgesto blend with the background color. When an-
tialiasingisenabled, thelast four bits of the col or index indicate the coverage value.
Thus, you need to load sixteen contiguous colormap locations with a color ramp
ranging from the background color to the object’scolor. Thistechniqueonly works
well when drawing wireframe images, where the linesand pointstypically need to
be blended with aconstant background. If thelinesand/or pointsneed to be blended
with background polygons or images, RGBA rendering should be used.

You need to be careful when rendering antialiased lines and points with depth
buffered primitives. You should draw the depth buffered primitives first and then
draw the points and lines with the depth test still enabled but with depth buffer up-
datesdisabled. Thisway the pointsand lineswill becorrectly depth buffered against
the rest of the geometry. Thisisasimilar algorithmto that used for drawing a mix-
ture of opaque and translucent surfaces with depth buffering. If antidliasedlinesare
drawnwiththenormal depth buffering algorithmahal o artifact may bevisibleat the
intersections of lines. Thishaoisaresult of the antialiased lines being drawn sev-
eral pixelswidewith the pixelsaong the edges of the line having attenuated alpha
values which can also occlude pixels with larger depth values (i.e., parts of other
lines). When drawing antiaiased linesit is often necessary to adjust the gamma of
the monitor to get the best results.

7.2 Polygon Antialiasing

Antialiasing the edges of filled polygonsis similar to antialiasing points and lines.
However, antialiasing polygonsin color index mode isn’'t practical since object in-
tersections are more prevalent and you really need to use OpenGL blending to get
decent results.

To enable polygon antidiasing call gl Enabl e with GL_POLYGON_SMOOTH.

58

Programming with OpenGL: Advanced Rendering

This causes pixels on the edges of the polygon to be assigned fractional apha
values based on their coverage. Also, if you want, you can supply a value for
GL_POLYGON_SMOOTH_HI NT.

In order to get the polygons blended correctly when they overlap, you need to
sort the polygonsin front to back order. Before rendering, disable depth testing, en-
able blending and set the blending factorsto G- _SRC_ALPHA_SATURATE (source)
and GL_ONE (destination). Thefina color will be the sum of the destination color
and the scaled source color; the scale factor is the smaller of either the incoming
source aphavalue or one minus the destination alpha vaue. Thismeans that for a
pixel with a large apha value, successive incoming pixels have little effect on the
final color because one minus the destination alphais almost zero.

Since the accumulated coverage is stored in the color buffer, destination alpha
isrequired for this algorithm to work. Thus you must request avisual or pixe for-
mat with destination alpha. OpenGL does not require implementations to support
a destination alphabuffer so visual selection may fail.

7.3 Multisampling

Multisampling is an antialiasing method that provides high quality results. It is
available as an OpenGL extension from at |east one vendor. In thistechnique addi-
tional subpixel storageis maintained as part of the color, depth and stencil buffers.
Instead of using alphafor coverage, coverage masks are computed to help main-
tain sub-pixel coverage information for al pixels. Current implementations sup-
port four, eight, and sixteen samples per pixel. The method allows for full scene
antialiasing at amodest performance penalty but a more substantial storage penalty
(since sub-pixe samplesof color, depth, and stencil need to be maintained for every
pixel). Thistechnique does not entirely replace the methods described above, but
iscomplementary. Antialiased lines and points using a pha coverage can be mixed
with multisampling as well as the accumulation buffer antialiasing method.

7.4 Antialiasng With Textures

You can aso antiaias pointsand linesusing thefiltering provided by texturing. For
example, to draw antialiased points, create atextureimage containing afilled circle
with a smooth (antialiased) boundary. Then apply the texture to the point making
sure that the center of the textureis aligned with the point’s coordinates and using
the texture environment GL_MODULATE. This method has the advantage that any
point shape may be accommodated simply by varying the texture image.

A similar technique can be used to draw antialiased line segments of any width.
Thetextureimageisafiltered circle asdescribed above. Instead of alinesegment, a

59

Programming with OpenGL: Advanced Rendering

texture mapped rectangle, whose width isthe desired line width, is drawn centered
on and aligned with the line segment. If line segmentswith round ends are desired,
these can be added by drawing an additional textured rectangle on each end of the
line segment.

You can aso use alphatextures to accomplish antialiasing. Simply create an
image of a circle where the apha values are one in the center and go to zero as
you move from the center out to an edge. The aphatexel values would then be
used to blend the point or rectangle fragments with the pixel values aready in the
framebuffer.

7.5 Antialiasingwith Accumulation Buffer

Accumulation buffers can be used to antialias a scene without having to depth sort
the primitives before rendering. A supersampling technique is used, where the en-
tire scene is offset by small, subpixel amounts in screen space, and accumul ated.
The jittering can be accomplished by modifying the transforms used to represent
the scene.

Onestraightforward jittering method isto modify the projection matrix, adding
small tranglationsin x and y. Care must be taken to compute the translations so
that they shift the scene the appropriate amount in window coordinate space. For-
tunately, computing these offsets is straightforward. To compute a jitter offset in
terms of pixels, divide the jitter amount by the dimension of the object coordinate
scene, then multiply by the appropriate viewport dimension. The example code
fragment below shows how to calculate a jitter value for an orthographic projec-
tion; the results are applied to atrandlate call to modify the modelview matrix:

void ortho jitter(G.float xoff, G.float yoff)
{

Gint viewport[4];

GL.fl oat ortho[16];

CGLfl oat scal ex, scal ey;

gl Get I nt egerv(G._VI EWPORT, vi ewport);

/* this assunmes that only a glOtho() call has been
applied to the projection matrix */

gl Get Fl oat v(GL_PRQIECTI ON_MATRI X, ortho);

scalex = (2.f/ortho[0])/viewort][2];
scal ey (2.f/ortho[5])/viewwort][3];
gl Transl at ef (xof f * scal ex, yoff * scaley, 0.f);

60

Programming with OpenGL: Advanced Rendering

If the projection matrix wasn't created by calinggl Ort ho or gl uOrt ho2D,
then you will need to use the viewing volume extents (right, eft, top, bottom) to
compute scalex and scaley as follows:

G.float right, left, top, bottom

scal ex ((right-left)/viewiort[2];
scaley = ((top-bottom/viewport[3];

The codeisvery similar for jittering a perspective projection. In this example,
we jitter the frustum itself:

void frustumjitter(G.double left, G.double right,
GLdoubl e bottom G.doubl e top,

GLdoubl e near, G.double far,

GLdoubl e xoff, G.double yoff)

{

GLfl oat scal ex, scal ey;

Gint viewport[4];

gl Get I nt egerv(GL_VI EWPORT, vi ewport);
scalex = (right - left)/viewort[2];
scaley = (top - botton)/viewport][3];

gl Frustum(l eft - xoff * scal ex,
right - xoff * scal ex,

top - yoff * scal ey,

bottom - yoff * scal ey,

near, far);

}

Thejittering values you choose should fall in an irregular pattern; this reduces
diasingartifactsby making them*noisy”. Selected subpixel jitter values, organized
by the number of samples needed, are taken from the OpenGL Programming Guide,
and are shownin Table 2.

Using the accumulation buffer, you can easily trade off quality and speed. For
higher quality images, simply increase the number of scenes that are accumulated.
Althoughitissimpleto antialiasthe scene using the accumul ation buffer, itis much
more computationally intensive and probably slower than the polygon antialiasing

61

Programming with OpenGL: Advanced Rendering

Count Vaues

2 0.25, 0.75, 0.75, 0.25

3 0.5033922635, 0.8317967229, 0.7806016275, 0.2504380877,
0.2261828938, 0.4131553612

4 0.375, 0.25, 0.125, 0.75, 0.875, 0.25, 0.625, 0.75

5 05,05,0.3,01,0.7,09,0.9,03,0.1,0.7

6 0.4646464646, 0.4646464646, 0.1313131313, 0.7979797979,

0.5353535353, 0.8686868686, 0.8686868686, 0.5353535353,
0.7979797979, 0.1313131313, 0.2020202020, 0.2020202020

8 0.5625, 0.4375, 0.0625, 0.9375, 0.3125, 0.6875, 0.6875, 0.8125,
0.8125, 0.1875, 0.9375, 0.5625, 0.4375, 0.0625, 0.1875, 0.3125
9 0.5, 0.5, 0.1666666666, 0.9444444444, 0.5, 0.1666666666,

0.5, 0.8333333333, 0.1666666666, 0.2777777777,
0.8333333333, 0.3888888888, 0.1666666666, 0.6111111111,
0.8333333333, 0.7222222222, 0.8333333333, 0.0555555555

12 0.4166666666, 0.625, 0.9166666666, 0.875, 0.25, 0.375,
0.4166666666, 0.125, 0.75, 0.125, 0.0833333333, 0.125, 0.75, 0.625,
0.25, 0.875, 0.5833333333, 0.375, 0.9166666666, 0.375,
0.0833333333, 0.625, 0.583333333, 0.875

16 0.375, 0.4375, 0.625, 0.0625, 0.875, 0.1875, 0.125, 0.0625,
0.375, 0.6875, 0.875, 0.4375, 0.625, 0.5625, 0.375, 0.9375,
0.625, 0.3125, 0.125, 0.5625, 0.125, 0.8125, 0.375, 0.1875,
0.875, 0.9375, 0.875, 0.6875, 0.125, 0.3125, 0.625, 0.8125

Table 2: Sample Jittering Values

62

Programming with OpenGL: Advanced Rendering

method described above. Also, OpenGL does not require implementationsto sup-
port an accumul ation buffer, soyou may not be ableto select avisual or pixel format
with an accumulation buffer.

8 Lighting

This section discusses varies ways of improving and refining the lighting of your
scenes using OpenGL.

8.1 Phong Shading
8.1.1 Phong Highlightswith Texture

One of the problemswith the OpenGL lighting model isthat specular reflectanceis
computed before textures are applied in the normal pipeline sequence. To achieve
more realistic looking results, specul ar highlightsshould be computed and added to
image after the texture has been applied. Thiscan be accomplished by breaking the
shading processinto two passes. In thefirst passdiffuse reflectance iscomputed for
each surface and then modul ated by the texture colorsto be applied to the surface
and theresult writtento the color buffer. In the second passthe specular highlightis
computed for each polygonand added to theimageintheframebuffer usingablend-
ing function which sums 100% of the source fragment and 100destination pixels.
For thisparticular examplewewill useaninfinitelight and alocal viewer. Thesteps
to produce theimage are as follows:

1. Definethe material with appropriate diffuse and ambient reflectance and zero
for the specular reflectance coefficients.

Define and enable lights.
Define and enabl e texture to be combined with diffuse lighting.
Define modul ate texture environment.

Draw lit, textured object into the col or buffer with the vertex colorsset to 1.0.

©o a0 c~ w b

Define new material with appropriate specular and shininessand zero for dif-
fuse and ambient reflectance.

7. Disable texturing, enable blending, set the blend function to G._ONE,
GL_ONE.

8. Draw the specular-lit, non-textured geometry.

63

Programming with OpenGL: Advanced Rendering

9. Disable blending.

This implements the basic algorithm, but the Gouraud shaded specular high-
light still leaves something to be desired. We can improve on the specular high-
light by using environment mapping to generate a higher quality highlight. We
generate a sphere map consisting only of a Phong highlight [37] and then use the
GL _SPHERE_MAP texture coordinate generation mode to generate texture coordi-
nates which index this map. For each polygon in the object, the reflection vector
is computed at each vertex. Since the coordinates of the vector are interpolated
across the polygon and used to lookup the highlight, a much more accurate sam-
pling of the highlight is achieved compared to interpolation of the highlight value
itself. The sphere map image for the texture map of the highlight can be computed
by rendering a highly tessellated sphere lit with only a specular highlight using the
regular OpenGL pipeline. Sincethelight positionis effectively encoded in the tex-
ture map, the texture map needs to be recomputed whenever the light positionis
changed.

The nine step method outlined above needs minor maodificationsto incorporate
the new lighting method:

6. disablelighting.

7. load the sphere map texture, enable the sphere map texgen function.
8. enable blending, set the blend function to GL_ONE, GL_ONE.

9. draw the unlit, textured geometry with vertex colors set to 1.0.

10. disabletexgen, disable blending.

With a little work the technique can be extended to handle multiple light
Sources.

8.1.2 Spotlight Effects using Projective Textures

The projectivetexture technique described earlier can be used to generate a number
of interesting illumination effects. One of the possible effectsis spotlight illumina-
tion. The OpenGL lighting mode aready includesa spotlight illumination model,
providing control over the cutoff angle (spread of the cone), the exponent (concen-
tration across the cone), direction of the spotlight, and attenuation as a function of
distance. The OpenGL model typicaly suffers from undersampling of the light.
Sincethelightingmodel isonly evaluated at the vertices and theresults are linearly

64

Programming with OpenGL: Advanced Rendering

interpolated, if the geometry being illuminated is not sufficiently tessellated incor-
rect illumination contributions are computed. This typicaly manifestsitself by a
dull appearance across the illuminated area or irregular or poorly defined edges at
the perimeter of theilluminated area. Since the projective method samplestheillu-
mination at each pixel the undersampling problem is eliminated.

Similar to the Phong highlight method, a suitable texture map must be gener-
ated. Thetextureisan intensity map of across-section of the spotlight’sbeam. The
sametype of exponent parameter used in the OpenGL model can beincorporated or
adifferent mode entirely can be used. If 3D textures are avail able the attenuation
due to distance can be approximated using a 3D texture in which the intensity of
the cross-section is attenuated along the r-dimension. When geometry is rendered
with the spotlight projection, ther coordinate of the fragment is proportional to the
distance from the light source.

In order to determine the transformation needed for the texture coordinates, it
is easiest to think about the case of the eye and the light source being at the same
point. In thisinstance the texture coordinates should correspond to the eye coordi-
nates of the geometry being drawn. The simplest method to compute the coordi-
nates (other than explicitly computing them and sending them to the pipelinefrom
the application) isto usean GL_EYE LI NEAR texture generation function with an
GL_EYE_PLANE equation. The planes simply correspond to the vertex coordinate
planes (e.g. the s coordinate is the distance of the vertex coordinate from the y-z
plane, etc.). Since eye coordinates are in the range [-1.0, 1.0] and the texture co-
ordinates need to be in the range [0.0, 1.0], ascale and translate of .5 is applied to
s and t using the texture matrix. A perspective spotlight projection transformation
can be computed using gl uPer spect i ve and combined into the texture trans-
formation matrix. The transformation for the general case when the eye and light
source are hot in the same position can be computed by incorporating into the tex-
ture matrix the inverse of the transformations used to move the light source away
from the eye position.

With the texture map available, the method for rendering the scene with the
spotlight illuminationis as follows:

1. Initialize the depth buffer.

2. Clear the color buffer to a constant val ue which represents the scene ambient
illumination.

3. Draw thescenewith depth buffering enabled and color buffer writesdisabled.

4. Load and enable the spotlight texture, set the texture environment to
GL_MODULATE.

65

Programming with OpenGL: Advanced Rendering

. Enable the texgen functions, 1oad the texture matrix.

. Enableblending and set the blend function to GL_ONE, GL_ONE.

5
6
7. Disable depth buffer updates and set the depth function to GL_EQUAL.
8. Draw the scene with the vertex colors set to 1.0.

9

. Disablethe spotlight texture, texgen and texture transformation.
10. Set the blend functionto GL_DST_COLCR.
11. Draw the scene with normal illumination.

There are three passes in the algorithm. At the end of thefirst pass the ambient
illumination has been established in the color buffer and the depth buffer contains
theresolved depth valuesfor the scene. In the second passtheilluminationfromthe
spotlight is accumulated in the color buffer. By using the GL_EQUAL depth func-
tion, only visible surfaces contribute to the accumulated illumination. In the final
pass the scene is drawn with the colors modul ated by the illumination accumul ated
in thefirst two passesto arrive at the final illumination values.

The algorithm does not restrict the use of texture on objects, since the spotlight
texture is only used in the second pass and only the scene geometry is needed in
this pass. The second pass can be repeated multiple time with different spotlight
textures and projections to accumul ate the contributions of multiple light sources.

There are a couple of considerations that also should be mentioned. Texture
projection along the negative line-of-sight of the texture (back projection) can con-
tribute undesired illumination. This can be eliminated by positioning a clip plane
a the near plane of the line-of-site. OpenGL does not guarantee pixel exactness
when various modes are enabled or disabled. This can manifest itself in undesir-
able ways during multipass algorithms. For example, enabling texture coordinate
generation may cause fragments with different depth values to be generated com-
pared to the case when texture coordinate generation is not enabled. This problem
can be overcome by re-establishing the depth buffer val ues between the second and
third pass. Thisis done by redrawing the scene with color buffer updates disabled
and the depth buffering configured the same as for thefirst pass.

It is aso possiblethat the entire scene can be rendered in a single pass. If none
of the objectsin the scene are textured, the complete image could be rendered in a
single pass assuming the ambient illumination can be summed with spotlight illu-
mination in asingle pass. Some vendors have added an additive texture environ-
ment function as an extension which would make this operation feasible. A cruder
method that works in OpenGL 1.1 involves illuminating the scene using normal
OpenGL lighting with the spotlight texture modulating thisillumination.

66

Programming with OpenGL: Advanced Rendering

8.1.3 Phong shading by Adaptive Tessdllation

Phong highlights can also be approached with a modeling technique. The surface
can be adaptively tessellated until the difference between (H - V)" termsontriangle
vertices drops bel ow a predetermined value. The advantage of thistechniqueisthat
it can bedoneasa separate pre-processing step. Thedisadvantageisthat itincreases
the complexity of the modeled object. This can be costly if:

e Themode will haveto be clipped by alarge number of user-defined clipping
planes

e Themodd will havetiled textures applied to it.

e The performance of the application/systemis aready triangle limited.

8.2 Light Maps

A light map is a texture map applied to a material to simulate the effect of alocal
light source. Like specular highlights, it can be used to improve the appearance of
local light sources without resorting to excessive tessellation of the objectsin the
scene. A excellent example of an application using lightmapsisthe interactive PC
game Quake(tm). This game uses light maps to simulate the effects of local light
sources, both stationary and moving, to great effect.

Using lightmaps usually requires a multipass a gorithm, unless the objects be-
ing mapped are untextured. A texture simulating the light’s effect on the object is
created, then applied to one or more objectsin the scene. Appropriatetexture coor-
dinates are generated, and texture transformations can be used to position the light,
and create moving or changing light effects. Multiple light sources can be gener-
ated with a combination of more complex texture maps and/or more passes to the
agorithm.

Light maps are often luminance textures, which are applied to the object using
G _MODULATE asthevauefor GL_TEXTURE_ENV_MODE. Colored lightscan also
be simulated by using an RGB texture.

Light maps can often produce satisfactory lighting effects at lower resolutions
than normal textures. It is often not necessary to produce MIPmaps; choosing
GL_LI NEAR for the minification and magnification filters is often sufficient. Of
course, the minimum quality of the lighting effect is a function of the intended ap-
plication.

67

Programming with OpenGL: Advanced Rendering

8.21 2D TextureLight Maps

A 2D light map is atexture map applied to the surfaces of a scene, modulating the
intensity of the surfaces to simulate the effects of alocal light. If the surfaceis al-
ready textured, then applying the light map becomes a multipass operation, modu-
lating the intensity of a surface detail texture.

A 2D light map can be generated analytically, creating a bright spot in lumi-
nance or color valuesthat drops off appropriately with increasing distance from the
light center. Aswith other lighting equations, a quadratic drop off, modified with
linear and constant terms can be used to simulate a variety of lights, depending on
the area of the emitting source.

Since generating new textures takes time and consumes val uabl e texture mem-
ory, it is a good strategy to create a few canonical light maps, based on intensity
drop-off characteristics and color, then use them for a number of different lights
by transforming the texture coordinates. If the light sourceisisotropic, then simple
tranglationsand scal es can be used to position thelight appropriatel y on the surface,
while scal es can be used to adjust the size of thelighting effect, simulating different
sizes of lights and distance from the lighted surface.

In order to apply alight map to asurface properly, the position of thelight inthe
scene must be projected onto each surface of interest. This position shows where
the bright spot will be. The perpendicular distance of the light from the surface can
be used to adjust the bright spot size and brightness. One approach isto generate
texture coordinates, orienting the generating planes with each surface of interest,
then trandlating and scaling the texture matrix to position the light on the surface.
This processis repeated for every surface affected by the light.

In order to repeat this process for multiple lights (without resorting to a multi-
light lightmap) or to light textured surfaces, the lighting must be done as a series of
passes. This can be done two ways. The more straightforward way isto blend the
entire scene. The other way isto blend together the surface texture and light maps
to create atexture for each surface. Thistexture will represent the contributions of
the surface texture and al lightmaps affecting its surface. The merged texture is
then applied to the surface. Although more involved, the second method produces
ahigher quality result.

For each surface:

1. Transformthesurface sothatitisperpendicular to thedirection of view (max-
imize itsvisible surface). Scale the image so that its areain pixels matches
the desired size of thefinal texture.

2. Render the transformed surface into the frame buffer (this can be donein the
back buffer). If it istextured, render it with the surface texture.

68

Programming with OpenGL: Advanced Rendering

3. Rerender the surface, using the appropriate light map. Adjust the
GL _EYE_PLANE equationsand thetexturetransformto positionthelight cor-
rectly on the surface. Use the appropriate blend function.

4. Repeat the previous step with each light visibleto the surface.
5. Copy theimage into atextureusing gl CopyTex| mage2D.

6. When you' ve created textures for al lit surfaces, render the scene using the
new textures.

Since switching between textures must be done quickly, and lightmap textures
tend to be small, usetexture objectsto switch between different light maps and sur-
face texturesto improve performance.

With either approach, the blending is a modulation of the colors of the exist-
ing texture. This can be done by rendering with the blend function (GL_ZERO,
G _SRC_COLOR). If the light map is composed of luminance vaues than the in-
dividual destination color components will be scaled equally, if the light map rep-
resents a colored light, then the color components of the destination will be scaled
by the red, green, and blue components of the light map texel vaues.

Note that each modulation pass attenuates the surface color. The results will
become increasingly dim. If surfacesrequire alarge number of lights, the dynamic
range of light maps can be compressed to avoid excessive darkening. Instead of
ranging from 1.0 (full light) to 0.0 (no light), They can rangefrom 1.0 (full light) to
0.50r 0.75 (nolight). Theno light val ue can be adjusted as afunction of the number
of lightsin the scene.

Here are the steps for using 2D Light Maps:

1. Create the 2D light data. “Canonical lights’ can be defined at the center of
the texture, with the intensity dropping off in aredlistic fashion towards the
edges. In order to avoid artifacts, make sure the intensity of thelight field is
the same at al the edges of the texture volume.

2. Define a 2D texture, using G- _REPEAT for thewrap valuesin S, T, and R.
Minification and magnification should be GL_LI NEAR to make the changes
in intensity smoother. For performance reasons, make this texture a texture
object.

3. Render the scenewithout the lightmap, using surface textures as appropriate.
4, For each light in the scene:

(&) For each surface in the scene:

69

Programming with OpenGL: Advanced Rendering

i. Cull surfacesthat can't “see” the current light.
ii. Find the plane of the surface.

iii. Align the GL_EYE_PLANE for G._S and GL_T with the surface
plane.

iv. Scale and tranglate the texture coordinates to position and size the
light on the surface.

v. Render the surface using the appropriate blend function and
lightmap texture.

An dternative to simple light maps is to use projective textures to draw light
sources. Thisisagood approach when doing spotlight effects. 1t’s not as useful for
isotropic light sources, since you'll have to tile your projections to make the light
shinein all directions. Seethe projectivetexturedescription8.1.1 and 5.8 for more
details.

8.2.2 3D TextureLight Maps

3D Textures can aso be used as light maps. One or more light sources are repre-
sented in 3D data, then the 3D textureis applied to the entire scene. The main ad-
vantage of using 3D textures for light maps isthat it's easy to calculate the proper
texture coordinates. The textured light source can be positioned globally with the
appropriate texture transformations then the scene is rendered, using gl TexGen
to generate the proper S, T, and R coordinates.

Thelight source can be moved by changing the texture matrix. The resolution
of thelight field is dependent on the texture resolution.

A useful approach is to define a canonical light field in 3D texture data, then
useit to represent multiplelightsat different positionsand sizesby applyingtexture
tranglations and scalesto shift and resizethe light. Multiplelights can be simul ated
by accumulating the results of each light source on the scene.

Toensurethat thelight source can be shifted easily, set G._TEXTURE_WRAP_S,
G _TEXTURE_WRAP_T, and GL_TEXTURE WRAP_R EXT to GL_REPEAT. Then
the light can be shifted to any location in the scene. Be sure that the texel values
in the light map are the same at all boundaries of the texture; otherwise you'll be
ableto seetheedgesof thetextureasvertical and horizontal “ shadows” in the scene.

Although it is uncommon, some types of light fields would be very hard to do
without 3D textures. A complex light source, whose brightnessand range varies as
afunction of distance from the light source could be best done with a 3D texture.
An example might be a“disco ball” effect where alight source has beams emanat-
ing out from the center, with some beams shining farther than others. A complex

70

Programming with OpenGL: Advanced Rendering

light source could be made more impressive by combining light maps with volume
visualizationtechniques. For examplethelight beams could be madevisiblein fog.
The light source itself can be a simple piece of geometry textured with the rest
of thescene. Sinceitisat thesourceof thetexturedlight, it will betextured brightly.
For better realism, good lighting effects should be combined with the shadow-
ing techniques described in Section 9.4.
Procedure:

1.

7.

Create the 3D light data. A “canonical light” can be defined at the center of
the texture volume, with the intensity dropping off in a realistic fashion to-
wards the edges. In order to avoid artifacts, make sure the intensity of the
light field isthe same at all the edges of the texture volume.

Define a 3D texture, using GL _REPEAT for thewrap valuesin S, T, and R.
Minification and magnification should be GL_LI NEAR to make the changes
in intensity smoother.

Render the scene without the lightmap, using surface textures as appropriate.

Define planesin eye space so that gl TexGen will cause the texture to span
the visible scene.

If you have textured surfaces, adding a lightmap becomes a multipass tech-
nique. Use the appropriate blending function to modulate the surface color.

Render theimagewiththelight map, and texgen enabled. Usethe appropriate
texture transform to position and scal e the light source correctly.

Repeat steps 1-2 and 4-6 for each light source.

There are disadvantagesto using 3D light maps:

e 3D textures are not widely supported yet, so your application will not be as

portable.

e 3D textures use alot of texture memory. 2D textures are more efficient for

8.3

light maps.

Bump Mapping with Textures

Bump mapping [6], liketexture mapping, isatechniqueto add morerealismto syn-
thetic images without adding alot of geometry. Texture mapping adds realism by

71

Programming with OpenGL: Advanced Rendering

attaching images to geometric surfaces. Bump mapping adds per-pixel surface re-
lief shading, increasing the apparent complexity of the surface.

Surfaces that should have a patterned roughness are good candidates for bump
mapping. Examplesinclude oranges, strawberries, stucco, wood, etc.

A bump mapisan array of valuesthat represent an object’ sheight variationson
asmall scale. A custom renderer is used to map these height valuesinto changesin
the local surface normal. These perturbed normals are combined with the surface
normal, and the results are used to evaluate the lighting equation at each pixdl.

The technique described here uses texture maps to generate bump mapping ef-
fects without requiring a custom renderer [1] [36]. This multipass agorithmisan
extension and refinement of texture embossing [42].

Thefirst derivative of the height va ues of the bump map can found by the fol -
lowing process.

1. Render theimage as atexture.
2. Shift the texture coordinates at the vertices.

3. Re-render the image as atexture, subtracting from the first image.

Consider aone dimensional bump map for simplicity. Themap only variesasa
function of S. Assuming that the height val ues of the bump map can be represented
as a height function f(s), then the three step process above would be like doing the
following: f(s) — f(s + shift). If the shift was by onetexel in S, you'd have
f(s)—f(s+L), wherew isthewidth of thetextureintexels. Thisisadifferent form

of L=/ (=+1) whichisjust the basic derivativeformula. So shiftingand subtracting
resultsin thefirst derivativeof f(s), f/(s).

Inthetwo dimensional case, the height functionis f (s, ¢), and shifting and sub-
tracting creates a directional derivativeof f(s,t). Thistechniqueisused to creste
embossed images.

With more precise shifting of the texture coordinates, we can get general bump
mapping from this technique.

8.3.1 Tangent Space

In order to accurately shift, thelight source direction I must berotated into tangent
space. Tangent space has 3 perpendicular axis, T, B and N. T, the tangent vector, is
parallel tothe direction of increasing Sor T on aparametric surface. N, the normal
vector, is perpendicular to the local surface. B, the binormal, is perpendicular to
bothN and T, andlike T, also lieson the surface. They can bethought of asforming
acoordinate systemthat isattached to surface, keeping the T and B vectors pointing

72

Programming with OpenGL: Advanced Rendering

Figure 20. Tangent Space Defined at Polygon Vertices

along the tangent of the surface, and N pointing away. If the surfaceis curved, the
tangent space orientation changes at every point on the surface.

In order to creste a tangent space for a surface, it must be mapped parametri-
cally. But sincethistechniquerequiresapplyinga2D texture map to the surface, the
object must aready be parametrically mapped in S and T. If the surface is already
mapped with a surface detail texture, the S and T coordinates of that mapping can
bereused. If itisaNURBS surface, theSand T val ues of that mapping can be used.
Theonly requirement for bump mapping to work isthat the parametric mapping be
consistent on the polygon. Of course, to avoid “cracking” between polygons, the
mapping should be consistent across the entire surface.

Thelight source must be rotated into tangent space at each vertex of the poly-
gon. Tofind the tangent space vectors at avertex, usethe vertex normal for N, find
the tangent axis by finding the vector direction of increasing Sin the object’s coor-
dinate system (the direction of thetexture'sSaxisin the object’sspace). You could
usethe texture's T axis as the tangent axis instead if it ismore convenient. Find B
by computing the cross product of N and T. The normalized values of these vectors

73

Programming with OpenGL: Advanced Rendering

can be used to create a rotation matrix:

Te Ty Tz
Bx By Bz

Nz Ny Nz
0 0 0

_ o o O

Thismatrix rotatesthe T vector, defined in object space, into the X axis of tan-
gent space, the B vector into the Y axis, and the normal vector into the Z axis. It
rotates a vector from object space into tangent space. If the T, B and N vectors are
defined in eye space, then it converts from eye space to tangent space. For al non-
planar surfaces, this matrix will differ at each vertex of the polygon.

Now you can apply this matrix to the light direction vector L, transformi ng it
into tangent space at each vertex. Usethe transformed X and Y components of the
light vector to shift the texture coordinates at the vertex.

Theresultingimage, after shifting and subtractingis part of N - , computedin
tangent space at every texel. In order to get the complete dot product, you need to
add in the rotated Z component of the light vector. Thisis done as a separate pass,
blending the results with the previous image, but adding, not subtracting thistime.
It turns out that this third component is the same as adding in the Gouraud shaded
version of the polygon to the textured one.

So the steps for diffuse bump mapping are:

1. Render the polygon with the bump map textured on it. Since the bump map
modifiesthe polygon color, you can get thediffuse col or youwant by coloring
the polygon with k.

Find N, 7 and B at each vertex.
Use the vectors to create a rotation matrix.

Use the matrix to rotate the light vector L into tangent space.

a &~ v DN

Use the rotated X and Y components of I, to shift the Sand T texture coor-
dinates at each polygon vertex.

6. Re-render the bump map textured polygon using the shifted texture coordi-
nates.

7. Subtract the second image from thefirst.
8. Render the polygon Gouraud shaded with no bump map texture.
9. Add thisimage to result.

74

Programming with OpenGL: Advanced Rendering

Figure 21. Shifting Bump Mapping to Create Normal Components

In order to improve accuracy, this process can be done using the accumulation
buffer. The bump mapped objectsin the scene are rendered with the bump map, re-
rendered with the shifted bump map and accumul ated with a negative weight, then
re-rendered again using Gouraud shading and no bump map texture, accumul ated

normally.
The process can be extended to find bump mapped specular highlights. Thepro-
cess isrepeated, this time using the halfway vector (H) instead of the light vector.

The halfway vector is computed by averaging the light and viewer vectors %
Here are the steps for finding specular bump mapping:

Render the polygon with the bump map textured on it.
Find N, 7' and B at each vertex.
Use the vectorsto create a rotation matrix.

Use the matrix to rotate the halfway vector H into tangent space.

a M w NP

Usetherotated X and Y components of A to shift the Sand T texture coor-
dinates at each polygon vertex.

75

Programming with OpenGL: Advanced Rendering

6. Re-render the bump map textured polygon using the shifted texture coordi-
nates.

7. Subtract the second image from the first.

8. Render the polygon Gouraud shaded with no bump map texture, thistime use
H instead of L. Useapolygonwhose color isequal to the specular color you
want, k,.

9. Now you have (H - N) , but you want (H - N)" To raise the result to a
power, you can load power function values into the texture color table, us-
ing gl Col or Tabl eSA with GL_TEXTURE_.COLOR.TABLE_SG as its
target, then enabling GL_TEXTURE_COLOR.TABLE_SA . With the color
lookup table loaded and enabled, when you texture and blend the specular
contributionto theresult, the texturefiltering will rai se the specul ar dot prod-
uct tothe proper power. If you don’t havethisextension, then you can process
the texel values on the host, or limit yourself to non-bump mapped specular
hightlights.

10. Addthisimage to result.

Combine the two images together to get both contributionsin the image.

8.3.2 Goingfor higher quality

The previoustechniquerendersthe entire scene multipletimes. If very high quality
isimportant, thetextureitself can be processed separately, then applied to the scene
asafina step. The previoustechniqueyiddslower quality resultswherethetexture
isless perpendicular to the line of sight in theimage, due to the object geometry. |If
the texture is processed before being applied to the image, we avoid this problem.
To process the texture separately, the vertices of the object must be mapped to
asguare grid. The rest of the steps are the same, because the rel ationship between
light source and the vertex normals hasn’'t changed. When the new texture map has
been created, copy it back into texture memory, and use it to render the object.

84 Blending

If you choose not to use the accumul ation buffer, acceptabl e results can be obtained
by blending. Because of the subtraction step, you'll have to remap the color values
to avoid negative results. Since the image values range from 0 to 1, the range of
values after subtractioncanbe-1 (0-1)to1 (1 - 0).

76

Programming with OpenGL: Advanced Rendering

Scale and bias the bump map values to remap the results to the O to 1 range.
Onceyou' vemade all three passes, it is safe to remap the values back to their origi-
nal Oto1range. Thisscaling and biasing, combined with lessbitsof color precision,
makes this method inferior to using the accumulation buffer.

8.4.1 Why doesthiswork?

By shifting and subtracting the bump map, you' refinding the directional derivative
of the bump map’s height function.

By rotating the light vector into tangent space, then using the X and Y com-
ponents for the shift values, you' re finding the component of the perturbed normal
vector aligned with the light. In tangent space, the unperturbed normal is a unit
vector along the Z axis. When the shifted values are non-zero, they represent the
magnitude of the component of the perturbed normal in the direction of the light
source. Since the perturbed normal component is parallel to the light source vec-
tor (in tangent space), the dot product of this component with the light reduces to
a scale operation, which is what atexture map with the texture environment set to
modul ate does.

Since the perturbed normal is relative to the smooth surface normal, we take
the smoothed normal contributioninto account when we add in the Gouraud shaded
polygon.

Thereisan assumption that the perturbed normal isnot much different from the
smoothed surface unit normal, so that thelength of the perturbed normal isnot much
different from one. If thisassumptionwasn’t true, we' d haveto create and modulate
in an extratexture that would renormalize the perturbed normal. Thiscan be done,
at the cost of an extra texturing pass, if more accuracy is needed.

8.4.2 Limitations

Although this technique does correctly bump map the surface efficiently, there are
limitationsto its accuracy.

Bump map Sampling The bump map height function is not continuous, but is
sampled into the texture. The resolution of the texture affects how faithfully
the bump map is represented. Increasing the size of the bump map texture
can improve the sampling of the high frequency height components.

Texture Resolution The shifting and subtraction steps produce the directional
derivative. Since thisis a forward differencing technique, the highest fre-
guency component of thebump map increasesasthe shiftismadesmaller. As
the shift is made smaller, more demands are made of the texture coordinate

77

Programming with OpenGL: Advanced Rendering

precision. The shift can become smaller than the texture filtering implemen-
tation can handle, leading to noise and aliases effects. A good starting point
isto size the shift components so their vector magnitudeis asingletexel.

Surface Curvature The tangent coordinate axes are different at each point on
a curved surface. This technique approximates this by finding the tangent
space transforms at each vertex. Texture mapping interpolates the different
shift values from each vertex across the polygon. For polygonswithvery dif-
ferent vertex normalss, thisapproximation can break down. A solutionwould
be to subdividethe polygons until their vertex normals are parallel to within
some error limit.

Maximum Bump map Slope The bump map normals used in this technique are
good approximationsif the bump map slopeis small. If there are steep tan-
gents in the bump map, the assumption that the perturbed normal is length
one becomes inaccurate, and the hightlights appear too bright. This can be
corrected by creating afourth pass, using a modulating texture derived from
the original bump map. Each value of thetexel is one over the length of the

perturbed normal: 1/ %2 + %2 +1

8.5 Choosing Material Properties

OpenGL providesafull lightingmodel to help producerealistic objects. Thelibrary
provides no guidance, however, on finding the proper lighting material parameters
to simul ate specific materials. Thissection categorizescommon materials, provides
some guidancefor choosing representativematerial properties, and providesatable
of materia propertiesfor common materials.

85.1 Modeling Material Type
Material properties are modelled with the following OpenGL parameters:

GL_AMBI ENT How ambient light reflects from the material surface. Thisis an
RGBA color vector. The magnitude of each component indicates how much
the light of that component is being reflected.

G._DI FFUSE How diffuse reflection from light sources reflect from the material
surface. Thisisan RGBA color vector. The magnitude of each component
indicates how much the light of that component is being reflected.

78

Programming with OpenGL: Advanced Rendering

GL_SPECULAR How specular reflection from alight source reflects from the ma-
terial. Thisisan RGBA color vector. The magnitude of each component in-
dicates how much the light of that component is being reflected.

GL_EM SSI ON How much of what color is being emitted from this object. This
isan RGBA color vector. The magnitude of each component indicates how
much light of that component isglowing from thematerial. Sincethisparam-
eter is only useful for glowing objects, we'll ignoreit in this section.

GL_SHI NI NESS How mirror-like the specular reflection is from this material.
Thisisasingleinteger. Thelarger the number, the more rapidly the specular
reflection drops off as the viewing angle diverges from the reflection vector.

For lighting purposes, materials can be described by the type of material, and
the smoothness of its surface. Material type is simulated by the relationship be-
tween color components of the G._AMBI ENT, GL_DI FFUSE and G__SPECULAR
parameters. Surface smoothness is smulated by the overall magnitude of the
GL_AMBI ENT, GL_DI FFUSE and GL_SPECULAR parameters, and the value of
GL_SHI NI NESS. Asthe magnitude of these components get closer to one, and the
GL_SHI NI NESS valueincreases, the material appears to have asmoother surface.

For lighting purposes, material type can be divided into four categories: di-
electrics, metals, composites, and other materials.

Dielectrics These are the most common category. These are non-conductive ma
terials, which don’t have free ectrons. Theresult isthat dieletricshavelow reflec-
tivity, and have areflectivity that isindependent of light color. Because they don't
interact with the light much, dieletrics tend to be transparent. The ambient, diffuse
and specular colorstend to be the same.

Powdered diel etricstend to | ook white because of the high surface areabetween
the dielectric and the surrounding air. Because of this high surface area, they aso
tend to reflect diffusely.

Metals Metds are conductive and have free electrons. As a result, metals are
opague and tend to be very reflective, and their ambient, diffuse, and specular col-
ors tend to be the same. How the free electrons are excited by light at different
wavel engths determinesthe color of the metal. Materialslike steel and nickel have
nearly the same response over al visiblewavelengths, resulting in agrayish reflec-
tion. Copper and gold, on the other hand, reflect long wavelengths more strongly
than short ones, giving them their reddish and yellowish colors.

Thecolor of light reflected from metal sisal so afunction of incident and exiting
light directions. Thiscan’t be model ed accuratel y withthe OpenGL lighting model,

79

Programming with OpenGL: Advanced Rendering

compromising the metallic look of objects. However, a modified form of environ-
ment mapping (such as the OpenGL sphere mapping) can be used to approximate
the proper visua effect.

CompositeMaterials Common composites, like plastic and paint, are composed
of adielectric binder with metal pigmentssuspendedinthem. Asaresult, they com-
bine the reflective properties of metals and dieletrics. Their specular reflection is
didlectric, their diffusereflection islike metal .

Other Materials Other materials that don't fit into the above categories are ma-
terials such as thin films, and other exotics.

8.5.2 Modeding Material Smoothness

As mentioned before, the apparent smoothness of a materia is a function of how
strongly it reflects and the size of the specular highlight. Thisisaffected by theover-
all magnitudeof theGL_AMBI ENT, GL_DI FFUSE and GL _SPECUL AR parameters,
and thevalueof GL_SHI NI NESS. Here are some heuristicsthat describe useful re-
lationshi ps between the magnitudes of these parameters:

1. Thespectral color of the GL_AMBI ENT and GL _DI FFUSE parameters should
be the same.

2. Themagnitudesof G._DI FFUSE and GL_SPECULAR shouldsumtoavaue
closeto one. This helps prevent color value overflow.

3. The value of GL_SHI NI NESS should increase as the magnitude of
GL_SPECULAR approaches one.

No promiseis made that these relationships, or the valuesin Table 3 will pro-
vide a perfect imitation of a given material. The empirical model used by OpenGL
emphasizes performance, not physical exactness.

For an excellent description of material properties, see [23] for more informa-
tion.

80

Programming with OpenGL: Advanced Rendering

Material | GL_AMBI ENT | GL_DI FFUSE | GL_SPECULAR | GL_SHI NI NESS
Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
1.0 1.0 1.0
Bronze | 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
1.0 1.0 1.0
Polished | 0.25 04 0.774597 76.8
Bronze | 0.148 0.2368 0.458561
0.06475 0.1036 0.200621
1.0 1.0 1.0
Chrome | 0.25 04 0.774597 76.8
0.25 04 0.774597
0.25 04 0.774597
1.0 1.0 1.0
Copper | 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
1.0 1.0 1.0
Polished | 0.2295 0.5508 0.580594 51.2
Copper | 0.08825 0.2118 0.223257
0.0275 0.066 0.0695701
1.0 1.0 1.0
Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
1.0 1.0 1.0
Polished | 0.24725 0.34615 0.797357 83.2
Gold 0.2245 0.3143 0.723991
0.0645 0.0903 0.208006
1.0 1.0 1.0
Pewter 0.105882 0.427451 0.333333 9.84615
0.058824 0.470588 0.333333
0.113725 0.541176 0.521569
1.0 1.0 1.0

Table 3: Parameters for common materials

Programming with OpenGL: Advanced Rendering

81

Material GL_AMBI ENT | GL_.DI FFUSE | GL_SPECULAR | GL_SHI NI NESS
Silver 0.19225 0.50754 0.508273 51.2
0.19225 0.50754 0.508273
0.19225 0.50754 0.508273
1.0 1.0 1.0
Polished | 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911
0.23125 0.2775 0.773911
1.0 1.0 1.0
Emerald | 0.0215 0.07568 0.633 76.8
0.1745 0.61424 0.727811
0.0215 0.07568 0.633
0.55 0.55 0.55
Jade 0.135 0.54 0.316228 12.8
0.2225 0.89 0.316228
0.1575 0.63 0.316228
0.95 0.95 0.95
Obsidian | 0.05375 0.18275 0.332741 384
0.05 0.17 0.328634
0.06625 0.22525 0.346435
0.82 0.82 0.82
Pearl 0.25 1.0 0.296648 11.264
0.20725 0.829 0.296648
0.20725 0.829 0.296648
0.922 0.922 0.922
Ruby 0.1745 0.61424 0.727811 76.8
0.01175 0.04136 0.626959
0.01175 0.04136 0.626959
0.55 0.55 0.55
Turquoise | 0.1 0.396 0.297254 12.8
0.18725 0.74151 0.30829
0.1745 0.69102 0.306678
0.8 0.8 0.8
Black 0.0 0.01 0.50 32
Plastic 0.0 0.01 0.50
0.0 0.01 0.50
1.0 1.0 1.0
Black 0.02 0.01 0.4 10
Rubber 0.02 0.01 0.4
0.02 0.01 0.4
1.0 1.0 1.0

82

Programming with OpenGL: Advanced Rendering

9 SceneRealism

9.1 Motion Blur

Thisis probably one of the easiest effects to implement. Simply re-render a scene
multiple times, incrementing the position and/or orientation of an object in the
scene. The object will appear blurred, suggesting motion. Thiseffect can beincor-
porated in the frames of an animation sequence to improve its realism, especially
when simulating high-speed motion.

The apparent speed of the object can be increased by dimming itsblurred path.
This can be done by accumulating the scene without the moving object, setting the
value parameter to be larger than 1/n. Then re-render the scene with the moving
object, setting the value parameter to something smaller than 1/n. For example, to
make ablurred object appear 1/2 as bright, accumul ated over 10 scenes, do the fol-
lowing:

1. Render the scene without the moving object, using
gl Accunm(GL_LQAD, . 5f)

2. Accumulate the scene 10 more times, with the moving object, using
gl Accum(G._ACCUM . 05f)

Choose the values to ensure that the non-moving parts of the scene retain the
same overall brightness.

It's aso possibleto use different values for each accumulation step. Thistech-
nique could be used to make an object appear to be accelerating or decelerating. As
before, ensure that the overall scene brightness remains constant.

If you are using motion blur as part of areal-time animated sequence, and your
value is constant, you can improve the latency of each frame after the first n dra
matically. Instead of accumulating n scenes, then discarding the image and starting
again, you can subtract out thefirst scene of the sequence, add in the new one, and
display the result. In effect, you're keeping a “running total” of the accumulated
images.

Thefirst image of the sequence can be “ subtracted out” by rendering that image,
then accumulating it with gl Accum(G._ACCUM - 1. f/n). Asaresult, each
frame only incursthelatency of drawing two scenes; adding in the newest one, and
subtracting out the oldest.

9.2 Depth of Field

OpenGL's perspective projections simulate a pinhole camera; everything in the
sceneisin perfect focus. Real lenses have afinite area, which causes only objects

83

Programming with OpenGL: Advanced Rendering

B Jittered to point A

Normal (non-Jittered) View Jittered to point B

<

Figure 22. Jittered Eye Points

within alimited range of distancesto bein focus. Objectscloser or farther from the
camera are progressively more blurred.

The accumul ation buffer can be used to create depth of field effects by jittering
the eye point and the direction of view. These two parameters change in concert,
so that one planein the frustum doesn’'t change. This distancefrom the eyepointis
thusin focus, while distances nearer and farther become more and more blurred.

To create depth of field blurring, the perspective transform changes described
in the antialiasing section are expanded somewhat. This code modifiesthe frustum
as before, but adds in an additional offset. This offset is aso used to change the
modelview matrix; the two acting together change the eyepoint and the direction of
view:

voi d frustum dept hof fi el d(G.double left, G.double right,
GLdoubl e bottom G.double top,
GLdoubl e near, G.double far,
GLdoubl e xoff, GL.double yoff,
GLdoubl e focus)

gl Frustum(l eft - xoff * near/focus,
right - xoff * near/focus,
top - yoff * near/focus,

84

Programming with OpenGL: Advanced Rendering

bottom - yoff * near/focus,
near, far);

gl Mat ri xMode(GL_MCODELVI EW ;
gl Loadl denti ty();
gl Transl atef (-xoff, -yoff);

The variables xoff and yoff now jitter the eyepoint, not the entire scene. The
focus variable describes the distance from the eye where objects will be in perfect
focus. Think of the eyepoint jittering as sampling the surface of alens. The larger
thelens, thegreater therange of jitter values, and the more pronounced the blurring.
The more sampl es taken, the more accurate a sampling of thelens. You can usethe
jitter values given in the scene antialiasing section.

Thisfunction assumesthat the current matrix isthe projection matrix. It setsthe
frustum, then sets the model view matrix to the identity, and loadsit with atransla-
tion. The usua modelview transformations could then be applied to the modified
modelview matrix stack. The translate would become the last logical transform to
be applied.

9.3 Réeflectionsand Refractions

In both rendering and interactive computer graphics, substantial effort has been de-
voted to themodeling of reflected and refracted light. Thisisnot surprising—al most
all thelight perceived intheworld isreflected. In thissection, wewill describe sev-
eral ways to create the effects of reflection and refraction using OpenGL. We will
begin with a very brief review of the relevant physics and give pointers to more
detailed descriptions.

From elementary physics, we know that the angle of reflection of aray isequal
to theangle of incidence of theray (Figure 23). Thisproperty isknown asthe Law
of Reflection.[10]. Thereflected ray liesin the plane defined by theincident ray and
the surface normal.

Refraction is defined as the “change in the direction of travel as light passes
from one medium to another.”[10]. This change in direction is caused by the dif-
ferenceinthe speed of light traveling through the two mediums. Therefractivity of
amateria is characterized by the index of refraction of the material, or the ratio of
the speed of light in the material to the speed of light in avacuum.[10].

Thedirection of alight ray after it passes from one medium to another is com-
puted from the direction of the incident ray, the normal of the surface at the inter-
section of the incident ray, and the indices of refraction of the two materials. The

85

Programming with OpenGL: Advanced Rendering

Normal

Incident ©; /Reflected
Ray Ray

Refracted
Ray

i~

Figure 23. Reflection and refraction. The image
on thetop showstransmissionfromamediumwith
alower to a higher index of refraction; the image
on the bottom shows transmission from higher to
lower.

86

Programming with OpenGL: Advanced Rendering

Critical
Angle

Figure 24. Total Internal Reflection

87

Programming with OpenGL: Advanced Rendering

behavior is shown in Figure 23. The first medium through which the ray passes
has an index of refraction »; and the second has an index of refraction n,. The an-
gle of incidence O, is the angle between the incident ray and the surface normal.
The refracted ray forms the angle ©, with the normal. The incident and refracted
rays are coplanar. The relationship between the angle of incidence and the angle of
refraction is stated as Snell’s Law[10]:

n1cos @1 = ngcos Oy D

If ny > ny (light is passing from a more refractive material to a less refractive
meaterial), past some critical angletheincident ray will be bent so far that it will not
cross the boundary. This phenomenon is known as total internal reflection and is
illustrated in Figure 24.[10]

When a ray hits a surface, some light is reflected off the surface and some is
transmitted. The weighting of the transmitted and reflected light is determined by
the Fresnel equations.

More details about reflection and refraction can be gleaned from most college
physics books. For more details on the reflection and transmission of light from a
computer graphics perspective, the reader may consult one of severa general com-
puter graphics booksor bookson radiosity or ray tracing. Thefollowingbooksmay
prove helpful:

e Michad F. Cohen and John R. Wallace. Radiosity and Realistic Image Syn-
thesis. Harcourt Brace & Company, 1993.

e Andrew S. Glassner. Principlesof Digital Image Synthesis. Mogran Kauf-
man Publishers, Inc., 1995.

e Roy Hal. Illumination and Color in Computer Generated Imagery.
Springer-Verlag, 1989.
9.3.1 Planar Reflectors

In this section, we will discuss the modeling of planar reflective surfaces. Two
techniques are discussed: atechnique which uses the stencil buffer to draw the re-
flected geometry inthe proper location and atechnique which usestexture mapping
to make an image of the reflected geometry which isthen texture mapped onto the
reflective polygon. Both techniques construct the scenein two (or more) passes.

Planar Reflections and Refractions using the Stencil Buffer The effects of
specular reflection can be approximated by a two-pass technique using the stencil

88

Programming with OpenGL: Advanced Rendering

Reflector

Scene

Real 4
Eyepoint Reflected
Eyepoint

Figure 25. Mirror reflection of the viewpoint

0‘4
Scene o snss2
Reflector
Real
Eyepoint

Figure 26. Mirror reflection of the scene

89

Programming with OpenGL: Advanced Rendering

buffer. During thefirst pass, we render the reflected image of the scene. During the
second pass, we render the non-reflected view of the scene, using the stencil buffer
to prevent the reflected image from being drawn over.

Asan example, consider amodel of aroom withamirror on onewall. \We com-
pute the plane containing the mirror and define an eyepoint from which wewishto
render the scene. During thefirst pass, we place the eyepoint at the desired location
(usingagl uLookAt command or something similar). Next, wedraw the scene as
it looksreflected through the plane containingthe mirror. Thiscan beenvisionedin
two ways, shown in Figures 25 and 26. In thefirst illustration, we reflect the view-
point. In the second illustration, we reflect the scene. The ways of considering the
problem are equivalent. We present both here since reflecting the viewpoint will
tie into the next section, but many people seem to find reflecting the scene more
intuitive. The sequence of steps for the first passisas follows:

1. Initiadize the modelview and projection matrices to the identity
(gl Loadl denti ty).

Set up a projection matrix using the gl Fr ust umcommand.

Set up the “rea” eyepoint a the desired position using a
gl uLookAt (¢) ommand (or something similar).

4. Reflect the viewing frustum (or the scene) through the plane containing the
reflector by computing a reflection matrix and combining it with the current
modelview or projection matrices using the gl Mul t Mat ri x command.

Draw the scene.
6. Movethe eyepoint back toits“rea” position.

Objectsdrawn in the first pass |ook as they would when seen in the mirror, ex-
cept that weignorethefact that the mirror may not fill the entirefield of view. That
isto say, we imagine that the entire plane containing the mirror isreflective, but in
reality the mirror does not cover the entire plane. Parts of the scene may be drawn
which will not be visible. For example, the lowest box in the scenein Figure 26 is
drawn, but itsreflectionisnot visiblein themirror. We'll fix thisin the second pass.

When we render from the reflected eyepoint, pointson the plane through which
we reflect maintain the same positionin eyespace aswhen we render fromthe origi-
nal eyepoint. For example, cornersof thereflective polygon areinthe samelocation
when viewed from the reflected eyepoint as from the origina viewpoint. Thismay
seem more believable if one imagines that we are reflecting the scene, instead of
the eyepoint.

One implementation problem during the first pass is that we should not draw
the mirror or it will obscure our reflected image. This problem may be solved by

90

Programming with OpenGL: Advanced Rendering

backface culling, or by having the graphics application recognize the mirror (and
objectsin the same plane as the mirror).

We may wish to produce a magnified or minified reflection by moving the re-
flected viewpoint backwards or forwards along its line of sight. If the positionis
the same distance as the eye point from the mirror then an image of the same scale
will result.

We start the second pass by setting the eyepoint up at the“real” location. Next,
we draw the mirror polygon. We wish to mask out portions of the reflected scene
which we drew in the first pass, but which should not be visible. Thisis accom-
plished using the stencil buffer. First, we clear the stencil and depth buffers. Next,
we draw the mirror polygon into the stencil buffer and depth buffers, setting the
stencil valueto 1. We may or may not wishto render themirror polygonto the color
buffers at thispoint. If we do, the mirror must not be opague or it will completely
obscure our reflected scene. We can give the appearance of a dirty, not purely re-
flective, mirror by drawing it using one of the transparency techniques discussed
in Section 10. After drawing the mirror, we configure the stencil test to pass where
ever thestencil buffer valueisnot equal to 1. We then clear the color buffers, which
erases dl parts of the reflected scene except thosein the mirror polygon. After the
clear, we disable the stencil test and draw the scene. Thelist of stepsfor the second
passis:

1. Clear the stencil and depth buffers (gl d ear (G._COLOR BUFFER BI T
| GL_DEPTH.BUFFERBI T)).

2. Configurethe stencil buffer suchthat a1 will be stored at each pixel touched
by a polygon:

gl Stenci | Op(GL_REPLACE, G._REPLACE, G._REPLACE);
gl Stenci | Func(GL_ALWAYS, 1, 1);
gl Enabl e(G._STENCI L_TEST) ;

3. Disabledrawing into the color buffers (gl Col or Mask(0, 0, 0, 0)).
Draw the mirror polygon.
5. Reconfigure the stencil test:

gl Stenci | Qo(G._KEEP, G._KEEP, G._KEEP);
gl Stenci | Func(GL_NOTEQUAL) ;

Draw the scene.
Disablethe stencil test (gl Di sabl e(GL_STENCI L_TEST)).

The frame isnow complete.

91

Programming with OpenGL: Advanced Rendering

Planar Reflections using Texture Mapping A technique similar to the stencil
buffer technique uses texture mapping. The first passisidentical to the first pass
of the previous technique: we draw the reflected scene. After drawing the scene,
we copy the image into a texture (using the gl Copy Tex| mage2D command).
During the second pass, this texture is mapped onto the reflective polygon. The
sequence of steps for the second passis as follows:

1. Positiontheviewer at the“rea” eyepoint.

2. Draw the non-reflective objectsin the scene.

3. Bind thetexture containing the reflected image.

4. Draw thereflective object with the appropriate texture coordinates.

The texture coordinates at the vertices of the reflective object must be in the same
location asthe vertices of thereflective object in thetexture. These coordinatesmay
be computed by figuring the projection of the corners of the object into the view-
ing plane used to compute the reflection map (the command gl uPr oj ect may
prove helpful). Alternately, the texture matrix can be loaded with the composite
modelview and projection matrices and postmultiplied by a scale of 1 divided by
thesizein pixelsof the region used to compute the texture. Thetexture coordinates
would then be the model coordinates of the vertices.

The texture mapping technique may be more efficient on some systems. Also,
we may be able to use a reflection texture during severa frames (see below).

Interreflections Either the stencil technique or the texture mapping technique
may be used to model scenes with interreflections. Each algorithm uses additional
passes for each “bounce’ that the light takes, stopping when the reflected image
added by the passistoo small to be significant.

Using the stencil technique, we draw the reflected image with the most
“bounces’ from the viewpoint first. We compute the viewpoint for this pass by re-
peatedly reflecting the viewpoint through the reflective polygons. On each pass, we
draw the scene, move the viewpoint to the next position, and draw the scene using
the stencil buffer to mask the reflective polygons from the previous passes.

Using the texture technique, we first create textures for each of the reflective
objects. We then initialize the textures to some known value (choice of thisvaue
will be discussed below). Next, we iterate over the primitives, drawing the scene
for each one and copying the results to the primitive’ s reflection map as described
above. We repeat this process until we determine that the additional passes are not
having a significant effect.

The choice of theinitial reflection map values can have an effect on the number
of passesrequired. Theinitial reflection valuewill generally appear asasmaller part

92

Programming with OpenGL: Advanced Rendering

of the picture on each of the passes. We stop theiteration when theinitia reflection
issmall enough that the viewer will not noticethat it is not correct. By setting the
initial reflection to something reasonable, we can achieve this state earlier. A good
initial guessisto set the map to the average color of the scene. In amultiframe ap-
plication with moving objects or amoving viewpoint, we could leave the reflection
map with the contents from the previous frame. This use of previousresultsis one
of the advantages of the texture mapping technique.

9.3.2 Sphere Mapping

Sphere mappingis an implementation of environment mapping. Environment map-
ping isacomputer graphicstechnique which uses atwo-dimensiona image (or im-
ages) containing the incident illumination from every direction at a given point.
When rendering, the light from the point is computed as a function of the outgo-
ing direction and the environment map. The outgoing direction is used to choose
one or more incoming directions, or pointsin the environment map, which are used
to compute the outgoing color.[35] In general, only one environment map point is
used for each outgoing ray, resulting in a perfect specular reflection.

In rendering, we often use a single environment map for an entire object by as-
suming that the single environment map is areasonabl e approximation of the envi-
ronment map which would be computed at each point on the object. This approx-
imation is correct if the object is a sphere and the viewer and other objects in the
scene are infinitely far away. The approximation becomes less correct if the ob-
ject hasinterreflections(i.e., it’snot convex) and if the viewer and other objectsare
not at infinity. In interactive polygonal rendering, we make the additional assump-
tion that the indicesinto the environment map may be computed at each vertex and
linearly interpolated over each polygon. In spite of these simplifying assumptions,
resultsin practice are genera ly quite good.

While rendering, we compute the outgoing direction as a function of the eye-
point and the normal at the surface. We can use environment maps to represent any
effect that depends only upon the viewing direction and the surface normal. These
effects include specular and directional diffuse reflection, refraction, and Phong
lighting. Wewill discussseveral of these effects in the context of OpenGL’ssphere
mapping capability.

Sphere mapping isatype of environment mapping in which theirradiance im-
age is equivalent to that which would be seen in a perfectly reflective hemisphere
when viewed using an orthographic projection.[35] This concept isillustrated in
Figure 27. The sphere map iscomputed in theviewing plane. Thewidth and height
of the plane are equal to the diameter of the sphere. Rays fired using the ortho-
graphic projection are shown in blue (dark gray). In the center of the sphere, the

93

Programming with OpenGL: Advanced Rendering

Reflected ray
Incident ray

Reflective sphere

Viewing plane

Figure 27. Creating a sphere map

ray reflects back to the viewer. Along the edges of the sphere, the rays are tangent
and go behind the sphere.

Note that since the sphere map computes the irradiance at a single point, the
sphereisinfinitely small. Sincethe projectionisorthographic, thisimpliesthat each
texel intheimageisasoinfinitely small. Ineffect, wetakethelimit asthesizeof the
sphere (and the size of each texdl) approaches 0. All of the rays along the outsi de of
the spherewill map to the same point directly behind the spherein the environment.

Usinga SphereMap OpenGL providesamechanism to generate s and ¢ texture
coordinatesat vertices based on the current normal and thedirection to the eyepoint.
The generated coordinates are then used to index a sphere map image which has
been bound as atexture.

We denote the vector from the eye point to the vertex as u, normalized to u'.
Since the computation is performed in eye coordinates, the eyeislocated at the ori-
ginand « isequal to thelocation of thevertex. The current normal » istransformed
to eye coordinates, becoming »’. The reflected vector » can be computed as:

r=2(n"-u)n" — o 2
We define:
m=2,/r2 412+ (r. 4+ 1)? 3
Then the texture coordinates are cal cul ated as:
ry 1
s=——4+ =
m 2
94

Programming with OpenGL: Advanced Rendering

Viewer
(0,0,0)

Reflective polygon

Figure 28. Sphere map coordinate generation

ry 1

t =
m 2
This computation happens internally to OpenGL in the texture coordinate genera-
tion step.
To use sphere mapping in OpenGL, the following steps are performed:

Bind the texture containing the sphere map

Set sphere mapping texture coordinate generation(gl TexGen(GL_S,
GL_TEXTURE_.GEN.MCDE, GL_SPHERE_MAP)) and gl TexGen(GL_T,
GL_TEXTURE_GEN.MODE, G._SPHERE_MAP))

3. Enabletexture coordinate generation (gl Enabl e(TEXTURE_GEN.S) and
gl Enabl e(TEXTURE_GEN.T))

4. Draw the object, providing correct normals on a per-face or per-vertex basis

Generating a Sphere Map for Specular Reflection Severa techniques exist to
generate a specular sphere map. Two physical approaches are worth mentioning.
In thefirst approach, the user literally takes a picture of areflective sphere. Figure
29 was generated in thisfashion. Thistechniqueisproblematicin that the camerais
visible in the reflection map. 1n the second approach, a fisheye lens approximates
the sphere mapping. The problem with this technique is that no fisheye lens can
providethe 360° field of view required for a correct result.

95

Programming with OpenGL: Advanced Rendering

Figure 29. Reflection map created
using areflective sphere

A sphere map can a so be generated programmatically. We consider the circle
of the environment map within the square texture to be aunit circle. For each point
(s,t) intheunit circle, we can compute a point p on the sphere:

P =S
py:t
p:=4/1.0 = p2 —p?

Since we are dedling with a unit sphere, the normal at p is equal to p. Given the
vector e toward the eyepoint, we can compute the reflected vector r:

r=n+*(n-e x2—e 4

In OpenGL, we assuming that the eyepoint islooking down the negative » axis, so
e = (0,0, 1). Equation 4 reduces to:
Tp = Mgk Ny k2
Ty = My * Ny * 2
r, =N, *kn,*x2—1
The assumption that the e = (0, 0, 1) means that OpenGL’s sphere mapping is ac-

tually not view-independent. Theimplicationsof thisassumptionwill be discussed
below with the other limitations of the sphere mapping technique.

96

Programming with OpenGL: Advanced Rendering

The rays are intersected with the environment to determine the irradiance. A
simple implementation of the algorithm is shown in the following pseudocode:

voi d gen_sphere_map(G.si zei wi dth, Gsizei height, G.float pos[3],
Gfloat (*tex)[3])
{
G.float ray[3], color[3], p[3];
Gfloat s,t;
int i, j;

for (j =0; j < height; j++) {
t =2.0* ((float)j / (float)(height-1) - .5);
for (i =0; i <width; i++) {
s =20* ((float)i / (float)(width - 1) - .5);

if (s*s + t*t > 1.0) continue;

/* conmpute the point on the sphere (aka the normal) */
p[O] =s;

p[1] =t;

p[2] sqrt (1.0 - s*s - t*t);

[* conmpute reflected ray */
ray[0] p[O] * p[2] * 2
ray[2] p[1] * p[2] * 2
ray[3] p[2] * p[2] * 2 - 1;
fire ray(pos, ray, tex[j*width +i]);
}
}

}

Notethat we could easily optimizeour routinesuch that the boundsoni intheinner
f or loop wereinteligently set basedonj .

We have encapsulated the most interesting part of the computation inside the
fire_ray routine. fire_ray performs the ray/environment intersection given
the starting point and the direction of the ray. Using the ray, it computes the color
and putstheresultsinto itsthird parameter (which isthe appropriatelocationinthe
texture map).

A naiveimplementation such asthe one abovewill lead to sampling artifacts. In
reality, atexel intheimage projectsto avolumewhich shouldbeintersected withthe

97

Programming with OpenGL: Advanced Rendering

environment. To filter, we should choose several raysin thisvolume and combine
the results.

The intersection and color computation can be done in several ways. We may
use amodel of the scene and aray tracing package. Alternately, we can represent
the scene as six imageswhich form thefaces of a cube centered around the point for
which the sphere map is being created. Theimages represent what a camerawitha
90° field of view and afocal point at the center of the square would seeinthe given
direction. The six images may be generated with OpenGL or a rendering package,
or can be captured with acamera. Figure 30 shows six images which were acquired
using acamera. Oncethesix images have been acquired, theraysfromthe point are
intersected with the cube to provide the sphere map texel values. Figure 31 shows
the map generated from the cube facesin Figure 30.

An alternate implementation uses OpenGL'’s texture mapping capabilities to
createthe sphere map. Thea gorithm takesasinput the six cube faces. It then draws
atessdlated hemisphere six times, mapping one of thefacesintoitscorrect location
during each pass. Theimage of the sphere becomes the sphere map. Texture coor-
dinates and the texture matrix combine to map the proper texels onto the sphere.
At the vertices on the tessellated sphere, the values are correct. The interpolation
between the vertices isnot correct, but is generally a good approximation.

The texture mapping accelerated technique to generate sphere maps and the
CPU technique described above are implemented in an example program found on
the course web site.

Multipass Techniques and Interreflections Scenes containing two reflective
objects may be rendered using sphere maps created via a multipass algorithm. We
beginby creating aninitial sphere map for each of thereflective objectsin the scene.
Choice of initial valueswas discussed in detail in Section 26. Then weiterate over
the objects, recreating the sphere maps with the current sphere maps of the other
objects applied. The following pseudocodeillustrates how thisalgorithm might be
implemented:

do {
for (each reflective object obj with center c) {

initialize the viewoint to look along the axis (0, O,

translate the viewpoint to c

render the view of the scene (except for obj)
save rendered i nage as cubel

rotate the viewer to look along (0, 0, 1)
render the view of the scene

save rendered i nage as cube2

98

Programming with OpenGL: Advanced Rendering

_1)

h

BBRGARS. . -
g - m £ v

" -
¥

’ i

Figure 30. Image cube faces captured at a cafe in Palo Alto, CA

Programming with OpenGL: Advanced Rendering

@ o
;s ®

[
¥

L

LiskE ™. T8k
P‘ ; ; 1 _".

-

Figure 31. Sphere map generated from image cube facesin Figure 30

1

i

100

Programming with OpenGL: Advanced Rendering

rotate the viewer to look along (0, -1, 0)
render the view of the scene

save rendered image as cube3

rotate the viewer to look along (0, 1, 0)
render the view of the scene

save rendered i mage as cubed

rotate the viewer to look along (-1, 0, 0)
render the view of the scene

save rendered i mage as cubeb

rotate the viewer to look along (1, 0, 0)
render the view of the scene

save rendered i nage as cubeb

usi ng the cube images, update the sphere map of obj

}

} while (sphere map has not converged)

Notethat during the rendering of the scene, other reflective objects must have their
most recent sphere maps applied. Detection of convergence can betricky. Thesim-
plest techniqueisto iterate acertain number of times and assumethe resultswill be
good. Moare sophisticated approaches can |ook at the change in the sphere maps for
agiven pass, or compute the maximum possible change given the projected area
of the reflective objects. Once the sphere maps have been created we can draw the
scene from any viewpoint. If none of the objects are moving, the sphere maps for
each object can be created at program startup.

Other Sphere Mapping Techniques Sphere mapping may be used to approxi-
mate effects other the specular reflection. Any effect which is dependent only on
the surface normal can be approximated, including Phong shading and refractive
effects. We use our sphere map to store the outgoing color and intensity as a func-
tion of the normal. When computing our specular sphere map, this color was de-
termined by firing a ray which had been reflected about the normal. To compute a
different type of sphere map, we determine the color using a different method. For
example, to create a Phong lighting map we can take the dot product of the normal
direction and the direction to the light source.

Limitationsof Sphere Mapping Although sphere mapping isgenerally convinc-
ing, it is not generally correct. Most of the artifacts come from the fact that the
sphere map is generated at a single point and then applied over alarge number of
points. Objects with interreflections cannot be handled correctly. If reflected ob-
jects are close to the reflective object, their reflections should appear differently

101

Programming with OpenGL: Advanced Rendering

when viewed from different points on the reflector. Using sphere maps, this will
not happen. Sphere mapping results are only correct if we assume that all the re-
flective objects are infinitely far from the reflective object.

Fixing theeye point along thevector (0, 0, 1) asoleadstoincorrect results. The
same normal in eyespace will alwaysmap to the samelocationin the spheremap. A
normal which pointsdirectly at the eyepoint maps to the center of the sphere map.
A normal which points directly away from the user maps to the circle around the
spheremap. Two important advantages of thissimplificationarethat it significantly
reduces the cost of computing » and that it ensures that the parts of the sphere map
which have the best filtering are mapped to the primitives which face the user. In
general, primitives which face the user will cover large areas in screen space and
will be thefocus of the user’s attention.

Interpolation of the texture coordinates also leads to artifacts. Texture coordi-
nates are computed at the vertices and linearly interpol ated acrossthe polygon. Un-
fortunately, the sphere map is not in alinear space, so thisinterpolation is not cor-
rect. Additionally, the linear interpolation will not take into account the fact that
the points at the edge of the circle all map to the same location. Coordinates may
beinterpolated withinthecircle of the sphere map when they should beinterpol ated
across the boundary.

9.4 Creating Shadows

Shadows are an important way to add realism to a scene. There are a number of
trade-offs possible when rendering a scene with shadows. Just as with lighting,
there are increasing levels of realism possible, paid for with decreasing levels of
rendering performance.

Shadows are composed of two parts, the umbra and the penumbra. The umbra
isthe area of ashadowed object that isn’t visiblefrom any part of the light source.
The penumbraisthe area of a shadowed object that can receive some, but not al of
thelight. A point sourcelight would have no penumbra, sinceno part of ashadowed
object can receive part of thelight.

Penumbras form atransition region between the umbra and the lighted parts of
the object; they vary as function of the geometry of the light source and the shad-
owing object. Since shadows tend to have high contrast edges, They are more un-
forgiving with respect to aliasing artifacts and other rendering errors.

Although OpenGL doesn’'t support shadows directly, there are a number of
waysto implement themwith thelibrary. They vary in difficulty to implement, and
quality of results. The quality variesas afunction of two parameters. The complex-
ity of the shadowing object, and the compl exity of the scenethat isbeng shadowed.

102

Programming with OpenGL: Advanced Rendering

9.4.1 Projection Shadows

An easy-to-implement type of shadow can be created using projection transforms
[46]. An object is simply projected onto a plane, then rendered as a separate prim-
itive. Computing the shadow involves applying a orthographic or perspective pro-
jection matrix to the modelview transform, then rendering the projected object in
the desired shadow color.

Here is the sequence needed to render an object that has a shadow cast from a
directiona light on the z axis down onto the x, y plane:

1. Render the scene, including the shadowing object in the usual way.

2. Set the modelview matrix to identity, then call gl Scal ef (1.f, O.f,
1.17).

3. Maketherest of the transformation calls necessary to position and orient the
shadowing object.

4, Set the OpenGL state necessary to create the correct shadow color.

5. Render the shadowing object.

In the last step, the second time the object is rendered, the transform flattens it
into the object’s shadow. This simple example can be expanded by applying ad-
ditional transforms beforethe gl Scal ef call to position the shadow onto the ap-
propriateflat object. Applyingthisshadow issimilarto decaling apolygonwith an-
other co-planar one. Depth buffering aliasing must be taken into account. To avoid
depth aliasing problems, the shadow can be slightly offset from the base polygon
using polygon offset, the depth test can be disabled, or the stencil buffer can be used
to ensure correct shadow decaling. The best approach is probably depth buffering
with polygonoffset. Thisway the depth buffering will minimizetheamount of clip-
ping you’ll have to do to the shadow.

Thedirection of thelight source can beatered by applying a shear transform af -
terthegl Scal ef call. Thistechniqueisnot limitedto directional light sources. A
point source can be represented by adding a perspective transform to the sequence.

Althoughyou can construct an arbitrary shadow from asequence of transforms,
it might be easier to just construct a projection matrix directly. The function below
takes an arbitrary plane, defined asaplaneequationin Ax + By + Cz+ D =0 form,
and alight position in homogeneous coordinates. If the light is directional, the w
value should be 0. The function concatenates the shadow matrix onto the top ele-
ment of the current matrix stack.

103

Programming with OpenGL: Advanced Rendering

static void
nyShadowivat ri x(fl oat ground[4], fl oat

{

}

Projection Shadow Trade-offs This method of shadow volume is limited in a
number of ways. First, it’svery difficult to use this method to shadow onto anything
other than flat surfaces. Although you could project onto a polygonal surface, by
carefully casting the shadow onto the plane of each polygon face, you would then
have to clip the result to the polygon’s boundaries. Sometimes depth buffering can

float dot;
fl oat

dot = ground[0]
ground[1]
ground[2]
ground[3]

shadowivat [0] [O]
shadowivat [1] [0]
shadowivat [2] [0]
shadowivat [3] [0]

shadowivat [0] [1]
shadowivat [1] [1]
shadowivat [2] [1]
shadowivat [3] [1]

shadowivat [0] [2]
shadowivat [1] [2]
shadowivat [2] [2]
shadowivat [3] [2]

shadowivat [0] [3]
shadowivat [1] [3]
shadowivat [2] [3]
shadowivat [3] [3]

*
*
*
*

shadowivat [4] [4] ;

light[0] +
light[1] +

light[2] +

light[3];

dot - light[0]
0.0 - light[0]
0.0 - light[0]
0.0 - light[0]
0.0 - light[1]
dot - light[1]
0.0 - light[1]
0.0 - light[1]
0.0 - light[2]
0.0 - light[2]
dot - light[2]
0.0 - light[2]
0.0 - light[3]
0.0 - light[3]
0.0 - light[3]
dot - light[3]

* ok ok * Ok %k ok * % ok *

* % kX

light[4])

ground[0] ;
ground[1] ;
ground[2] ;
ground[3] ;

ground[0] ;
ground[1] ;
ground[2] ;
ground[3] ;

ground[0] ;
ground[1] ;
ground[2] ;
ground[3] ;

ground[0] ;
ground[1] ;
ground[2] ;
ground[3] ;

gl Mul t Matri xf((const QG.fl oat*)shadowvat) ;

104

Programming with OpenGL: Advanced Rendering

do the clipping for you; casting a shadow to the corner of aroom composed of just
afew perpendicul ar polygonsisfeasible with this method.

The other problem with projection shadows is controlling the shadow’s color.
Since the shadow is a squashed version of the shadowing object, not the polygon
being shadowed, there are limits to how well you can control the shadow’s color.
Since the normals have been squashed by the projection operation, trying to prop-
erly light the shadow isimpossible. A shadowed polygonwith aninterpolated color
won’'t shadow correctly either, since the shadow is a copy of the shadowing object.

9.4.2 Shadow Volumes

Thistechniquetreatsthe shadowscast by objectsas polygona volumes. Thestencil
buffer is used to find the intersection between the polygonsin the scene and the
shadow volume [26].

The shadow volume is constructed from rays cast from the light source, inter-
secting the vertices of the shadowing object, then continuing outsidethe scene. De-
fined in thisway, the shadow volumes are semi-infinite pyramids, but the same re-
sults can be obtained by truncating the base of the shadow volume beyond any ob-
ject that might be shadowed by it. Thisgivesyou a polygona surface, whoseinte-
rior volume contai ns shadowed objects or parts of shadowed objects. The polygons
of the shadow volume are defined so that their front faces point out from the shadow
volume itself.

The stencil buffer is used to compute which parts of the objects in the scene
are in the shadow volume. It uses a hon-zero winding rule technique. For every
pixel inthe scene, the stencil valueisincremented asit crosses a shadow boundary
going into the shadow volume, and decrements as it crosses a boundary going out.
The stencil operations are set so thisincrement and decrement only happens when
the depth test passes. As aresult, pixelsin the scene with non-zero stencil values
identify the parts of an object in shadow.

Since the shadow volume shapeis determined by the vertices of the shadowing
object, it’spossibleto construct acomplex shadow volume shape. Sincethe stencil
operationswill not wrap past zero, it'simportant to structure the algorithm so that
the stencil values are never decremented past zero, or informationwill belost. This
problem can be avoided by rendering all the polygonsthat will increment the stencil
count first; i.e. the front facing ones, then rendering the back facing ones.

Another issuewith countingisthe position of the eyewith respect to the shadow
volume. If the eye is inside a shadow volume, the count of objects outside the
shadow volume will be -1, not zero. This problem is discussed in more detail in
the shadow volume trade-offs section. The agorithm takes this case into account
by initializing the stencil buffer to 1 if the eyeisinside the shadow volume.

105

Programming with OpenGL: Advanced Rendering

Shadowing Object

........... Shadowed
Object

Eye Shadow volume

Figure 32. Shadow Volume

Here' s the algorithm for a single shadow and light source:

1

o &~ W DN

10.

11

. The color buffer and depth buffer are enabled for writing, and depth testing
isenabled.

Set attributes for drawing in shadow. Turn off the light source.
Render the entire scene.
Compute the polygons enclosing the shadow volume.

Disable the color and depth buffer for writing, but leave the depth test en-
abled.

Clear the stencil buffer to 0 if the eye is outside the shadow volume, or 1 if
inside.

Set the stencil function to always pass.

Set the stencil operationsto increment if the depth test passes.
Turn on back face culling.

Render the shadow volume polygons.

. Set the stencil operationsto decrement if the depth test passes.

106

Programming with OpenGL: Advanced Rendering

12. Turn on front face culling.

13. Render the shadow volume polygons.

14. Set the stencil function to test for equality to O.
15. Set the stencil operations to do nothing.

16. Turn on thelight source.

17. Render the entire scene.

When the entire sceneis rendered the second time, only pixelsthat have a sten-
cil value equal to zero are updated. Since the stencil values were only changed
when thedepth test passes, thisval ue representshow many timesthe pixel’ sprojec-
tion passed into the shadow volume minus the number of times it passed out of the
shadow volume before striking the closest object in the scene (after that the depth
test will fail). If the shadow boundary was crossed an even number of times, the
pixel projection hit an object that was outside the shadow volume. The pixels out-
side the shadow volume can therefore “see” thelight, which iswhy it isturned on
for the second rendering pass.

For a complicated shadowing object, it make sense to find its silhouette ver-
tices, and use only these for calcul ating the shadow volume. These vertices can be
found by looking for any polygon edges that either (1) surround a shadowing ob-
ject composed of a single polygon, or (2) is shared by two polygons, one which
is facing towards the light source, one which is facing away. You can determine
which direction the polygons are facing by taking a dot product of the polygon’s
facet normal with thedirection of the light source, or by a combination of selection
and front/back face culling

Multiple Light Sources The algorithm can be easily extended to handle multi-
ple light sources. For each light source, repeat the second pass of the algorithm,
clearing the stencil buffer to *zero”, computing the shadow volume polygons, and
rendering them to update the stencil buffer. Instead of replacing the pixel values
of the unshadowed scenes, choose the appropriate blending function and add that
light’s contribution to the scene for each light. If more color accuracy is desired,
use the accumulation buffer.

Theaccumulation buffer can a so be used with thisa gorithmto create soft shad-
ows. Jitter the light source position and repeat the steps described above for multi-
plelight sources.

107

Programming with OpenGL: Advanced Rendering

Shadow Volume Trade-offs Shadow volumes can be very efficient if the shad-
owing object is simple. Difficulties occur when the shadowing object is acomplex
shape, making it difficult to compute ashadow volume. Ideally, the shadow volume
should be generated from the verticesa ong the silhouette of the object, asseen from
thelight. Thisisn't atrivial problem for complex shadowing objects.

Since the stencil count for objectsin shadow depends on whether the eyepoint
isin the shadow or not, making the al gorithm independent of eye positionis more
difficult. One solutionisto intersect the shadow volumewith the view frustum, and
use the result as the shadow volume. This can be anon-trivial CSG operation.

In certain pathol ogical cases, the shape of the shadow volume may cause asten-
cil vaue underflow even if you render the front facing shadow polygonsfirst. To
avoid this prablem, you can choose a“zero” value in the middle of the stencil val-
ues representable range. For an 8 bit stencil buffer, you could choose 128 as the
“zera” value. The agorithm would be modified to initialize and test for this value
instead of zero. The“zero” should beinitidized to “zero” + 1 if the eyeisinside
the shadow volume.

Shadow volumes will test your polygon renderer’s handling of adjacent poly-
gons. If there are any rendering problems, such as “double hits’, the stencil count
can get messed up, leading to grossly incorrect shadows.

9.4.3 Shadow Maps

Shadow maps usethe depth buffer and projectivetexture mapping to create ascreen
space method for shadowing objects[39, 44]. Itsperformanceisnot directly depen-
dent on the complexity of the shadowing object.

The sceneistransformed so that the eyepoint is at the light source. The objects
in the scene are rendered, updating the depth buffer. The depth buffer isread back,
then written into a texture map. This texture is mapped onto the primitives in the
origina scene, as viewed from the eyepoint, using the texture transformation ma-
trix, and eye space texture coordinate generation. The vaue of the texture's texel
value, thetexture's“intensity”, iscompared against the texture coordinate’ sr value
at each pixel. Thiscomparison is used to determine whether the pixd is shadowed
from the light source. If the r value of the texture coordinate is greater than texel
value, the object was in shadow. If not, it waslit by thelight in question.

This procedure works because the depth buffer records the distances from the
light to every object inthe scene, creating ashadow map. The smaller thevalue, the
closer the object isto the light. The transform and texture coordinate generation is
chosen so that x, y, and z locations of objectsin the scene map to thesand t coordi-
nates of the proper texelsin the shadow texture map, and to r val ues corresponding
to the distance from the light source. Note that the r values and texel values must

108

Programming with OpenGL: Advanced Rendering

be scaled so that compari sons between them are meaningful.

Both values measure the distance from an object to the light. The texel value
is the distance between the light and the first object encountered along that texel’s
path. If ther distanceisgreater thanthetexel value, thismeansthat thereisan object
closer to the light than this one. Otherwise, there is nothing closer to the light than
thisobject, so it isilluminated by the light source. Think of it as a depth test done
from the light’s point of view.

Shadow maps can almost be done with the OpenGL 1.1 implementation.
What's missing isthe ability to compare the texture’sr component against the cor-
responding texel value. Thereis an OpenGL extension, SG X_shadow, that per-
forms the comparison. As each texel is compared, the results set the fragment’s
alphavalueto 0 or 1. The extension can be described as using the shadow texture/r
value test to mask out shadowed areas using a pha values.

Shadow Map Trade-offs Shadow maps have an advantage, being animage space
technique, that they can be used to shadow any object that can be rendered. You
don’t have to find the silhouette edge of the shadowing object, or clip the object
being shadowed. Thisis similar to the argument made for depth buffering vs. an
object-based hidden surface removal technique, such as depth sort.

The same image space drawbacks are a so true. Since the shadow map is point
sampled, then mapped onto objects from an entirely different point of view, alias-
ing artifacts are a problem. When the texture is mapped, the shape of the origi-
nal shadow texel doesn't necessarily map cleanly to the pixel. Two major types
of artifacts result from these problems; aliased shadow edges, and self-shadowing
“shadow acne” effects.

These effects can’t be fixed by simply averaging shadow map texel values.
These values encode distances. They must be compared against r values, and gen-
erate aboolean result. Averaging the texel values would result in distance vaues
that are simply incorrect. What needs to be blended are the boolean results of ther
and texel comparison. The SGA X_shadow extension does this, blending four ad-
jacent comparison resultsto produce an alphavalue. Other techniques can be used
to suppress aiasing artifacts:

1. Increase shadow map/texture spatial resolution. Silicon Graphics supports
off-screen buffers on somesystems, called a p-buffer, whoseresolutionisnot
tied to the window size. It can be used to create a higher resolution shadow

map.
2. Jitter the shadow texture by modifying the projection in the texture transfor-
mation matrix. Ther/texel comparisons can then be averaged to smooth out

109

Programming with OpenGL: Advanced Rendering

shadow edges.

3. Modify the texture projection matrix so that ther valuesare biased by asmall
amount. Making ther values alittle smaller is equivalent to moving the ob-
jectsalittlecloser to thelight. This prevents sampling errors from causing a
curved surfaceto shadow itself. Thisr biasing can also be donewith polygon
offset.

One more problem with shadow maps should be noted. It isdifficult to use the
shadow map techniqueto cast shadows from alight surrounded by objects. Thisis
because the shadow map is created by rendering the entire scene from the light’s
point of view. It's not aways possible to come up with a transform to do this, de-
pending on the geometric rel ationshi p between thelight and the objectsin the scene.

9.4.4 Soft Shadows by Jittering Lights

Most shadow techniquescreateavery “hard” shadow edge; surfacesin shadow, and
surfaces being lit are separated by a sharp, distinct boundary, with alarge changein
surface brightness. Thisisan accurate representation for distant point light sources,
but isunrealistic for many rea-world lighting environments.

An accumul ation buffer can let you render softer shadows, with amore gradual
transition from lit to unlit areas. These soft shadows are a more realistic represen-
tation of area light sources, which create shadows consisting of an umbra (where
none of thelight isvisible) and penumbra (where part of thelight isvisible).

Soft shadows are created by rendering the shadowed scene multipletimes, and
accumul ating into theaccumul ation buffer. Each scenediffersinthat the position of
the light source has been moved slightly. Thelight sourceis moved around within
the volume where the physical light being modelled would be emitting energy. To
reduce diasing artifacts, it's best to move thelight in an irregular pattern.

Shadows from multiple, separate light sources can aso be accumulated. This
alows the creation of scenes containing shadows with non-trivia patterns of light
and dark, resulting from the light contributions of al the lightsin the scene.

9.45 Soft Shadows Using Textures

Heckbert and Herf describe an alternative techniquefor rendering soft shadows by
creating atexture for each partially shadowed polygon in the scene[24]. Thistex-
ture represents the effect of the scene’s lights on the polygon.

For each shadowed polygon, an image is rendered which represents the contri-
bution of each light source for each shadowed polygon, and that image isused asa
texture in the final scene containing the shadowed polygon. Shadowing polygons

110

Programming with OpenGL: Advanced Rendering

are projected onto the shadowed polygon from the direction of the sample point on
thelight source. The accumulation buffer isused to average the results of that pro-
jectionfor several points(typically 16) onthe polygonrepresenting thelight source.

The algorithm finds a single quadrilateral that tightly bounds the shadowed
polygon in the plane of that polygon. The quad and the sample point on the light
source are used to create aviewing frustum that projectsintervening polygonsonto
the shadowed polygon. Multiple shadow textures per polygon are avoided because
each “lighting” frustum shares the base quadrilateral, and so the shadowing results
can al be accumulated into the same texture.

A passis made for each sample point on each light source. The color buffer is
cleared to the color of the light, and then the projected polygons are drawn with the
ambient color of the scene. Theresultingimageisthen added into the accumul ation
buffer. The final accumulation buffer result is copied into texture memory and is
applied during the final scene as the polygon’ stexture.

Care must be taken to choose an image resolution for the shadow texture that
looks acceptable on the final polygon. Depth testing and texturing can be disabled
to improve performance during the projection pass. It may be necessary to save
the accumulation buffer at intervals and average the resultsif the contribution of a
shadow pass exceeds the resol ution of the accumulation buffer.

A paper describing this technique in detail and other information on shadow
generation agorithmsis available at Heckbert and Herf’s website [25].

10 Transparency

Transparent objects are common in everyday life and the addition of them can add
significant realism to generated scenes. In this section, we will describe several
techniques used to render transparent objectsin OpenGL.

10.1 Screen-Door Transparency

One of the simpler transparency techniquesis known as screen-door transparency.
Screen-door transparency uses a bit mask to cause certain pixels not be rasterized.
The percentage of bitsin the bitmask which are 1 is equivalent to the transparency
of the object.[14].

In OpenGL, screen-door transparency isimplemented using polygon stippling.
The command gl Pol ygonSt i ppl e defines a 32x32 polygon stipple pattern.
When stippling is enabled (using gl Enabl e(GL_POLYGON_STI PPLE)) the
low-order x and y bits of the screen coordinates of each fragment are used to in-
dex into the stipple pattern. If the corresponding bit of the stipple patternis 0, the

111

Programming with OpenGL: Advanced Rendering

fragment isrejected. If thebit is 1, rasterization continues.

Since the lookupinto the stipple pattern takes place in screen space, a different
pattern must be used for objects which overlap, even if the transparency of the ob-
jectsisthe same. Were the same stipple pattern to be used, the same pixelsin the
frame buffer would be drawn for each object. Of the transparent objects, only the
last (or the closest, if depth buffering were enabled) would be visible.

The biggest advantage of screen-door transparency is that the objects do not
need to be sorted. Also, rasterization may be faster on some systems using the
screen-door technique than using other techniques such as apha blending. Since
the screen-door technique operates on aper-fragment basis, theresultswill not look
as smooth asif another technique had been used.

10.2 AlphaBlending

To draw semi-transparent geometry, the most common technique is to use alpha
blending. In this technique, the apha value for each fragment drawn reflects the
transparency of that object. Each fragment iscombined with thevaluesin theframe
buffer using the blending equation

Cout = Csrc * Asrc + (1 - Asrc) * Cdst (5)

Here, C,,; is the output color which will be written to the frame buffer. C,.
and A,.. are the source color and apha, which come from the fragment.
Cys is the destination color, which is the color value currently in the frame
buffer at the location. This equation is specified using the OpenGL command
gl Bl endFunc(GL_SRC_ALPHA, GL_ONE_M NUS_SRC ALPHA) . Blending
isthen enabled with gl Enabl e(GL_BLEND) .

A common mistake when implementing al phablending is to assume that it re-
quiresaframe buffer with an alphachannel. Notethat the alphavaluesinthe frame
buffer (GL_DST_ALPHA) are not actually used, so no alphabuffer is required.

For the apha blending technique to work correctly, the transparent primitives
must be drawn in back to front order and must not intersect. To convince ourselves
of this, we can consider two objectsobj; and 0bj, with colorsC'y and C', and a phas
Aq and A,. Assumethat obj, isinfront of obj; and that the frame buffer has been
cleared to black. If obj, isdrawn first, obj; will not be drawn at all unless depth
bufferingisdisabled. Turning off depth buffering generally isabad idea, but evenif
we could turnit off, the resultswould still beincorrect. After 0bj, had been drawn,
the frame buffer color would be C'; x A5. After obj; had been drawn, the color
wouldbe Cy x A1 + (1 — A1) * Cy + Ag. If obj; had been drawn first, the value
would be C3 x Az + (1 — A3) * Cy x Ap. Sorting will be discussed in detail in
Section 10.3.

112

Programming with OpenGL: Advanced Rendering

The alpha channel of the fragment can be set in several ways. If lighting is
not being used, then the alpha value can be set using a 4 component color com-
mand such as gl Col or 4f v. If lighting is enabled, then the ambient and diffuse
reflectance coefficients of the material should correspond to the translucency of the
object.

If texturing is enabled, the source of the alpha channel is controlled by the tex-
tureinterna format, the texture environment function, and the texture environment
constant color. The interaction is described in more detail in the gl TexEnv man
page. Many intricate effects can be implemented using al phavalues from textures.

10.3 Sorting

The sorting step can be complicated. The sorting should bedonein eye coordinates,
SO it is necessary to transform the geometry to eye coordinates in some fashion.
If translucent objects interpenetrate, the individual triangles should be sorted and
drawn from back to front. Ideally, polygonswhich interpenetrate should be tessel-
lated along their intersections, sorted, and drawn independently, but thisistypically
not required to get good results. Frequently only crude or perhaps no sorting at all
gives acceptable results.

If there is asingle transparent object, or multiple transparent objectswhich do
not overlap in screen space (i.e. each screen pixel istouched by at most one of the
transparent objects), ashortcut may be taken under certain conditions. If the objects
are closed, convex, and viewed from the outside, culling may be used to draw the
backfacing polygons prior to the front facing polygons. The steps are as follows:

1. Configure culling to diminate front facing polygons.
gl Cul | Face(FRONT)

Enable backface culling: gl Enabl e(G._CULL _FACE)
Draw the object
Configurecullingto eliminatebackfacing polygons: gl Cul | Face(BACK)

(S Sl < I\

Draw the object again
6. Disableculling: gl Di sabl e(G._CULL_FACE)

We assume that the vertices of the polygonsof the object are arranged in a counter-
clockwisedirectionwhen theobject isviewed from theoutside. If necessary, wecan
specify that polygonsoriented cl ockwise shoul d be considered front-facing with the
gl Front Face command.

Drawing depth buffered opague objects mixed with translucent objects takes
somewhat more care. The usud trick is to draw the background and opague ob-
jectsfirst in any order with depth testing enabled, depth buffer updates enabled, and

113

Programming with OpenGL: Advanced Rendering

blending disabled. Next, the translucent objects are drawn from back to front with
blending enabled, depth testing enabled but depth buffer updates disabled so that
translucent objects do not occlude each other.

104 UsingtheAlpha Function

The alpha function is used to discard fragments based upon a comparison of the
fragment’s alpha value with a reference value. The comparison function and the
reference value are specified with the command gl Al phaFunc. Theaphatestis
enabled with gl Enabl e(GL_ALPHA_TEST) .

The alphatest is frequently used to draw complicated geometry using texture
maps on polygons. For example, a tree can be drawn as a picture of atree on a
singlerectangle. The parts of the texture which are part of the tree have an alpha
value of 1; parts of the texture which are not part of the tree have an aphavalue
of 0. Thistechniqueis often combined with billboarding (Section 5.7), in which a
rectangle is turned to perpetually face the eyepoint.

Like polygon stippling, the al pha function discards fragments instead of draw-
ing them into the frame buffer. Therefore sorting of the primitives is not necessary
(unless some other mode like apha blending is enabled). The disadvantageis that
pixels must be completely opague or completely transparent.

10.5 Using Multisampling

On systemswhich support themultisampleextension (SA@ S_nul t i sanpl e), the
per-fragment sample mask may be used to change the transparency of an object.

One technique involves GL_SAMPLE_ALPHA_TO.MASK_SA S. If transparent
objects in a scene do not overlap, G._SAMPLE_ALPHA TO MASK SA S may be
used. Thisparameter causesthe alphaof afragment to be mapped to asample mask
which will be bitwise anded with the fragment’s mask. The value of the generated
sample mask is implementation-dependent and is a function of the pixel location
and thefragment’sa phavalue. If two objectswere drawn at the samelocation with
the same transparency, the sample mask would be the same and the same samples
would be touched. If two objects were drawn at the same location with different
transparencies, results may or may not be acceptable.

Thesimplest techniqueistousethegl Sanpl eMaskSA S command to setthe
value of the GL_SAMPLE_MASK_SA S. Thisvalueisused to generate atemporary
mask which is bitwise anded with the fragment’s mask. Again, results may not be
correct if transparent objects overlap.

Currently, SA S_nul ti sanpl e is supported by Silicon Graphics and
Hewlett Packard.

114

Programming with OpenGL: Advanced Rendering

11 Natural Phenomena

The are alarge number of naturally occurring phenomena such as smoke, fire and
clouds which are chalenging to render at interactive rates with any semblance of
realism. A common solution is to reduce the requirement for complex geometry
by using textures. Many of the techniques use a combination of geometry and tex-
turewhich vary as afunction of time or other parameters such as distance from the
viewer.

11.1 Smoke

Modelling smoke potentially requires some sophisticated physics, but surprisingly
realistic images can be generated using fairly simple techniques. One such tech-
niqueinvolves capturing a 2D cross section or image of a puff of smoke with both
luminance and a phachannel sfor theimage. Theimage can then betexture mapped
onto aquadrilateral and blendedinto the scene. Thebillboardtechniquesoutlinedin
Section 5.7 can be used to ensure that theimage istransformed to face the user. Us-
ing a GL_MODULATE texture environment, the color and a pha val ue of the quadri-
lateral can be used to control the color and transparency of the smoke in order to
simulate different types of smoke. For example, smoke from an ail fire would be
dark and opague, whereas steam from a flare stack would be much lighter in color.

The size, position, orientation, and opacity of the quadrilateral can be varied as
afunction of time to simulate the puff of smoke enlarging, drifting and dissipating
over time.

More realistic effects can be achieved using volumetric techniques. Instead of
a 2D image, a 3D volumetric image of smoke isrendered using the algorithms de-
scribed in Section 13. Again, dynamics can be simulated by varying the position,
size and translucency of the volume. More complex dynamics can be simulated by
applying local distortionsor deformations to the texture coordinates of the volume
|attice rather than simply applying uniform transformations. The volumetric shad-
ing technique described in Section 13.11 can be used to illuminate the smoke.

Thereare many procedural techniqueswhich can be used to synthesize both 2D
and 3D textures[13].

11.2 Vapor Trails

Vapor trailsemanating from ajet or amissile can be rendered using methodssimilar
to the painting technique described in Section 6.3. A circular, wispy 2D image such
asthat used in the preceding section is used to generate the vapor pattern over some
unitinterval by renderingit asabillboard. A textureimage consisting only of alpha

115

Programming with OpenGL: Advanced Rendering

dialate

head

fade

Figure 33. Vapor Trail

valuesisused to modul atethe a phaval ues of awhitebillboard polygon. Thetrajec-
tory of the airborne object is painted using multiple overlapping copies of the bill-
board as shownin Figure 33. Over time the individual billboardsgradually enlarge
and fade. The program for rendering a trail islargely an exercise in maintaining
an activelist of the position, orientation and time since creation for each billboard
used to paint thetrail. As each billboard polygon exceeds athreshold transparency
valueit can be discarded from the list.

11.3 Fire

The simplest techniquesfor rendering fireinvolveapplying staticimagesand movie
loops as textures to billboards.

A staticimage of fire can be constructed from anoisetexture; 16 describes how
to make a noise texture using OpenGL . The weights for different frequency com-
ponents should be chosen to reflect the spectra structure of fire, and turbulence can
aso be incorporated effectively into the texture. The texture is mapped to a bill-
board polygon. Several such textures, composited together, can create the appear-
ance of multiple layers of intermingling flames. Finally, the texture coordinates
may be distorted vertically to simulate the effect of flames rising and horizontally
to mimic the effect of winds.

A sequence of firetextures can beplayed as an animation. Theabrupt mannerin
which fire moves and changes intensity can be modelled using the same turbulence

116

Programming with OpenGL: Advanced Rendering

techniques used to create the fire texture itself. The speed of the animation play-
back, as well as the distortion applied to the texture coordinates of the billboard,
might be controlled using a turbulent noise function.

11.4 Clouds

Clouds, like smoke, have an amorphous structure without well defined surfacesand
boundaries. In recent times, computationally intensive physical modelling tech-
niques have given way to simplified mathematical models which are both compu-
tationally tractable and aesthetically pleasing [16, 13].

The main ideabehind these techniquesinvolvesgenerating arealistic 2D or 3D
texture function ¢ using a fractal or spectral based function. Gardner suggests a
Fourier-like sum of sine waves with phase shifts

Hx,y) = kZ (cisin(faiz + pay) +to) D (cisin(fyiy + pyi) + to)
=1 =1
with the relationships

frivi = 2fx
fyiqn = 2fy
cior = T07e;
T .
pr; = §sin(fyi_1y),z>1
pyi = gsin(fxi_lx)7i>1

Care must be taken using this technique to choose values to avoid aregul ar pattern
inthetexture. Alternatively, texture generation techniques described in Section 16
can be used.

Either of these techniques can be used to produce a 2D texture which can be
used to render acloud layer. A cloud layer issimulated by drawing alarge textured
polygon in the sky at afixed dtitude. A luminance cloud texture can be blended
with a blue polygon and a white constant texture environment color.

Some of the dynamic aspects of clouds can be simulated by vary parameters
over time. Cloud development can be simulated by scaling and biasing the lumi-
nancevaluesin thetexture. Drifting can be simulated by moving thetexture pattern
across the sky, i.e., transforming the texture coordinates.

Gardner aso suggests using elipsoids to simulate 3D cloud structures. The
texture data is generated using a 3-dimensional extension of the Fourier synthesis
method outlined above and the textures are applied with increasing translucency
near the boundary of the elipsoid. These 3D textures can also be combined the
volume rendering techniques described in Section 13 to produce 3D cloud images.

117

Programming with OpenGL: Advanced Rendering

11.5 Water

A large body of research has been done into modelling, shading, and reproducing
optical effects of water [49, 34, 15], yet most methods still present a large compu-
tation burden to achieve arealistic image. Nevertheless, it is possible to borrow
from these approaches and achieve modest results while retaining interactive per-
formance [28, 13].

The dynamics of wind and waves can be simulated using procedural models
and rendered using meshes or height fidlds. The geometry is textured using sim-
ple procedura textureimages. Multipass rendering technigues can be used to layer
additional effects such as surf. Environment mapping can be used to simulate re-
flections from the surface. The combination of reflection mapping and a dynamic
model for ripples provides a visualy compelling image. Alternatively, synthetic
perturbations to the texture coordinates as outlined in Section 5.13.7 can also be
used.

Optical effects such as caustics can be approximated using parts of the OpenGL
pipeline as described by Nishitaand Nakamae [33] but interactive frame rates are
not likely to be achieved. Instead such effects can be faked using textures to mod-
ulate the intensity of any geometry that lies below the surface.

11.6 Light Points

OpenGL has direct support for rendering both aliased and antiadiased points, but
these simple facilities are usually insufficient for smulating small light sources,
such as stars, beacons, runway lights, etc. In particular, the size of OpenGL points
is not affected by perspective projections. To render more realistic looking small
light sourcesit is necessary to change some combination of the size and brightness
of the source as afunction of distance from the eye.

The brightness attenuation « as a function of distance, d, can be approximated
by using the same equation used in the OpenGL lighting equation

1
ke + kid + kq,d?

Attenuation can be achieved by modulating the point size by the square root of the
attenuation

S12€cf fective = S1Z€ X Va

As the point size approaches the size of a single pixel the resolution of the raster
display system will cause artifacts. To avoid this problem the point can be made

118

Programming with OpenGL: Advanced Rendering

semi-transparent once it crosses a particular sizethreshold. The aphavalueispro-
portional to theratio of the point area determined from the size attenuation compu-
tation to the area of the point being rendered

: 2
alpha _ (S’L.Zeeffective)
S1Z€¢threshold

More complex behavior such as defocusing, perspective distortion and direc-
tionality of light sources can be achieved by using an image of thelight lobe asa
texture map combined with billboarding to keep thelight |obe oriented towards the
viewer.

11.7 Other Atmospheric Effects

OpenGL provides a primitive capability for rendering atmospheric effects such as
fog, mist and haze. It isuseful to simulatethe affects of atmospheric effectson visi-
bility toincreaserealism, and it allowsthe database designer to cover up amultitude
of sins such as “dropping” polygonsnear the far clipping planein order to sustain
afixed frame rate.

OpenGL implementsfogging by blending thefog color with theincoming frag-
ments using a fog blending factor, f,

C:fczn+(1_f)cfog

This blending factor is computed using one of three equations: exponentia
(GL_EXP), exponential-squared (GL _EXP2), and linear (GL_LI NEAR)

f — e—(density~z)
f — e—(density~z)2
;o= end — z

end — start

where z isthe eye-coordinate di stance between the viewpoint and the fragment cen-
ter.

Linear fog is frequently used to implement intensity depth-cuing in which ob-
jects closer to the viewer are drawn at higher intensity [14]. The effect of intensity
as a function of distance is achieved by blending the incoming fragments with a
black fog color.

The exponential fog equation has some physica basis. It isthe result of inte-
grating a uniform attenuation between the object and the viewer. The exponential
function can be used to represent a number of atmospheric effects using different

119

Programming with OpenGL: Advanced Rendering

combinationsof fog colorsand density values. SinceOpenGL doesnot fog the pixel
values during a clear operation, thevalue of f at thefar plane, far,

ffar — e—(density~fa7’)

can be used to determine the color to which to clear the background

Chg = SarCin + (1 = frar)Crog

where C;,, is the color to which the background would be cleared without fog en-
abled.

As mentioned earlier, the obscured visibility of objects near the far plane can
be exploited to overcome various problems such as drawing time overruns, level-
of-detail transitions, and database paging. However, in practice it has been found
that the exponential function doesn't attenuate distant fragments rapidly enough,
so exponential -squared fog was introduced to provide a sharper fall-off in visibil-
ity. Some vendors have gone astep further and provided more control over the fog
function by allowing applicationsto control the fog value through a spline curve.

There are other problems that OpenGL’s primitive fog mode does not address.
For example, emissive geometry such as the light points described above should
be attenuated | ess severely than non-emissivegeometry. This effect can be approx-
imated by pre-compensating the color values for emissive geometry, or reducing
the fog density when emissive geometry is drawn. Neither of these solutionsis
completely satisfactory since colors values are clamped 1.0 in OpenGL, limiting
the amount of precompensation that can be done. Many OpenGL implementations
use lookup table methodsto efficiently compute the fog function, so changesto the
fog density may result in expensive table recomputations. To overcome this prob-
lem some vendors have provided a mechanism to bias the eye-coordinate distance,
avoiding the need to recompute the fog lookup table.

If OpenGL fog processing is bypassed it is possible to do more sophisticated
atmospheric effects using multi passtechniques. The OpenGL fog computation can
bethought of assimpletablelookup using the eye-coordinatedistance. Theresultis
used asablend factor for blending between thefragment color and fog color. A sim-
ilar operation can beimplemented using gl TexGen to generatethe eye-coordinate
distance for each fragment and a 1D texture for the fog function. Using aspecialy
constructed 2D or 3D texture and a more sophisticated, texture coordinate genera-
tion function, it is possible to compute more complex fog functions incorporating
parameters such as altitude and eye-coordinate distance.

120

Programming with OpenGL: Advanced Rendering

12 Image Processing

12.1 Introduction

One of the strengths of OpenGL isthat it providestools for both image processing
and 3D rendering. Unlikesomelibrariesthat contain only oneor the other, OpenGL
was designed with the understanding that many image processing tools are useful
for 3D graphics. For example, convolution may be used to implement depth-of-
field effects. Conversely, many operations typically thought of as image process-
ing operations may be cast as geometric rendering and texture mapping operations.
Electroniclight tables (ELT's) used for defense imaging require image transforma-
tions which can be implemented using OpenGL’stextured drawing capabilities. In
this section, we will explore image processing applications of OpenGL, beginning
with color manipulation, moving on to convolution, and finally discussing image
warping. To solve these problems, we have three mgjor parts of OpenGL at our
disposal: the pixel transfer pipeline, geometric drawing and texturing, and fragment
operations.

12.1.1 ThePixe Transfer Pipeline

The pixel transfer pipelineisthe part of OpenGL most typically thought of inimage
processing applications. The pipelineis a configurable series of operationswhich
are applied to each pixel during any command that moves pixels between theframe
buffer, host memory, and texture memory, including:

e gl DrawPi xel s

gl ReadPi xel s

gl Texl mage2D

gl CGet Texl mage2D

gl CopyPi xel s
These operations move image datawhich fallsinto one of the following categories:
e Color index values

e Stencil buffer values

Depth values

Color values (RGBA, luminance, luminance/alpha, red, green, ...)

121

Programming with OpenGL: Advanced Rendering

The “pixel transfer pipeling’ actualy is four independent pipelines: one for each
category of data

For image processing, operations on color data are generally the most interest-
ing. Before any operations are applied, source datain any color format (for exam-
ple, GL_LUM NANCE) and type (for example, GL_UNSI GNED_BYTE) is converted
into the canonical RGBA format, with each component represented as a floating-
point value. All color pixel transfer operations are defined as operating on images
of thistype and format. After the pixel transfer operations have been applied, the
image is converted to its destination type and format.

Base OpenGL definesonly afew pixel transfer operations, which are controlled
usingthegl Pi xel Tr ansf er command. The operations are:

e GL_I NDEX_SHI FT and G-_I| NDEX_OFFSET, which are applied only to
color index images

e Scale and bias values which are applied to each channel of RGBA images
e Scale and bias values which are applied to depth values.
e Pixel maps, discussed in detail in Section 12.2.3

The pixel transfer pipelineisthe part of OpenGL that has undergone the most
growth through OpenGL extensions. Some of the more interesting extensionswill
bediscussedinthissection. Wewill list thevendorswho have committed to support
each extension as of April 1997. Where possible, we will mention techniques to
achieve equivaent results on systemsthat do not support the extension.

12.1.2 Geometric Drawing and Texturing

OpenGL'stexturing capabilitieswere discussed in detail in Section 5. These capa-
bilities can be put to work to solveimage processing problems. By texturing anin-
put image onto a geometric grid, we can apply arbitrary deformationsto the image.
Giventhetextured draw rates of hardware-accel erated OpenGL platforms, very im-
pressive performance can often be achieved though the use of textured geometric
drawing. Image processing applicationsusing texturing will be discussedin section
12.4.

12.1.3 TheFrame Buffer and Per-Fragment Operations

Per-fragment and frame buffer operations can be used to perform operationson pix-
els of an image in parallel. Additionally, multiple images may be combined in a

122

Programming with OpenGL: Advanced Rendering

variety of ways. Two main features are of interest: blending and the accumula-
tion buffer. These features were discussed in detail in section 6. The accumulation
buffer is particularly important since it provides several fundamental operations:

e Scaling of an image by a constant:

— gl Accun{ G._MULT, <scal e>)
— gl Accun{ G._LOAD, <scal e>)
— gl Accun{ G._RETURN, <scal e>)

¢ Biasing of an image by a constant:

— gl Accun{ G._ADD, <scal e>)

— Clear of frame buffer with color <scal e>, followed by
gl Accun(G._LOAD, 1)

e Linear combination of two images on a pixe-by-pixel basis:
gl Accum(GL_LQAD, <bi as1>) followed by gl Accum{ GL_ACCUM
<bi as2>)

The accumulation buffer and blending will be discussed in subseguent sectionsin
terms of the image processing operations they are used to implement.

12.2 Colorsand Color Spaces

In this section we will consider ways to modify the pixels of an image on alocal
basis. That is, each output pixel will be afunction of a single corresponding input
pixel. Convolution, anon-local operation, will be considered in the next section.

12.2.1 The Accumulation Buffer: Interpolation and Extrapolation

Haeberli and Voorhies have suggested severa interesting image processing tech-
niques using linear interpolation and extrapolation. Each technique is stated in
terms of the formula

out = (1 — &) % ing + @ * iny (6)

The equation is evaluated on a per-pixel basis. ing and in; are the input images,
out isthe output image, and z is the blending factor. If = is between 0 and 1, the
equationsdescribe alinear interpolation. If = isallowed to range outside [0..1], ex-
trapolation results.[19]

In the limited case where 0 < x < 1, these equations may be implemented
using the accumulation buffer viathe following steps:

123

Programming with OpenGL: Advanced Rendering

Draw ing into the color buffer

Load ing, scalingby (1 — z) (gl Accum(G._LCAD, (1-x)))
Draw iny into the color buffer

Accumulate iny, scaling by « (gl Accum{ GL_ACCUM X))
Return theresults (gl Accun(GL_RETURN, 1))

g LD PE

We assume that ing and in; are between 0 and 1. Since the accumulation buffer
can only storevaluesintherange[—1..1], for thecasez < 0 or z > 1, theequation
must beimplemented in adifferent way. Giventhevaluez, we can modify equation
6 and derive alist of accumulation buffer operations to perform the operation. We
define a scale factor s such that:

s = max(|z], |1 z|)
Equation 6 becomes:

1—
S

out = s(
and the list of steps becomes:

Compute s

Draw ing into the color buffer

Load ing, scaling by =2} (gl Accun(GL_LOAD, (1-x)/s))
Draw in into the color buffer

Accumulate iny, scaing by < (gl Accun(G._ACCUM X/ 's))
Return the results, scaling by s (gl Accum(G._RETURN, s))

o oA W

The techniques suggested by Haeberli and Voorhies use a degenerate image as
tno and an appropriate value of to move toward or away from that image. Toin-
crease brightness, in(isset toablack imageand = > 1. To change contrast, ing iS
set to agrey image of the average luminancevalue of ¢n;. Movingtoward (z < 1)
the grey image increases contrast; moving away decreases it. Saturation may be
varied using ablack and whiteversion of in; asung (for information on converting
RGB images to luminance, see section 12.2.4). Sharpening may be accomplished
by setting :no to ablurred version of in,.[19] For more details, readers are encour-
agedtovisithtt p: // www. sgi . com grafi cal/interp/index. htn

124

Programming with OpenGL: Advanced Rendering

12.2.2 Pixe Scale and Bias Operations

Scale and bias operations can be used to adjust the colors of images. Also, they
can be used to select and expand a small range of valuesin theinput image. Scales
and biases are applied at several locationsin the pixel transfer pipeline. In general,
scales and biases are controlled with eight floating point values (a scale and a bias
for each channdl).

The first scale and bias in the pixel transfer pipeline is part of base OpenGL
and is specified with gl Pi xel Transf er (<pnane>, <val ue>) where
<pnarme> specifiesone of GL_RED_SCALE, G_._RED_BI AS, G_._GREEN_SCALE,
GL_GREEN.BI AS, GL_BLUE_SCALE, GL_BLUEBIAS, G._ALPHA SCALE,
or GL_ALPHA BI AS. Other scale and bias steps are associated with the color
matrix extension (SA _col or _matrix) and the convolution extension
(EXT_convol uti on).

12.2.3 Look-Up Tables

One useful tool for color modification is the look-up table. Generally speaking, a
look-up tabletakes avalue, mapsit to alocationin atable, and replaces the incom-
ing value with the contents of the table entry. OpenGL providesthree mechanisms
which are basically look-up tables. Two, pixel maps and color tables, look up com-
ponents independently in one-dimensional tables. These mechanisms provide effi-
cient mapping for applications requiring no between the channdls of theimage. A
third mechanism, pixel texturing, uses the OpenGL texturing capability to perform
multi-dimensional look-ups.

Pixel Maps Pixd mapsare afeature of base OpenGL whichallow certainlook-up
operationsto be performed. OpenGL maintains tables which map:

e Thered channel to thered channel (GL_PlI XEL_MAP_R.TOR)

e Thegreen channel to the green channel (GL_PlI XEL_MAP_G.TO.Q
e The blue channdl to the blue channel (G-_PI XEL_MAP_B_TO_B)

e Theaphachannel to the alphachannel (GL_PI XEL_VMAP_A_TO.A)
e Color indicesto color indices (GL_PI XEL_MAP_I _TO.l)

e Stencil indicesto stencil indices (GL_PI XEL_MAP_S_TQ.S)

e Color indices to RGBA values (GL_PI XEL_MAP_I TOR,
G__Pl XEL_MAP_I _TO.G, G__PI XEL_VAP_I _TO.B, and
GL_PI XEL_MAP_I TOA)

125

Programming with OpenGL: Advanced Rendering

Tables that map color indices to RGBA values are used automati-
caly whenever an image with a color index format is transferred to a
destination which requires an RGBA image. For example, performing a
gl DrawPi xel s of a color index image to an RGBA frame buffer would
result in application of the | to RGBA pixel maps. Other tables are en-
abled with the commands gl Pi xel Transfer (GL_MAP_.COLOR, 1) and
gl Pi xel Transfer (GL_.MAP_STENCI L, 1).

Pixel maps are defined using the gl Pi xel Map command and queried using
the gl Get Pi xel Map command. Details on the use of these commands may be
found in [7]. The sizes of the pixel maps are not tied together in any way. For ex-
ample, the R to R pixel map does not need to be the same size as the G to G pixel
map.

Each system provides a constant, GL_MAX_PI XEL _MAP_TABLE, which gives
the maximum size of a pixel map which may be defined.

The Color Table Extension The color table extension, SG _col or _t abl e,
providesadditional |ook-up tablesinthe OpenGL pixel transfer pipeline. Although
the capabilities of color tablesand pixel maps are similar, the semantics are differ-
ent.

The color table extension defines the following look-up tables:

e “First” color table (GL_.COLOR_.TABLE_SA)
e Post convolutioncolor table (GL_POST_CONVOLUTI ONLCOLOR TABLE _SG)
e Post color matrix color table (GL_POST_COLOR_MATRI X_.COLOR_.TABLE_SQ)

Each table is independently enabled and disabled using the gl Enabl e and
gl Di sabl e commands. One, two, or all three of the tablesmay be applied during
the same operation. Color tables do not operate on color index images, unless the
color index image was previously converted to an RGBA image by the | to RGBA
pixel maps as described in the previous section.

Color tables are specified wusing the gl Col or Tabl eEXT and
gl CopyCol or Tabl eEXT commands and are queried wusing the
gl Get Col or Tabl eEXT command. The man pages for these commands
provide details on their use. Note that unlike the RGBA to RGBA pixel maps, al
channels of a color table are specified at the same time.

When a color table is specified, an internal format parameter (for example,
GL_RGB or G._LUM NANCE_EXT) gives the channels present in the table. When
the color table is applied to an image (which is by definition RGBA), channels of
the image which are not present in the color table are left unmodified. In thisway,

126

Programming with OpenGL: Advanced Rendering

color tables are more flexible than pixel mpas, which map and replace all channels
of theinput image.

Although color tables provide a similar functionality to pixel maps and may
prove more useful in certain circumstances, they do not replace pixel mapsin the
OpenGL pipeline and the tables managed by pixel maps and color tables are inde-
pendent. It is possibleto apply both a pixel map and a color table (or color tables)
during the same pixel operation (although the utility of thisis questionable). The
maximum sizes and relative efficiencies of pixel maps and color tables vary from
platform to platform.

The color table extension is currently supported by the following vendors:

e Silicon Graphics
e Hewlett Packard

e Sun Microsystems, Inc.

The Texture Color Table Extension The texture color table ex-
tension (SA _texture_col or table) provides a color table
(GL_-TEXTURE_COLOR.TABLE_SGE) which is applied to texels after filter-
ing and prior to combination with the fragment color with the texture environment
operation. The procedures to define, enable, and disabl e the texture color table are
the same as those of the tablesin SG _col or _t abl e.

The texture color table extension is currently supported by the following ven-
dors:

e Silicon Graphics

e Evans& Sutherland

e Hewlett Packard

e Sun Microsystems, Inc.
The Pixe Texture Extension The pixel texture extension
(SA X_pi xel _t ext ur e) alows multi-dimensiona lookups through OpenGL's
texturing capability. Remember that OpenGL defines rasterization of apixel image
during agl Dr awPi xel s or gl CopyPi xel s command as the generation of a
fragment for each pixel in theimage. Per-fragment operations are applied, includ-
ing texturing (if enabled). If the input image contained color data, each fragment’s

color comes from the color of the pixd that generated it. The texture coordinate of
the fragment istaken from the current raster position, which is generally not useful

127

Programming with OpenGL: Advanced Rendering

because the texture coordinate will be constant over the pixel rectangle. The pixel
texture extension alows the texture coordinates s, t, g, and r of the fragment to
be copied from the color coordinates R, G, B, and A of the pixel. With three and
four dimensional textures (EXT_t ext ur e3D and SG S_t ext ur e4D), arbitrary
effects can be implemented (although the texture storage requirements to do so can
be staggering).

The pixel texture extension is supported by the following vendors:

e Silicon Graphics

Equivalent Functionality Without SG X_pi xel _texture There is
no way to apply a true multidimensional lookup to a pixel image without
SA X pi xel texture. In some cases, pixel maps and color tables may be
used as a substitute. Blending, accumulation buffer operations, or scale/bias
operations may be used when the function to be applied is linear and each channel
isindependent. In other cases, the application will have to perform the lookup on
the host or draw atextured point for each pixel intheimage.

12.2.4 TheColor Matrix Extension

The color matrix extension (SG _col or _mat ri x) defines a 4x4 color matrix
which is managed using the same commands as the projection, modelview, or tex-
ture matrix. The color matrix premultiplies RGBA colors in the pixel transfer
pipeline and as such can be used to perform linear color space conversions.

Since the color matrix istreated like any other matrix, it is always enabled and
defaults to the identity. To change the contents of the color matrix, the current ma-
trix mode must be set to G._COLOR using thegl Mat r i xMbde command. After
that, the color matrix may be manipulated using the same commands as any other
matrix. Thecommandsgl LoadMat ri x, gl PushMat ri x, andgl PopMat ri x
generaly prove the most useful.

The color matrix extensionis currently supported on the following platforms:

e Silicon Graphics

Equivalent Functionality Without SA@ _col or _mat ri x Unfortunately, the
functionality of SA _col or _mat ri x is difficult to efficiently duplicate on sys-
tems which do not support the extension. In the case where the image is going
from the host to the framebuffer (a gl Dr awPi xel s operation), the best way to
handle the situation is the split the image up into red, green, blue, and alphaim-
ages (via application processing or a draw followed by reads with f or mat set

128

Programming with OpenGL: Advanced Rendering

to GL_RED, GL_GREEN, G__BLUE, or GL_ALPHA). The red, green, blue, and al-
pha images can be drawn as G._LUM NANCE images. RGBA scale operations
are applied, with the four values equal to the row of the matrix corresponding to
source channel. The images are composited in the frame buffer using blending
(gl Bl endFunc(GL_.ONE, G._ONE)).

Scaleand Bias Scale and bias operations may be performed using the color ma-
trix. A scalefactor can be applied using thegl Scal e command. A biasisequiv-
alent to atranslation and may be applied usingthegl Tr ansl at e command. Us-
ing gl Scal e and gl Tr ansl at e, the R scale or biasis put in the x parameter,
the G scale or bias in the y parameter, and the B scale or bias in the z parame-
ter. Madifications to the A channel must be specified using gl LoadMat ri x or
gl Mul t Mat ri x. In genera using the color matrix will be slower than using a
transfer operation which implements scale and bias directly, but management of
state may be easier using color matrices. Also, the scale and bias could be rolled
into another color matrix operation.

Conversion to Luminance Converting a color image into a luminance image
may be accomplished by putting the weightsfor R, G, and B along the top row of
the matrix:

L R, Gy B, 0][R
L| | R, G, By, 0| ¢
L| | R, Gy, By, 0]|| B
0 0 0 0 0] A

The recommended weight values for R,,, GG, and B,, are 0.3086, 0.6094, and
0.0820. Some authors have used the values from the Y 1Q color conversion equa-
tion (0.299, 0.587, and 0.114), but Haeberli notesthat these values are incorrect in
alinear RGB color space.[18]

M odifying Saturation Thesaturation of acolor isthe distanceof that color from
agrey of equal intensity.[14] Haeberli has suggested modifying saturation using the
equation:

R a d g 0 R
G'| _|b e h O G
B |~ e f io|l|B
A 0 0 0 1 A

where;

a=(1—-s)xRy+s

129

Programming with OpenGL: Advanced Rendering

=(1—s)x
=(1—s)x
d=(1-s)x G

=(1-s)xGy+s
f=10-s5)*G

=(1—-s)* By

h=(1-3s)%By

i=(1—-s)xBy+s
with R,,, G,,, and B,, as described in the above section. Since the saturation of
a color is the difference between the color and a grey value of equal intensity, it
is comforting to note that setting s to 0 gives the luminance equation. Setting s

to 1 leaves the saturation unchanged; setting it to —1 takes the complement of the
colors.[18]

Hue Rotation Changing the hue of a color may be accomplished by loading a
rotation about the grey vector (1,1, 1). This operation may be performed in one
step using the gl Rot at e command. The matrix may a so be constructed via the
following steps:[18]

1. Load theidentity matrix (gl Loadl dentity)

2. Rotate such that the grey vector maps onto the Z axisusing thegl Rot at e
command

3. Rotate about the Z axis to adjust the hue (gl Rot at e(<degr ees>, 0,
0, 1))

4. Rotatethe grey vector back into position

Unfortunately, a naive application of gl Rot at e will not preserve the luminance
of theimage. To avoid thisproblem, we must make surethat areas of constant lumi-
nance map to planes perpendicular to the Z axis when we perform the hue rotation.
Recalling that the luminance of avector (R, G, B) isequal to:

(R7 G7 B) . (R’LLM Gun Bw)
we redlize the a plane of constant luminance k is defined by:
(R,G,B) - (Ry, Gy, By) =k

Therefore, the vector (R, Gy, By) is perpendicular to planes of constant lumi-
nance. The algorithm for matrix construction becomes the following:[18]

130

Programming with OpenGL: Advanced Rendering

Load the identity matrix

2. Apply arotation matrix M such that the grey vector (1, 1, 1) maps onto the
positiveZ axis

3. Compute(R!,, G, Bl,) = M(Ry, Gy, By) Apply askew transformwhich
maps (R.,,G',, B.,) to (0,0, B.,). Thismatrix is:

L0 e 0
_G;}
0 1 = 0
00 1 0
00 0 1

Rotate about the Z axis to adjust the hue
5. Apply theinverse of the shear matrix
6. Apply theinverse of the rotation matrix

It is possible to compute a single matrix as afunction of R, GG, B,,, and the de-
grees of rotation which would perform the operation.

CMY Conversion The CMY color space describes colors in terms of the sub-
tractive primaries: cyan, magenta, and yellow. CMY is used mainly for hardcopy
devices such as color printers. Generally, the conversion from RGB to CMY fol-
lows the equation:[14]

C 1 R
Ml=|l1|-|G
Y 1 B

CMY conversion may be performed using the color matrix or a scale and bias op-
eration. The conversionisequivaenttoascaleby —1 and abiasby +1. Using the
4x4 color matrix, the equation may be restated as:

C -1 0 0 1][R
M| [0 -1 0 1]||G
Y || o 0o -1 1]||B
1 0 0 0 1|1

Here, we require that the incoming alpha channel be equa to 1. If the source
is RGB, the 1 will be added automatically in the format conversion stage of the
pipeline.

131

Programming with OpenGL: Advanced Rendering

A related color space, CMYK, uses a fourth channel (K) to represent black.
Since conversionto CMYK requiresamin() operation, it cannot be performed us-
ing the color matrix.

An extension, CMYKA, aso supports conversion to and from CMYK and
CMYKA. Thisextension is currently supported by Evans & Sutherland.

Y1Q Conversion TheYIQ color spaceisusedin U.S. color television broadcast-
ing. Conversionfrom RGBA toY QA may be accomplished usingthe color matrix:

Y 0.299 0.587 0.114 0 R
I | 1059 -0.275 —-0.321 0 G
Q| | 0212 —-0523 0311 0 B
A 0 0 0 1 A

(Generaly, YIQ isnot used with an al pha channel so the fourth component iselim-
inated.) The inverse matrix isused to map Y1Q to RGBA .[14]

12.3 Convolutions
12.3.1 Introduction

Convolutionsare used to perform many common image processing operations in-
cluding sharpening, blurring, noise reduction, embossing, and edge enhancement.
In this section, we begin with avery brief overview of the mathematics of the con-
volution operation. More detailed explanations of the mathematics and uses of the
convol ution operation can be foundin many bookson computer graphicsand image
processing. One good referenceis[14]. After our brief mathematical introduction,
we will describe two ways to perform convolutions using OpenGL.: via the accu-
mulation buffer and via the convol ution extension.

12.3.2 The Convolution Operation

The convolution operation is a mathematical operation which takes two functions
f(z) and ¢(z) and produces a third function ~(z). Mathematically, convolutionis

defined as:
+oo

he) = (o) v g(a) = [fir)gla - r)dr U

— 00

g(z) isreferred to as the filter. The integral only needs to be evaluated over the
range where g (2 — 7) isnonzero (called the support of thefilter).[14]

In spatial domain image processing, we discretize the convol ution operation.
f(z) becomes an array of pixels F[z]. The kernel ¢(z) is an array of values

132

Programming with OpenGL: Advanced Rendering

GI0...(width — 1)] (we assume finite support). Equation 7 becomes:

width—1

Hlz]= > Fla+iG]i] (8)

=0

Two-Dimensional Convolutions Sinceinimageprocessingwegeneraly operate
on two-dimensional images, we extend eguation 8 to:

height—1 width—1

Hell= Y. > Fle+illy+GHD] ©

Toconvolveanimage, thefilter array isaligned with an equal sized subset of the
image. Every element in the convolution kernel array correspondsto a pixel in the
subimage. At each convolve step, the color values of each pixel corresponding to
akernel array element are read, then scaled by their corresponding kernel element.
Theresulting values are al summed together into a single value.

Thus, every e ement of thekernel, and every pixel under thekernel, contributes
values that are combined into asingle convolved pixe color. One of the kerndl ar-
ray elements corresponds to the location where this output value is written back to
update the output image.

Generally, convolvingisdonewith separateinput and output images, so that the
input image is read-only, and the outputs of the individual convolution steps don’t
affect each other.

After each convolution step, the convolution kernel filter positionis shifted by
one, covering aslightly different set of pixelsintheinput image, and anew convo-
lution step is performed. The cycle continues, convolving consecutive pixelsin a
scanning pattern, until the entire image has been convolved.

The convolutionfilter could have a single element per-pixel, where the RGBA
components are scaled by the same value, or have separate red, green, blue, and
aphavaluesfor each kernel element.

SeparableFilters Inthegeneral case, thetwo-dimensional convolutionoperation
requires (width * height) multiplicationsfor each output pixel. Separable filters
are a special case of general convolutionin which the filter

G[0..(width — 1)][0..(height — 1)]
can be expressed in terms of two vectors

Growl0..(width — 1)]Gci[0..(height — 1)]

133

Programming with OpenGL: Advanced Rendering

such that for each (¢, 7)€([0..(width — 1)],[0..(height — 1)])

Glil] = Growli] * Gealj]
If the filter is separable, the convolution operation may be performed using only
(width + height) multiplicationsfor each output pixel. Equation 9 becomes:

height—1 width—1

Hlz]ly] = Z Z Fla + illy + JIG[][] =

1=

height—1 width—1

Z Z [+][y + 7]Growlt]Geatlj] =

1=

hezght 1 width—1
Z Gcol[j] Z [$ —I_ Z][y —I_]]GT’OIU[]

To apply the separable convolution, we first apply ¢, asthoughit were awidth
by 1 filter. We then apply G..,; asthough it werea 1 by height filter.

12.3.3 ConvolutionsUsing the Accumulation Buffer

The convol utionoperation may beimplemented using theaccumul ation buffer. The
input image is stored in the color buffer and read by the gl Accumfunction. The
output image is built up in the accumulation buffer. For each kernel entry G[:][;],
wetranslatetheinputimage by (—1, —j) fromitsoriginal position. Thetranslation
may be accomplished usingthe gl CopyPi xel s command. We then accumul ate
the translated image using the command gl Accun{ GL._.ACCUM i]l[j]).
wedth * height trandations and accumulations must be performed.

Here isan example of using the accumulation buffer to convolve using a Sobel
filter, commonly used to do edge detection. This filter is used to find horizontal
edges, and is defined as:

-1 -2 -1
0 0 0
1 2 1

Since the accumulation buffer can only store values in the range (-1..1), we first
modify thekernel such that at any pointin the computation the valuesdo not exceed
this range. Assuming the input images values are in the range (0..1), the modified
kerndl is:

—_
—_

-1 -2 -1
0 0 0 =4 %
1 2 1

The operations needed to apply the filter are:

aim ow|!

[
INISR= *’*|w
slm O ,,;||

134

Programming with OpenGL: Advanced Rendering

I
N P O

13.

In this example, each pixel in the output image is the combination of pixelsin the
3 by 3 pixel square whose lower |eft corner is at the output pixel. At each step, the
image is shifted so that the pixel that would have been under the kernel element
with the value used is under the lower left corner. As an optimization, we ignore

© ©®© N o g & w NP

Draw the input image

gl Accum(GL_LOAD, 1/4)

Translate the input image eft by one pixel

gl Accun(G._ACCUM 2/ 4)

Translate the input image eft by one pixel

gl Accun(G._ACCUM 1/ 4)

Translate the input image right by two pixels and down by two pixels
gl Accun(G._ACCUM -1/ 4)

Translate the input image eft by one pixel

gl Accunm(G._ACCUM - 2/ 4)

. Trandate the input image left by one pixel
. gl Accun{ GL_.ACCUM -1/ 4)

Return the resultsto the frame buffer (gl Accum(GL_RETURN, 4))

locations where the kerndl is equal to zero.
A general algorithm for the 2D convolution operationis.

Draw the input inmage
for (j =0; j < height; j++) {
for (i =0; i <wdth; i++) {

}

gl Accum(G._ACCUM Ji][]j]*scale);

Move the input image to the left by 1 pixel

Move the input image to the right by width pixels
Move the input imge down by 1 pixel

}

gl Accum(G._RETURN, 1/scale);

135

Programming with OpenGL: Advanced Rendering

scal e isavauechosento ensurethat theintermediate results cannot go outsidea
certainrange. Inthe Sobel filter example, scal e = 4. Assumingtheinputvalues
arein (0..1), scal e can be naively computed using the following a gorithm:

float minPossible = 0, maxPossible = 1;
for (j =0; j < height; j++) {
for (i =0; i <wdth; i++) {
if (dqillil <0) {
m nPossible += Gi][j];
} else {
maxPossible += Gi][j];
}
}
}

scale = 1.0 / ((-m nPossi ble > maxPossible) ?
-m nPossi bl e : maxPossi bl e) ;

Since the accumulation buffer has limited precision, more accurate results could be
obtained by changing the order of the computation and computing scal e accord-
ingly. Additionally, if theinputimage can be constrainedto asmaller range, scal e
can be made larger, which may aso give more accurate results.

For separable kernels, convolution can be implemented using width + height
image translations and accumulations. A genera agorithmis:

Draw t he input inmage
for (i =0; i <wdth; i++) {
gl Accum(GL_ACCUM G owi]);
Move the input inmage to the left 1 pixel
}
gl Accun{G._RETURN, 1);
for (j =0; j < height; j++) {
gl Accum(GL_ACCUM Ccol [j1]);
Move the frame buffer imge down by 1 pixel

}
gl Accun{GL_RETURN, 1);

In this example, we have assumed that the row and column filters have been con-
structed such that the accumulation buffer values will never go out of range. For
the general case, a scale value may be needed. More accurate results may be ob-
tained if scale values are computed independently for the row and column steps.
An accumulation buffer multiply in between the two steps may be required.

136

Programming with OpenGL: Advanced Rendering

12.3.4 The Convolution Extension

The convolution extension, EXT_convol ution, defines a stage in the
OpenGL pixel transfer pipeline which applies a 1D, separable 2D, or general
2D convolution. The 1D convolution is applied only to 1D texture down-
loads and is infrequently used. 2D kernels are specified using the commands
gl Convol uti onFil ter 2DEXT, gl CopyConvol uti onFi |t er 2DEXT,
and gl Separ abl eFi | t er 2DEXT. The convolution stage is enabled using
gl Enabl e. Filters are queried using gl Get Convol uti onFi | t er EXT and
gl Get Separ abl eFi | t er EXT.

The maximum permitted convolution size is machine-dependent
and may be queried using gl Get Convol uti onParanet erf vEXT
with the parameters G _MAX_CONVCLUTI ONW DTH_EXT and
GL_MAX_CONVOLUTI ONLHEI GHT _EXT.

The relative performance of separable and general filters varies from platform
to platform, but it is best to specify a separable filter whenever possible.

EXT_convol ut i on iscurrently supported by the following vendors:

e Silicon Graphics
e Hewlett Packard

e Sun Microsystems, Inc.

12.3.5 Useful Convolution Filters

In this section, we briefly describe several useful convolution filters. The filters
may be applied to an image using either the convol ution extension or theaccumul a-
tion buffer technique. Unless otherwisenoted, the kernel spresented are normalized
(that is, the kernel weights sumto 0).

The reader should keep in mind that this section isintended only as a very ba-
sic reference. Numerous texts on image processing provide more details and other
filters. All information presented in this section comes from [31].

Linedetection Detection of one pixel wide lines can accomplished with the fol-
lowing filters:

Horizontal Edges

-1 -1 -1

2 2 2

-1 -1 -1
137

Programming with OpenGL: Advanced Rendering

Vertical Edges

-1 2 -1

-1 2 -1

-1 2 -1
L eft Diagonal Edges

2 -1 -1

-1 2 -1

-1 -1 2
Right Diagonal Edges

-1 -1 2

-1 2 -1

2 -1 -1

Gradient Detection (Embossing) Changesinvalueover 3 pixelscan bedetected
using kernels called Gradient Masks or Prewitt Masks. The direction of the change
from darker to lighter is described by one of the points of the compass. The 3x3
kernels are asfollows:

North

—1 -2 -1

West

-1 0 1
-2 0
-1 0 1

[\

East

1 0 -1
2 0 -2
1 0 -1

138

Programming with OpenGL: Advanced Rendering

South

1 2 1

0 0 0

-1 -2 -1
Northeast

0 -1 -2

1 0 -1

2 1 0

Smoothing and Blurring Smoothing and blurring operations are low-pass spa-
tial filters. They reduce or eiminate high-frequency aspects of an image.

ArithmeticMean Thearithmetic mean simply takes an average of the pixels
inthekernel. Each element in thefilter isequal to 1 divided by the total number of
elementsin thefilter. Thusthe 3x3 arithmetic mean filter is:

el el Loel Lo
el el Loel Lo
el el Loel Lo

Basic Smooth: 3x3 (not normalized)

1 21
2 4 2
1 21

Basic Smooth: 5x5 (not normalized)

— = = =
— o e e
(-
Ll
— o e e
— = = =

High-passFilters A high-passfilter enhancesthe high-frequency parts of anim-
age. Thistype of filter is used to sharpen images.

139

Programming with OpenGL: Advanced Rendering

BasicHigh-PassFilter: 3x3

-1 -1 -1
-1 9 -1
-1 -1 -1

BasicHigh-PassFilter: 5x5

0 -1 -1 -1 0
-1 2 -4 2 -1
-1 -4 13 -4 -1
-1 2 -4 2 -1
0 -1 -1 -1 0

Laplacian Filter TheLaplacian isused to enhance discontinuities. The 3x3 ker-
nel is:

0 -1 0
-1 4 -1
0 -1 0
and the5x5is:
1 1 1 1 1
1 1 1 1 1
1 1 24 1 1
1 1 1 1 1
1 1 1 1 1

Sobel Filter The Sobel filter consists of two kernels which detect horizon-
tal and vertical changes in an image. If both are applied to an image, the
results can by used to compute the magnitude and direction of the edges in
the image. If the application of the Sobel kernels results in two images
which are stored in the arrays Gh[0. . (hei ght-1][0..(wi dth-1)] and
Gv[0..(height-1)][0..(w dth-1)], the magnitude of the edge passing
through the pixel x, y isgiven by:

Mioper[][y] = \/Gh[ﬂf][y]2 + Gofz][y]? = [Ghlz][y]] + |Gol]ly]]

(we are justified in using the magnitude representation since the values represent
the magnitude of orthogonal vectors). The direction can aso be derived from Ch

and Gv:
Gv[w][y])
Ghlz][y]

¢sobel [$] [y] = tan_l (

The 3x3 Sobedl kerndsare:

140

Programming with OpenGL: Advanced Rendering

Horizontal

-1 -2 -1
0 0 0
1 2 1

Vertical

12.4 1mage Warping
1241 ThePixel Zoom Operation

OpenGL provides control over the generation of fragments from pixels via the
pixel zoom operation. Zoom factors are specified using gl Pi xel Zoom Negative
zooms are used to specify reflections.

Pixel zooming may provefaster than the texture mapping techniques described
below on some systems, but do not provide as fine a control over filtering.

12.4.2 WarpsUsing Texture Mapping

Image warping or dewarping may be implemented using texture mapping by defin-
ing a correspondence between a uniform polygona mesh and awarped mesh. The
points of the warped mesh are assigned the corresponding texture coordinates of
the uniform mesh and the mesh is texture mapped with the original image. Using
this technique simple transformations such as zoom, rotation, or shearing can be
efficiently implemented. The technique also easily extends to much higher order
warps such as those needed to correct distortionin satellite imagery.

Line Integral Convolution Brian Cabra and Casey Leedom have developed a
techniquefor vector field visualization known as line integral convolution.[8] The
techniquetakes an input vector field and an input image. For each location p in the
input vector field, aparametric curve P(p, s) isgenerated which passesthrough the
location and followsthe vector field for some distancein either direction. To create
an output pixel ' (p), aweighted sum of the values of theinput image I along the
curve is computed. The weighting functionis &(z). Thus the continuous form of
theequationis:

P F(P(p,5)k(s)ds

fLL k(s)ds

(p)

Programming with OpenGL: Advanced Rendering

To discretize the equation, we use values Py ; dong thecurve P(p, s):

Yo F(P)hy
Zi’:o hl

The computation of the output values of this equation may accelerated using
OpenGL. We use a mesh texture mapped with the input image to create the output
image. The mesh isredrawn [times. At each step, we advect the texture coordi-
nates and accumul ate the results. Advection applies a mapping defined by the vec-
tor field to the input points. A simple advection implementation moves each point
by a fixed amount in the direction of the vector flow at the point. Advection has
been well-studied, and many more complicated algorithms exist.
Animplementation of the algorithm uses the following variables:

F'(p)

e i nt | : Number of steps
e Gfloat h[O0..(I-1)]: Kernel weights
e GLfloat hNornmalize: Normalizationfactor (3-_, k)
e GLfloat gridW gridH Szeofthegrid
e GLfloat *grid[2]: Grid of texture coordinates.
and the functions:

e advect grid(CGLfl oat s): Advect grid by s, which may be positive
or negative.

We begin by initializing the grid points:

voi d i nit(voi d)

{

int x, vy;

for (y =0; y <gridH y++) {
for (x = 0; x < gridW x++) {
grid[y*gridW+ x][0] = x;
gridly*gridwW+ x][1]
}
}

A

}

The texture image is then downloaded and bound. In the draw routinewe call:

142

Programming with OpenGL: Advanced Rendering

void lic(void)
{
int x, vy;
int i;

advect _grid(-1/2);
gl dear(3_COLOR BUFFER BI T | G._ACCUM BUFFER BI T);

/* scale texture coordi nates */

gl PushAt t ri b(GL_TRANSFORM BI T) ;

gl Mat ri xMode(GL_TEXTURE) ;

gl PushMatri x();

gl Scal ef (1.0/(gridw1), 1.0/(gridH1), 1);

for (i =0; i <1I; i++) {
gl Enabl e(G._TEXTURE _2D) ;
for (y = 0; y < gridH1; y++) {
gl Begi n(G._QUAD _STRI P) ;
for (x = 0; x < gridwWl; x++) {
gl TexCoord2f v(grid[y*gridW + x]);
gl Vertex2i (x, y);
gl TexCoord2f v(grid[y*gridW + x+1]);
gl Vertex2i (x+1, vy);
gl TexCoord2f v(grid[(y+1)*gridW + x]);
gl Vertex2i (x, y+1);
gl TexCoord2f v(grid[(y+1)*gridW + x+1]);
gl Vertex2i (x+1, y+1);
}
gl End();
}
gl O sabl e(G._TEXTURE_2D) ;
gl Accunm(G__ACCUM h[i]);

advect _grid(1);
}

gl Accum(GL_RETURN, hNornali ze);

gl PopMatri x();

143

Programming with OpenGL: Advanced Rendering

gl PopAttrib();
}

Inthel i c routine, wefirst clear the color and accumulation buffers. Next, we mod-
ify the texture matrix such that a texture coordinate of (gri dW gri dH) will
map to the upper right corner of the input texture.

Upon each iteration of the loop, we draw the grid using the array of texture
coordinates (vertex arrays could provide a more efficient implementation). Then,
we accumulate the results, weighting by the kernel array entry. Next, we call
advect _gri d to update the texture coordinate array. At the end of the routine,
we return the results and normalize by the sum of the kernel weights.

Upon implementation, several difficulties may present themselves. First, im-
plementing advect _gri d well isnon-trivia (but well-studied). Second, here we
have used a static grid to draw the field. This approach will probably lead to arti-
facts when drawing high-frequency fields or unnecessary inefficiency when draw-
ing low-frequency fields. A better approach would subdividethe grid based on the
behavior of thevector field. Also, the user may find that the results of the accumu-
lation operation go outsidetherange [—1..1] if care is not taken when choosing the
kernel and normalization values. Finally, dealing with thethree different coordinate
spaces (vector field, grid, and texture image) can become complicated.

13 VolumeVisualization with Texture

Volume rendering is a useful technique for visualizing three dimensional arrays of
sampled data. Examples of sampled 3D data can range from computational fluid
dynamics, medical datafrom CAT or MRI scanners, seismic data, or any volumet-
ric information where geometric surfaces are difficult to generate or unavailable.
Volume visualization provides a way to see through the data, revealing complex
3D relationships.

There are a number of approaches for visualization of volume data. Many of
them use data analysis techniques to find the contour surfaces inside the volume of
interest, then render the resulting geometry with transparency.

The 3D texture approach is a direct data visualization technique, using 2D or
3D textured data slices, combined using a blending operator [11]. The approach
described here is equivaent to ray casting [22] and produces the same results. Un-
like ray casting, where each image pixel is built up ray by ray, this approach takes
advantage of spatial coherence. The 3D textureis used as avoxel cache, process-
ing al rays simultaneously, one 2D layer at atime. Since an entire 2D dlice of the
voxels are “cast” at one time, the resulting agorithm is much more efficient than
ray casting.

144

Programming with OpenGL: Advanced Rendering

Figure 34. Slicing a 3D Texture to Render Volume

This section is divided into two approaches, one using 2D textures, the other
usinga3D texture. Althoughthe 3D texture approachissimpler and yields superior
resultsoverall, 3D texturesare currently still an EXT extensionin OpenGL and are
not universally availablelike 2D textures. 3D texturingiscurrently slatedto gointo
the core of OpenGL 1.2, so both methods[11] are described here.

13.1 Overview of the Technique

The technique for visualizing volume datais composed of two parts. First the tex-
ture datais sampled with planes parallel to the viewport and stacked along the di-
rection of view. These planes are rendered as polygons, clipped to the limits of the
texturevolume. These clipped polygonsare textured with the volume data, and the
resulting images are blended together, from back to front, towards the viewing posi-
tion. Aseach polygonisrendered, itspixel valuesare blended into the frame buffer
to provide the appropriate transparency effect.

If the OpenGL implementation doesn’t support 3D textures, amore limited ver-
sion of the technique can be used, where 3 sets of 2D textures are created, one set
for each mgjor plane of the volume data. The process then proceeds as with the

145

Programming with OpenGL: Advanced Rendering

shells

volume

Figure 35. Slicing a 3D Texture with Spheres

3D case, except that the slices are constrained to be parallel to one of the three 2D
texture sets.

Close-up views of the volume cause sampling errorsto occur at texelsthat are
far from theline of sight into the data. To correct this problem, use a series of con-
centric tessellated spheres centered around the eyepoint, rather than a single flat
polygon, to generate each textured “ slice” of thedata. Aswithflat slices, the spheri-
cal shellsshould beclippedtothedatavolume, and each textured shell blended from
back to front.

13.2 3D Texture Volume Rendering

Using 3D textures for volume rendering is the most desirable method. The slices
can be oriented perpendicular to the viewer’sline of sight, and close-up views can
be rendered with spherical “shell slices” to avoid aliasing in the parts of theimage
that where sampled far from the direction of view.

Here are the stepsfor rendering a volume using 2D textures:

1. Load the volume datainto a 3D texture. Thisis done once for a particular
datavolume.

2. Choose the number of slices, based on the criteriain Section 13.5. Usually
this matches the texel dimensions of the volume data cube.

3. Find thedesired viewpoint and view direction

146

Programming with OpenGL: Advanced Rendering

4. Compute a series of polygonsthat cut through the data perpendicular to the
direction of view. Usetexture coordinate generation to texturethe slice prop-
erly with respect to the 3D texture data

5. Use the texture transform matrix to set the desired orientation the textured
images on the dlices.

6. Render each dlice as atextured polygon, from back to front. A blend opera-
tionisperformed at each dlice; thetypeof blend dependsonthedesired effect.
See the blend equation descriptionsin Section 13.4 for details.

7. Astheviewpoint and direction of view changes, recompute the dataslice po-
sitions and update the texture transformati on matrix as necessary.

13.3 2D Texture Volume Rendering

Volume rendering with 2D texturesis more complex and does not provide as good
results as 3D textures, but can be used on any OpenGL implementation.

The problem with 2D textures is that the data slice polygons can’'t always be
perpendicular to theview direction. Three setsof 2D texture maps are created, each
set perpendicul ar to one of the major axes of the datavolume. Thesetexturesetsare
created from adjacent 2D slices of the original 3D volume data along a major axis.
The data dlice polygonsmust be aigned with whichever set of 2D texture mapsis
most parallel toit. Inthe worst case, the data slices are canted 45 degrees from the
view direction.

The more edge-on the dlices are to the eye, the worse the data sampling is. In
the extreme case of an edge-on slice, thetextured valuesontheslicesaren’t blended
a all. At each edge pixel, only one sampleisvisible, from theline of texel values
crossing the polygon slice. All the other values are obscured.

For the same reason, sampling thetexel dataas spherical shellstoavoidaiasing
when doing close-ups of the volume data, isn’'t practical with 2D textures.

Here are the steps for rendering a volume using 2D textures:

1. Generatethe three sets of 2D texturesfrom the volume data. Each set of 2D
textures is oriented perpendicular to one of volume's magjor axes. This pro-
cessing is done once for aparticular data volume.

2. Choose the number of slices, based on the criteriain Section 13.5. Usually
this matches the texel dimensions of the volume data cube.

3. Find thedesired viewpoint and view direction

147

Programming with OpenGL: Advanced Rendering

4. Find the set of 2D textures most perpendicular to the direction of view. Gen-
erate data slice polygons parallel to the 2D texture set chosen. Use texture
coordinate generation to texture each slice properly with respect toits corre-
sponding 2D texturein the texture set.

5. Use the texture transform matrix to set the desired orientation the textured
images on the dlices.

6. Render each dlice as atextured polygon, from back to front. A blend opera-
tionisperformed at each dlice; thetypeof blend dependsonthedesired effect.
See the blend equation descriptionsin Section 13.4 for details.

7. Astheviewpoint and direction of view changes, recompute the datadlice po-
sitions and update the texture transformation matrix as necessary. Always
orient the data slicesto the 2D texture set that is most closely aligned withit.

13.4 Blending Operators

There anumber of common blending functionsused in volumevisuaization. They
are described below.

1341 Over

The over operator [38] isthe most common way to blend for volume visualization.
Volumes blended with the over operator approximate the flow of light through a
colored, translucent material. The translucency of each point in the material isde-
termined by the value of the texel’s alpha channel. Texelswith higher aphavaues
tend to obscure texels behind them, and stand out through the obscuring texelsin
front of them.

Theover operator can beimplemented in OpenGL by setting the blend function
to perform the over operation:

gl Bl endFunc(GL_SRC_ALPHA, GL_ONE_M NUS_SRC_ALPHA)

13.4.2 Attenuate

The attenuate operator simulates an X-ray of the material. With attenuate, the
texel’s aphaappears to attenuate light shining through the material along the view
directiontowardstheviewer. Thetexd a phachannel models material density. The
final brightnessat each pixel is attenuated by thetotal texel density along the direc-
tion of view.

148

Programming with OpenGL: Advanced Rendering

Attenuation can be implemented with OpenGL by scaling each element by the
number of slices, then summing the results. This can be done by combination of
the appropriate blend function and blend color:

gl Bl endFunc(GL_CONSTANT_ALPHA EXT, G._ONE)
gl Bl endCol or EXT(1.f, 1.f, 1.f, 1.f/nunber_of slices)

1343 MIP

In this context MIP standsfor Maximum Intensity Projection. It isused in medica
imaging to visualize blood flow. MIP finds the brightest texel apha from al the
textureslicesat each pixe location. MIPisacontrast enhancing operator; structures
with higher alphavalues tend to stand out against the surrounding data.

MIP can be implemented with OpenGL using the blend function and the blend
minmax extension:

gl Bl endFunc(GL_ONE, G._ONE)
gl Bl endEquat i onEXT(GL_MAX_EXT)

13.4.4 Under

Volume glices rendered front to back with the under operator give the same re-
sult as the over operator blending slices from back to front. Unfortunately,
OpenGL doesn't have an exact equivalent for the under operator, although us-
ing gl Bl endFunc(GL_ONE_M NUS_DST, G._DST) isagood approximation.
Use the over operator and back to front rendering for best results. See section 6.1
for more details.

13,5 Sampling Frequency

There are anumber of factors to consider when choosing the number of slices (data
polygons) to use when rendering your volume:

Performance It's often convenient to have separate “interactive” and “detail”
modes for viewing volumes. The interactive mode can render the volume
with a smaller number of dlices, improving the interactivity at the expense
of image quality. Detail mode - rendering with more slices - can be invoked
when the volume being manipulated slows or stops.

Cubical Voxels The data slice spacing should be chosen so that the texture sam-
pling rate from slice to sliceis equal to the texture sampling rate within each

149

Programming with OpenGL: Advanced Rendering

dlice. Uniform sampling ratetreats 3D texturetexelsas cubical voxels, which
minimizes resampling artifacts.

For a cubical data volume, the number of slices through the volume should
roughly match the resolution in texels of the slices. When the viewing di-
rection is not along amagjor axis, the number of sample texels changes from
plane to plane. Choosing the number of texels dong each sideisusually a
good approximation.

Non-linear blending Theover operator isnot linear, so adding more slicesdoesn’t
just make the image more detailed. It also increases the overall attenuation,
making it harder to see density details at the “back” of the volume. Strictly
speaking, if you change the number of slices used to render the volume, the
alphavaues of the data should be rescaled. There is only one correct sam-
ple spacing for agiven data set’s alpha va ues. Generally, it doesn’t buy you
anything to have more slicesthan you have voxelsin your 3D data.

Per spective When viewing a volume in perspective, the density of slices should
increase with distance from the viewer. The datain the back of the volume
should appear denser as aresult of perspectivedistortion. If thevolumeisn't
being viewed in perspective, then uniformly spaced dataslicesare usually the
best approach.

Flat vs. Spherical Slices If you are using spherical slicesto get good close-ups of
the data, then the dlice spacing should be handled in the same way asfor flat
dlices. The spheres making up the slices should be tessellated finely enough
to avoid concentric shellsfrom touching each other.

2D vs. 3D Textures 3D textures can samplethedatain the S, T, or R directions
freely. 2D texturesare constrained to Sand T. 2D texture slices correspond
exactly to texel slices of the volume data. To create a dlice a an arbitrary
point would require resampling the volume data.

Theoretically, the minimum data slice spacing is computed by finding the
longest ray cast through the volume in the view direction, transforming the texel
valuesfound along that ray using thetransfer function (if thereisone), then finding
the highest frequency component of the transformed texels, and using doubl e that
number for the minimum number of data slices for that view direction.

Thiscan lead to a large number of slices. For adata cube 512 texelson aside,
the worst case would be at least 1024+/3 slices, or about 1774 slices. In practice,
however, the volume data tends to be bandwidth limited; and in many cases choos-
ing the number of data slices to be equal to the volumes dimensions, measured in

150

Programming with OpenGL: Advanced Rendering

texels, workswell. Inthisexample, youmay get satisfactory resultswith 512 slices,
rather than 1774. If the datais very blurry, or image quality is not paramount (for
example, in “interactive mode”), this value could be reduced by afactor of two or
four.

13.6 Shrinkingthe Volume Image

For best visual quality, render the volume image so that the size of atexel is about
thesizeof apixel. Besidesmakingit easier to see density detailsintheimage, larger
images avoid the problems associated with under-sampling a minified volume.

Reducing the volume size will cause the texel data to be sampled to a smaller
area. Since the over operator is non-linear, the shrunken data will interact with it
to yield an image that is different, not just smaller. The minified image will have
density artifacts that are not in the original volume data.

If asmaller imageisdesired, first render the image full size in the desired ori-
entation, then shrink the resulting 2D image.

13.7 Virtualizing Texture Memory

Volume datadoesn’t haveto belimited to the maximum size of 3D texture memory.
Thevisualizationtechniquecan be virtualized by dividing the datavolumeinto aset
of smaller “bricks’. Each brick isloaded into texture memory, then dataslices are
textured and blended from the brick as usual. The processing of bricks themselves
is ordered from back to front relative to the viewer. The process is repeated with
each brick in the volume until the entire volume has been processed.

To avoid sampling errors at the edges, data slice texture coordinates should be
adjusted so they don't usethe surface texels of any brick. Thebricksthemselvesare
oriented so that they overlap by one volume texel with their immediate neighbors.
Thisalowsthe results of rendering each brick to combine seamlesdly.

13.8 Mixing Volumetric and Geometric Objects

In many applicationsitisuseful to display both geometric primitivesand volumetric
data sets in the same scene. For example, medica data can be rendered volumet-
rically, with a polygonal prosthesisplaced insideit. The embedded geometry may
be opague or transparent.

Opague geometric objects are rendered along with the volumetric data slice
polygons using depth buffering for both. With depth buffering on, the pixds of
planesbehind the object aren’t rendered, whilethe planesin front of the object blend

151

Programming with OpenGL: Advanced Rendering

itin. The blending of the planesin front of the object gradually obscure it, making
it appear embedded in the volume data.

If the object itself should be transparent, it must be rendered a slice at atime.
The object is chopped into slabs using user defined clipping planes.The slab thick-
ness correspondsto the spacing between volume dataslices. Each slab of object cor-
responds to one of the data slices. Each slice of the object isrendered and blended
with its corresponding data slice polygon, as the polygons are rendered back to
front.

13.9 Transfer Functions

Different alphavaluesin volumetric data often correspond to different materialsin
the volume being rendered. To help analyze the volume data, a non-linear trans-
fer function can be applied to the texels, highlighting particul ar classes of volume
data. Thistransformation function can be applied through one of OpenGL’slookup
tables. The SGI _texture_color_table extension applies alookup table to texels val-
ues during texturing, after the texel valueisfiltered.

Since filtering adjusts the texel component values, a more accurate method is
to apply the lookup table to the texel values before the textures are filtered. If the
EXT _color_tabletable extensionis available, then acolortablein the pixel path can
be used to processthetexel valueswhilethetextureisloaded. If |ookup tablesaren’t
available, the processing can be done to the volume data by the application, before
loading the texture.

13.10 Volume Cutting Planes

Additional surfaces can be created on the volumewith user defined clipping planes.
A clipping plane can be used to cut through the volume, exposing a new surface.
Thistechniquecan help exposethevolume'sinternal structure. The rendering tech-
nique is the same, with the addition of one or more clipping planes defined while
rendering and blending the data slice polygons.

13.11 Shadingthe Volume

In addition to visualizing the voxel data, the data can belit and shaded. Since there
are no explicit surfacesin the data, lighting is computed per volume texel.

The direct approach to shadingisto do it on the host. The volumetric data can
be processed to find the gradient at each voxel. Then the dot product between the
gradient vector, now used as a hormal, and the light is computed, and the results
saved as3D data. Thevolumetric datanow containstheintensity at each pointinthe

152

Programming with OpenGL: Advanced Rendering

data, instead of data density. Specular intensity can be computed the same way, and
combined so that each texel containsthetotal light intensity at every sample point
in the volume. This processed data can then be visualized in the manner described
previously.

The problem with thistechniqueisthat a change of light source (or viewer po-
sition, if specular lighting is desired) requires that the data volume be reprocessed.
A more flexible approach isto save the components of the gradient vectorsas color
components in the 3D texture. Then the lighting can be done whilethe datais be-
ing visualized. One way to do thisis to transform the texel data using the color
matrix extension. The light direction can be processed to form a matrix that when
multiplied by the texture color components (now containing the components of the
normal at that point), the will produce the dot product of the two. The color ma
trix is part of the pixel path, so this processing can be done when the texture is be-
ing loaded. Now the 3D texture contains lighting intensities as before, but the dot
product calculations are donein the pixd pipeline, not in the host.

The datd's gradient vectors could also be computed interactively, as an exten-
sion of the texture bump-mapping technique described in Section 8.3. Each data
dlice polygon is treated as a surface polygon to be bump-mapped. Since the tex-
ture data must be shifted and subtracted, then blended with the shaded polygon to
generate the lit slice before blending, the process of generating lit slices must be
processed separately from the blending of slicesto create the volume image.

13.12 Warped Volumes

The datavolume can be warped by non-linear shifting the texture coordinatesof the
data slices. For more warping control, tessellate the the vertices to provide more
vertex locationsto perturb the texture coordinate values. Among other things, very
high quality atmospheric effects, such as smoke, can be produced with this tech-
nique.

14 Using the Stencil Buffer

The stencil buffer islikethe depth and color buffers, but isavalue per pixel that has
an application-specific use. The stencil buffer isn’t directly visible like the color
buffer, but the bitsin the stencil planes form an unsigned integer that affects and is
updated by drawing commands, through the stencil function and the stencil opera-
tions. The stencil function controls whether a fragment is discarded or not by the
stencil test, and the stencil operation determines how the stencil planes are updated
asaresult of that test. [32].

153

Programming with OpenGL: Advanced Rendering

| Comparison | Description of comparison test between reference and stencil value |

GL_NEVER awaysfails

GL_ALWAYS always passes

G._LESS passes if reference value is less than stencil buffer

G _LEQUAL passesif reference valueis lessthan or equal to stencil buffer
GL_EQUAL passesif reference valueis equal to stencil buffer

G _GEQUAL passesif reference valueis greater than or equal to stencil buffer
GL_CREATER | passesif reference valueis greater than stencil buffer
G _NOTEQUAL | passesif reference valueis not equa to stencil buffer

Table 4: Stencil Buffer Comparisons

Stencil buffer actionsare part of OpenGL'sfragment operations. Stencil testing
occurs immediately after the aphatest, and immediately before the depth test. If
GL_STENCI L_TEST is enabled, and stencil planes are available, the application
can control what happens under three different scenarios:

1. Thestencil test fails
2. Thestencil test passes, but the depth test fails
3. Boththestencil and the depth test pass.

Whether a stencil operation for a given fragment passes or fails has nothing to
do with the color or depth value of the fragment. The stencil operation is a com-
parison between the value in the stencil buffer for the fragment’s destination pixel
and the stencil reference value. A mask is bitwise AND-ed with the value in the
stencil planes and with the reference value before the the comparison is applied.
The reference value, the comparison function, and the comparison mask are set by
gl St enci | Func. The comparison functionsavailable are listed in Table 4.

Sencil function and stencil test are often used interchangeably in these notes,
but the “stencil test” specifically means the application of the stencil function in
conjunction with the stencil mask.

If the stencil test fails, the fragment is discarded (the color and depth values for
that pixel remain unchanged) and the stencil operation associated with the stencil
test failing is applied to that stencil value. If the stencil test passes, then the depth
test isapplied. If the depth test passes (or if depth testingisdisabled or if the visual
does not have adepth buffer), the fragment continueson through the pixel pipeline,
and the stencil operation corresponding to both stencil and depth passingis applied
to the stencil valuefor that pixel. If the depth test fails, the stencil operation set for
stencil passing but depth failing is applied to the pixel’s stencil value.

154

Programming with OpenGL: Advanced Rendering

| Stencil Operation | Results of Operation on Stencil Values \

G _KEEP stencil value unchanged

GL_ZERO stencil value set to zero

G _REPLACE stencil value replaced by stencil reference value
GL_I NCR stencil valueincremented

GL_DECR stencil value decremented

G__I NVERT stencil value bitwise inverted

Table 5: Stencil Buffer Operations

Thus, the stencil test controls which fragments continue towards the frame-
buffer, and the stencil operation controls how the stencil buffer is updated by the
results of both the stencil test and the depth test.

The stencil operations available are described in Table 5.

Thegl St enci | Op call setsthe stencil operationsfor all three stencil test re-
sults: stencil fail, stencil pass/depth buffer fail, and stencil pass/depth buffer pass.

Writes to the stencil buffer can be disabled and enabled per bit by
gl Stenci | Mask. This alows an application to apply stencil tests without
the results affecting the stencil values, or to partition the stencil buffer into several
smaller logica stencil buffers. Keep in mind, however, that the GL_I NCR and
GL _DECR operations operate on each stencil value asawhole, and may not operate
as expected when the stencil mask is not all ones. Stencil writes can also be
disabled by calling gl St enci | Op(GL._KEEP, GL_KEEP, GL_KEEP).

There are three other important ways of controlling and accessing the sten-
cil buffer. Every stencil value in the buffer can be set to a desired value by call-
inggl G ear St enci | andgl d ear (G._STENCI L_BUFFER_BI T) . Thecon-
tents of the stencil buffer can be read into system memory using gl ReadPi xel s
with theformat parameter set to GL_STENCI L_I NDEX. The contents of the stencil
buffer can also be set using gl Dr awPi xel s.

Different machines support different numbers of stencil bits per pixel. Use
gl Cetlntegerv(GL_STENCILBITS, ...) to see how many bits the
visual supports. If multiple stencil bits are available, the mask argument to
gl St enci | Func can beused to divideup the stencil buffer into anumber of dif-
ferent sections. Thisallowsthe applicationto store separate stencil values per pixel
within the same stencil buffer.

The following sections describe how to use the stencil buffer in a number of
useful multipass rendering techniques.

155

Programming with OpenGL: Advanced Rendering

—[~
B E
==
ury

=
=
=
=

1fo]1]o]1]oft
1[0J1]0J1]0]1
1joJt]o]ifo]t
First Scene Pattern Drawn In Second Scene Resulting Image
Stencil Buffer drawn with
glStencilFunc(GL_EQUAL, 1, 1);

Figure 36. Using stencil to dissolve between images

14.1 Dissolveswith Stencil

Stencil buffers can be used to mask selected pixels on the screen. This allows for
pixel by pixel compositing of images. You can draw geometry or arrays of stencil
valuesto control, per pixel, what isdrawn into the col or buffer. One way to usethis
capability isto composite multipleimages.

A common film technique is the “dissolve’, where one image or animated se-
guence is replaced with another, in a smooth sequence. The stencil buffer can be
used to implement arbitrary dissolve patterns. The a pha planes of the color buffer
and the al phafunction can a so be used to implement thiskind of dissolve, but using
the stencil buffer frees up thea phaplanesfor motion blur, transparency, smoothing,
and other effects.

Thebasic approach to astencil buffer dissolveisto render two different images,
using the stencil buffer to control where each image can draw to the frame buffer.
This can be done very simply by defining a stencil test and associating a different
reference valuewith each image. Thestencil buffer isinitialized toavalue suchthat
the stencil test will pass with one of theimages' reference vaues, and fail with the
other. Anexampleof adissolvepartway betweentwoimagesisshownin Figure 36.

At the start of the dissolve (the first frame of the sequence), the stencil buffer is
al cleared to one value, alowing only one of the images to be drawn to the frame
buffer. Frame by frame, the stencil buffer is progressively changed (in an appli-
cation defined pattern) to a different value, one that passes only when compared
against the second image’s reference value. As aresult, more and more of the first
image is replaced by the second.

Over aseries of frames, thefirst image “dissolves’ into the second, under con-
trol of the evolving pattern in the stencil buffer.

Hereis a step-by-step description of adissolve.

156

Programming with OpenGL: Advanced Rendering

Clear the stencil buffer withgl G ear (G._STENCI L_BUFFER_BI T)

Disable writing to the color buffer, using
gl Col or Mask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE)

If the values in the depth buffer should not change, use
gl Dept hMask(GL_FALSE)

For thisexample, we'll have the stencil test dwaysfail, and set the stencil op-

eration to write the reference value to the stencil buffer. Your application will aso
need to turn on stenciling before you begin drawing the dissolve pattern.

1. Turnon stenciling; gl Enabl e(G._STENCI L_TEST)

10.

11.
12.

Set stencil function to always fail; gl St enci | Func(G._NEVER, 1,
1)

Set stencil op to write 1 on stencil test failure
gl Stenci | Op(GL_REPLACE, GL_KEEP, GL_KEEP)

Write the dissolve pattern to the stencil buffer by drawing geometry or using
gl Dr awPi xel s.

Disablewriting to the stencil buffer with gl St enci | Mask(G-_FALSE) .
Set stencil functionto passon0; gl St enci | Func(G._EQUAL, 0, 1).
Enable color buffer for writing with gl Col or Mask(GL_TRUE,

G._TRUE, G._-TRUE, GL._TRUE).

If you're depth testing, turn depth buffer writes back on with
gl Dept hivask.

Draw thefirst image. 1t will only be written where the stencil buffer values
areO.

Change the stencil test so only values that are 1 pass
gl Stenci |l Func(GL_.EQUAL, 1, 1).

Draw the second image. Only pixelswith stencil value of 1 will change.
Repeat the process, updating the stencil buffer, so that more and more stencil

valuesare 1, using your dissolve pattern, and redrawing image 1 and 2, until
the entire stencil buffer has 1'sinit, and only image 2 isvisible.

If each new frame’sdissol vepattern isasuperset of the previousframe's pattern,

image 1 doesn’'t haveto bere-rendered. Thisis because once apixel of image1is
replaced with image 2, image 1 will never beredrawn there. Designing the dissolve
pattern with this restriction can improve the performance of thistechnique.

157

Programming with OpenGL: Advanced Rendering

Rendered Directly Decaled Using Stencil

Figure 37. Using stencil to render coplanar polygons

14.2 Decaling with Stencil

In the dissolve example, the stencil buffer controls where pixels were drawn from
an entire scene. Using stencil to control pixels drawn from a particular primitive
can help solve anumber of important problems:

1. Drawing depth-buffered, co-planar polygonswithout z-buffering artifacts.
2. Decaling multiple textures on a primitive.

Theideais similar to a dissolve: write values to the stencil buffer that mask
the areayou want to decal. Then use the stencil mask to control two separate draw
steps; one for the decaled region, one for the rest of the polygon.

A useful examplethat illustratesthe techniqueisrendering co-planar polygons.
If one polygon is to be rendered directly on top of another (runway markings, for
example), the depth buffer can’t be relied upon to produce a clean separation be-
tween thetwo. Thisis due to the quantization of the depth buffer. Since the poly-
gons have different vertices, the rendering algorithms can produce z values that are
rounded to the wrong depth buffer value, so some pixels of the back polygon may
show through the front polygon. In an application with a high frame rate, thisre-
sults in a shimmering mixture of pixels from both polygons (commonly called “Z
fighting” or “flimmering”). An exampleisshowninin Figure 37.

To solve this problem, the closer polygons are drawn with the depth test dis-
abled, on the same pixelscovered by thefarthest polygons. It appearsthat the closer

158

Programming with OpenGL: Advanced Rendering

polygonsare “decaled” on the farther polygons.
Decaled polygons can be drawn with the following steps:

1. Turnon stenciling; gl Enabl e(GL._STENCI L_TEST) .

2. Set stencil function to aways pass; gl St enci | Func(GL_ALVWAYS, 1,
1).

3. Set stencil op to set 1 if depth passes, O if it fals
gl Stenci | Qo(L_KEEP, GL_ZERO, GL_REPLACE).

4. Draw the base polygon.

5. Set stencil function to pass when stencil is 1;
gl Stencil Func(GL_EQUAL, 1, 1).

6. Disablewritesto stencil buffer; gl St enci | Mask(GL_FALSE) .
7. Turn off depth buffering; gl Di sabl e(G._DEPTH.TEST) .

8. Render the decal polygon.

The stencil buffer doesn’t have to be cleared to an initial value; the stencil val-
ues are initialized as a side effect of writing the base polygon. Stencil values will
be one where the base polygon was successfully written into the frame buffer, and
zero where the base polygon generated fragments that failed the depth test. The
stencil buffer becomes a mask, ensuring that the decal polygon can only affect the
pixels that were touched by the base polygon. Thisisimportant if there are other
primitives partially obscuring the base polygon and decal polygons.

There are a few limitations to this technique. First, it assumes that the deca
polygon doesn’t extend beyond the edge of the base polygon. If it does, you'll have
to clear the entire stencil buffer before drawing the base polygon, which is expen-
sive on some machines. If you are careful to redraw the base polygonwith the sten-
cil operations set to zero the stencil after you’ ve drawn each decaled polygon, you
will only haveto clear theentirestencil buffer once, for any number of decaled poly-
gons.

Second, if the screen extents of the base polygons you're decaling overlap,
you'll have to perform the decal process for one base polygon and its decals be-
fore you move on to another base and decals. Thisisan important consideration if
your application collects and then sorts geometry based on its graphics state, where
the rendering order of geometry may be changed by the sort.

Thisprocess can be extended to allow anumber of overlapping decal polygons,
the number of decals limited by the number of stencil bits availablefor the visual.

159

Programming with OpenGL: Advanced Rendering

The decals don't have to be sorted. The procedure is the similar to the previous
algorithm, with the following extensions.

Assignastencil bit for each decal and the base polygon. The lower the number,
the higher the priority of the polygon. Render the base polygon as before, except
instead of setting its stencil value to one, set it to the largest priority number. For
example, if there were three decal layers, the base polygon would have a value of
8.

When you render a decal polygon, only draw it if the decal’s priority number
is lower than the pixelsit'strying to change. For example, if the decal’s priority
number was 1, it would be able to draw over every other decal and the base poly-
gon; gl Stenci | Func(G._LESS, 1, 0) andgl Stencil| Op(GL_KEEP,
GL_REPLACE, GL_REPLACE).

Decals with the lower priority numbers will be drawn on top of decals with
higher ones. Since the region not covered by the base polygon is zero, no decals
canwritetoit. You can draw multipledecals at the same priority level. If you over-
lap them, however, the last one drawn will overlap the previous ones at the same
priority level.

Multipletextures can be drawn onto apolygonwith asimilar technique. Instead
of writing decal polygons, the same polygon isdrawn with each subsequent texture
and an aphavalueto blend the old pixel color and the new pixel color together.

14.3 Finding Depth Complexity with the Stencil Buffer

Finding depth complexity, or how many fragments were generated for each pixel
in a depth buffered scene, isimportant for analyzing graphics performance. It in-
dicates how well polygons are distributed across the frame buffer and how many
fragments were generated and discarded, clues for application tuning.

One way to show depth complexity is to use the color vaues of the pixelsin
the scene to indicate the number of times a pixel was written. It isrelatively easy
to draw an image representing depth complexity with the stencil buffer. The basic
approachissimple. Increment apixel’sstencil valueevery timethe pixel iswritten.
When the scene is finished, read back the stencil buffer and display it in the color
buffer, color coding the different stencil values.

Thistechniquegenerates acount of the number of fragments generated for each
pixel, whether thedepth test failed or not. By changing thestencil operations, asim-
ilar technique could be used to count the number of fragments discarded after fail-
ing the depth test or to count the number of timesa pixel was covered by fragments
passing the depth test.

Here' s the procedure in more detail :

160

Programming with OpenGL: Advanced Rendering

1. Clear the depth and stencil buffer;
gl A ear (GL_STENCI L_BUFFER.BI T| GL_DEPTH.BUFFERBI T) .

2. Enablestenciling; gl Enabl e(GL_STENCI L_TEST) .

3. Setuptheproper stencil parameters; gl St enci | Func(GL_ALWAYS, O,
0),gl Stenci | Op(GL_KEEP, GL_INCR, GL.INCR).

4. Draw the scene.

5. Read back the stencil buffer with gl ReadPi xels, using
GL_STENCI L_I NDEX asthe format argument.

6. Draw the stencil buffer to the screen using gl DrawPi xel s with
G _COLOR.|I NDEX asthe format argument.

You can control the mapping of stencil valuesto colors by turning on the color
mappingwithgl Pi xel Transferi (GL_MAP.COLOR, GL_TRUE) and setting
the appropriate pixel transfer maps with gl Pi xel Map. You can map the stencil
valuesto either RGBA or color index values, depending on the type of color buffer
to which you'rewriting.

144 Compositing Images with Depth

Compositing separate images together is a useful techniquefor increasing the com-
plexity of ascene[12]. Animage can be saved to memory, then drawn to the screen
using gl Dr awPi xel s. Both the color and depth buffer contents can be copied
into the frame buffer. Thisis sufficient for 2D style composites, where objects are
drawn on top of each other to create thefinal scene. To do true 3D compositing, it's
necessary to use the col or and depth val ues simultaneously, so that depth testing can
be used to determine which surfaces are obscured by others.

The stencil buffer can be used for true 3D compositingin atwo pass operation.
The color buffer is disabled for writing, the stencil buffer is cleared, and the saved
depth values are copied into the frame buffer. Depth testing is enabled, insuring
that only depth values that are closer to the origina can update the depth buffer.
gl St enci | O iscaledto set astencil buffer bit if the depth test passes.

The stencil buffer now contains a mask of pixels that were closer to the view
than the pixel s of the original image. The stencil function ischanged to accomplish
this masking operation, the color buffer is enabled for writing, and the color values
of the saved image are drawn to the frame buffer.

This technique works because the fragment operations, in particular the depth
test and the stencil test, are part of both the geometry and imaging pipelinesin

161

Programming with OpenGL: Advanced Rendering

OpenGL. Here is the technique in more detail. It assumes that both the depth and
color valuesof animage have been saved to system memory, and are to be compos-
ited using depth testing to an image in the frame buffer:

1. Clear the stencil buffer using gl dear, or'ing in
GL_STENCI L_.BUFFERBI T

2. Disablethe color buffer for writingwith gl Col or Mask

3. Set sencil values to 1 when the depth test passes by
caling gl Stenci | Func(GL_ALVWAYS, 1, 1), and
gl St enci | Op(GL_LKEEP, GL_KEEP, G._REPLACE)

4. Ensure depth testing is set; gl Enabl e(GL_DEPTH.TEST) ,
gl Dept hFunc(G._LESS)

5. Draw the depth values to the frame buffer with gl Dr awPi xel s, using
GL_DEPTH.COVPONENT for the format argument.

6. Set the sencil buffer to test for stencil values of
1 with gl Stenci |l Func(GL_.EQUAL, 1, 1) and
gl St enci | Op(GL_LKEEP, GL_KEEP, G._KEEP).

7. Disablethe depth testing with gl Di sabl e(GL_DEPTH.TEST)

8. Draw the color values to the frame buffer with gl Dr awPi xel s, using
GL_RGBA as the format argument.

At this point, both the depth and color values will have been merged, using the
depth test to control which pixels from the saved image would update the frame
buffer. Compositing can still be problematic when merging images with coplanar
polygons.

Thisprocess can berepeated to merge multipleimages. The depth values of the
saved image can be manipulated by changing the values of G._DEPTH_SCAL E and
GL _DEPTH BI AS with gl Pi xel Tr ansf er . Thistechnique could allow you to
squeeze the incoming image into alimited range of depth values within the scene.

15 LineRendering Techniques

15.1 Hidden Lines

Thistechniqueallowsyouto draw wireframe objectswith thehidden linesremoved,
or drawninastyledifferent from theonesthat arevisible. Thistechniquecan clarify
complex line drawings of objects, and improve their appearance [27] [4].

162

Programming with OpenGL: Advanced Rendering

The agorithm assumes that the object is composed of polygons. The agorithm
first rendersthe polygonsof the objects, then the edges themsel ves, which make up
thelinedrawing. Duringthefirst pass, only the depth buffer isupdated. During the
second pass, the depth buffer only allows edgesthat are not obscured by the objects
polygonsto be rendered.

Here'sthe algorithmin detail:

Disablewriting to the color buffer with gl Col or Mask
Enable depth testing with gl Enabl e(G._DEPTH.TEST)

Render the object as polygons

A W DR

Enablewriting to the color buffer
5. Render the object as edges

In order to improve the appearance of the edges (which may show depth buffer
aliasing artifacts), use polygon offset or stencil decaling techniques to draw the
polygon edges. The following technique works well, although its not completely
general. Usethe stencil buffer to mask where al the lines, both hidden and visible,
are. Then use the stencil function to prevent the polygon rendering from updating
the depth buffer where the stencil values have been set. When thevisiblelinesare
rendered, there is no depth value conflict, since the polygons never touched those
pixels.

Here's the modified algorithm:

Disablewriting to the color buffer with gl Col or Mask
Disable depth testing; gl Di sabl e(GL_DEPTH_TEST)
Enable stenciling; gl Enabl e(GL_STENCI L_TEST)

Clear the stencil buffer

a M w NP

Set the stencil buffer to set the stencil values to 1 where pixels are drawn;
gl Stenci | Func(GL_ALWAYS, 1, 1); gl Stencil Op(GL_KEEP,
GL_KEEP, G._REPLACE)

6. Render the object as edges

7. Use the stencil buffer to mask out pixels where the sten-
cil vadue is 1; gl Stencil Func(GL_EQUAL, 1, 1) and
gl Stenci | OQo(GL_KEEP, GL_KEEP, GL_KEEP)

163

Programming with OpenGL: Advanced Rendering

8. Render the object as polygons

9. Turn off stenciling gl Di sabl e(GL._STENCI L_TEST)
10. Enablewriting to the color buffer
11. Render the object as edges

Theonly problemwith thisalgorithmisif the hidden and visiblelinesaren’t all
the same color, or interpolate colors between endpoints. In this case, it’s possible
for ahidden and visible line to overlap, in which case the most recent line will be
the one that isdrawn.

Instead of removing hidden lines, sometimesit’s desirableto render them with
adifferent color or pattern. This can be done with a modification of the algorithm:

1. Leavethe color depth buffer enabled for writing

2. Set the color and/or pattern you want for the hidden lines
3. Render the object as edges

Disablewriting to the color buffer

Render the object as polygons

Set the color and/or pattern you want for the visiblelines

N o o k&

Render the object as edges

Inthistechnique, al theedgesare drawn twice; first withthehiddenlinepattern,
thenwiththevisibleone. Rendering the object aspolygonsupdatesthe depth buffer,
preventing the second pass of line drawing from effecting the hidden lines.

15.2 Haloed Lines

Haloing lines makes it easier to understand a wireframe drawing. Lines that pass
behind other lines stop short alittle before passing behind. 1t makesit clearer which
lineisin front of the other.

Hal oed linescan be drawn using thedepth buffer. Thetechniquehastwo passes.
First disablewriting to the color buffer; thefirst passonly updatesthe depth buffer.
Set the line width to be greater than the normal line width you' re using. The width
you choose will determine the extent of the halos. Render the lines. Now set the
line width back to normal, and enable writing to the color buffer. Render the lines
again. Each line will be bordered on both sides by a wider “invisibleling” in the
depth buffer. Thiswider linewill mask out other lines as they pass beneath it.

164

Programming with OpenGL: Advanced Rendering

1. Disablewriting to the color buffer

2. Enablethe depth buffer for writing

3. Increase linewidth

4. Render lines

5. Restore line width

6. Enablewriting to the color buffer

7. Ensurethat depth testing is on, passing on GL_LEQUAL
8. Render lines

Thismethod will not work where multiple lines with the same depth meet. In-
stead of connecting, all of the lineswill be “blocked” by the last wide line drawn.
There can also be depth buffer aiasing problems when the wide line z values are
changed by another wide line crossing it. This effect becomes more pronounced if
the narrow lines are widened to improve image clarity.

To avoid this problem, use polygon offset to move the narrower visiblelinesin
front of the obscuring lines. The minimum offset should be used to avoid linesfrom
one surface of the object “ popping through” the lines of aanother surface separated
by only asmall depth value.

If the vertices of the objects faces are oriented to allow face culling, Then face
culling can be used to sort the object surfaces and alow a more robust technique:
Thelines of the objectsback faces are drawn, then obscuring widelines of the front
face are drawn, then finally the narrow lines of the front face are drawn. No specia
depth buffer technigques are needed.

Cull the front faces of the object
Draw the object as lines
Cull the back faces of the object

Draw the object as wide lines in the background color

o H W N PR

Draw the object as lines

Since the depth buffer isn’'t needed, there are no depth aiasing problems. The
backface culling techniqueisfast and works well, but is not general. 1t won't work
for multiple obscuring or intersecting objects.

165

Programming with OpenGL: Advanced Rendering

I Depth buffer

///// changed

I Haloed Line

Figure 38. Haloed Line

15.3 Silhouette Edges

Sometimes it can be useful for highlighting purposes to draw a silhouette edge
around acomplex abject. A silhouette edge defines the outer boundaries of the ob-
ject with respect to the viewer.

Thestencil buffer can be used to render asilhouetteedge around an object. With
this technique, you can render the object, then draw a silhouette around it, or just
draw the silhouetteitself [4Q].

The object is drawn 4 times; each time displaced by one pixel inthex or y di-
rection. This offset must be done in window coordinates. An easy way to do this
isto change the viewport coordinates each time, changing the viewport transform.
The color and depth values are turned off, so only the stencil buffer is affected.

Every time the object covers a pixd, it increments the pixel’s stencil value.
When the four passes have been compl eted, the perimeter pixels of the object will
have stencil values of 2 or 3. The interior will have values of 4, and al pixels sur-
rounding the object exterior will have values of 0 or 1.

Hereisthe agorithmin detail:

1. If you want to see the object itself, render it in the usual way.

2. Clear the stencil buffer to zero.

3. Disablewriting to the color and depth buffers

4. Set the stencil function to aways pass, set the stencil operation to increment

5. Translate the object by +1 pixel iny, using gl Vi ewport

166

Programming with OpenGL: Advanced Rendering

Render the abject
Translate the object by -2 pixelsiny, using gl Vi ewpor t
Render the abject

© © N 9

Trandlate by +1 pixel x and +1 pixel iny

10. Render

11. Translate by -2 pixel in x

12. Render

13. Trandate by +1 pixel in x. You should be back to the original position.
14. Turn on the color and depth buffer

15. Set the stencil functionto passif the stencil valueis2 or 3. Sincethe possible
values range from 0 to 4, the stencil function can pass if stencil bit 1 is set
(counting from 0).

16. Renderingany primitivethat coversthe object will draw only the pixelsof the
silhouette. For a solid color silhouette, render a polygon of the color desired
over the object.

16 Tuning Your OpenGL Application

Tuning your software makes it use hardware capabilities more effectively. Writing
high-performance code is usually more complex than just following a set of rules.
Most often, it involves making trade-offs between special functionality, quality, and
performance for a particular application.

16.1 What IsPipeline Tuning?

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the
code in which a program spends 90% of itstime. Pipeline tuning uses a different
approach: it looksfor bottlenecks, overloaded stagesthat are holding up other pro-
Cesses.

At any time, one stage of the pipelineisthe bottleneck. Reducing thetime spent
in the bottleneck is the best way to improve performance. Conversely, doing work
that further narrows thebottleneck, or that creates anew bottleneck somewhere el se,
will further degrade performance. If different parts of the hardware are responsible

167

Programming with OpenGL: Advanced Rendering

for different parts of the pipeline, the workload can be increased at other parts of
the pipeline without degrading performance, as long as that part does not become
a new bottleneck. In thisway, an application can sometimes be altered to draw a
higher-quality image with no performance degradation.

Different programs stress different parts of the pipeline, so it’simportant to un-
derstand which elements in the graphics pipeline are the bottlenecks for your pro-
gram.

Note that in a software implementation, all the work is done on the host CPU.
As aresult, it doesn't make sense to increase the work in the geometry pipelineif
rasterization is the bottleneck: you’d be increasing the work for the CPU and de-
creasing performance.

16.1.1 Three-Stage Model of the Graphics Pipeline

The graphicspipeline consistsof three conceptual stages. Depending on theimple-
mentation, all parts may be done by the CPU or parts of the pipeline may be done
by an accderator card. The conceptual model is useful in either case: it helpsyou
to know where your application spendsitstime. The stages are:

e Theapplication. The application program running on the CPU, feeding com-
mands to the graphics subsystem (always on the CPU).

e The geometry subsystem. The per-polygon operations, such as coordinate
transformations, lighting, texture coordinate generation, and clipping (may
be hardware-accel erated).

e Theraster subsystem. The per-pixel operations, such asthe simple operation
of writing color valuesinto the framebuffer, or more complex operationslike
depth buffering, alpha blending, and texture mapping (may be hardware ac-
celerated).

The amount of work required from the different pipeline stages varies depend-
ing on what the application does. For example, consider a program that draws
a small number of large polygons. Because there are only a few polygons, the
pipeline stage that does geometry operationsis lightly loaded. Because those few
polygons cover many pixelson the screen, the pipeline stage that does rasterization
is heavily loaded.

To speed up this program, you must speed up the rasterization stage, either by
drawing fewer pixels, or by drawing pixelsin away that takes lesstime by turning
off modes like texturing, blending, or depth-buffering. In addition, because spare

168

Programming with OpenGL: Advanced Rendering

capacity isavailablein the per-polygon stage, you may beableto increasethework-
load at that stage without degrading performance. For example, try to use a more
complex lighting model, or define geometries such that they remain the same size
but 1ook more detail ed because they are composed of alarger number of polygons.

16.1.2 Finding Bottlenecksin Your Application

The basic strategy for isolating bottlenecks is to measure the time it takes to exe-
cute a program (or part of a program) and then change the code in ways that don’t
ater its performance (except by adding or subtracting work at a single point in the
graphics pipeline). If changing the amount of work at a given stage of the pipeline
does not alter performance appreciably, that stage is not the bottleneck. If thereis
a noticeable difference in performance, you’' ve found a bottleneck.

Application bottlenecks. To seeif your application isthe bottleneck, remove as
much graphics work as possible, while preserving the behavior of the application
in terms of the number of instructions executed and the way memory is accessed.
Often, changing just afew OpenGL callsis a sufficient test. For example, replac-
ing the vertex and normal calls gl Vert ex3f v and gl Nor nmal 3f v with color
subroutinecals (gl Col or 3f v) preservesthe CPU behavior whileeiminating all
drawing and lighting work in the graphics pipeline. If making these changes does
not significantly improve performance, then your application is the bottleneck.

Geometry bottlenecks. Programs that create bottlenecks in the geometry (per-
polygon) stage are termed transformlimited. To test for bottlenecks in geometry
operations, change the program so that the application code runs at the same speed
and the same number of pixels are filled, but the geometry work is reduced. For
example, if you are using lighting, call gl Di sabl e withaGL_LI GHTI NG argu-
ment to temporarily turnoff lighting. If performanceimproves, your application has
a per-polygon bottleneck. For more information, see “ Tuning the Geometry Sub-
system”.

Rasterization bottlenecks. Programs that cause bottlenecks at the rasterization
(per-pixel) stageinthe pipelinearefillratelimited. To test for bottlenecksin raster-
ization operations, shrink objects or make the window smaller to reduce the num-
ber of active pixds. Thistechniquewon’t work if your program atersits behavior
based onthe sizesof objectsor thesize of thewindow. You can also reduce thework
done per pixe by turning off per-pixel operations such as depth-buffering, textur-
ing, or dphablending. If any of these experiments speed up the program, it has a
fill-rate bottleneck. For more information, see “ Tuning the Raster Subsystem”.

169

Programming with OpenGL: Advanced Rendering

Performance Parameter \ Pipeline Stage

Amount of data per polygon All stages

Time of application overhead Application

Transform rate and mode setting for polygon | Geometry subsystem

Total number of polygonsin aframe Geometry and raster subsystem
Number of pixelsfilled Raster subsystem

Fill rate for the given mode settings Raster subsystem

Time of screen and/or depth buffer clear Raster subsystem

Table 6: Factors Influencing Performance

Many programs draw avariety of things, each of which stresses different parts
of the system. Decompose such a program into pieces and time each piece. You
can then focus on tuning the slowest pieces.

16.1.3 FactorsInfluencing Performance

Table 6 provides an overview of factors that may limit rendering performance and
the part of the pipeline they belong to.

16.2 Optimizing Your Application Code
16.2.1 Optimize Cacheand Memory Usage

On most systems, memory isstructured as a hierarchy that containsa small amount
of faster, more expensive memory at the top and alarge amount of slower memory
at the base. The hierarchy is organized from registersin the CPU at the top down
to the disks at the bottom. As memory locations are referenced, they are automati-
cally copiedinto higher levelsof the hierarchy, so datathat isreferenced most often
migrates to the fastest memory locations.

The goal of machine designers and programmers is to maximize the chance of
finding data as high up in the memory hierarchy as possible. To achieve this goal,
agorithmsfor maintaining the hierarchy, embodied in the hardware and the operat-
ing system, assumethat programs have locality of reference in both time and space;
that is, programs keep frequently accessed locations close together. Performance
increases if you respect the degree of locality required by each level inthe memory
hierarchy.

170

Programming with OpenGL: Advanced Rendering

Minimizing Cache Misses. Most CPU'’s have first-level instruction and data
caches on chip and many have second-level cache(s) that are bigger but somewhat
slower. Memory accesses are much faster if the dataisalready loaded into thefirst-
level cache. When your program accesses data that isn’t in one of the caches, it
getsacachemiss. Thiscausesablock of consecutively addressed words, including
the datathat you just accessed, to be loaded into the cache. Since cache missesare
costly, you should try to minimize them, using thesetips:

o Keep frequently accessed data together. Store and access frequently used
datainflat, sequential datastructuresand avoid pointer indirection. Thisway,
the most frequently accessed dataremainsin thefirst-level cache as much as
possible.

e Accessdata sequentially. Each cache miss bringsin ablock of consecutively
addressed words of needed data. If you are accessing data sequentially then
each cache miss will bring in n words (where n is system dependent); if you
are accessing only every nth word, then you will be constantly reading in un-
needed data, degrading performance.

e Avoidsimultaneously traversing several large buffersof data, suchasanarray
of vertex coordinates and an array of colors within aloop since there can be
cache conflictsbetween thebuffers. Instead, pack the contentsinto onebuffer
whenever possible. If you are using vertex arrays, try to use interleaved ar-
rays. (For more information on vertex arrays see “Rendering Geometry Ef-
ficiently”.) However, if packing your dataforces abigincrease in the size of
the data, it may not be the right optimization for your program.

16.2.2 StoreDatain aFormat That is Efficient for Rendering

Putting some extraeffort into generating asimpler database makes a significant dif-
ference when traversing that datafor display. A common tendency isto leave the
datain aformat that is good for loading or generating the object, but non-optimal
for actualy displaying it. For peak performance, do as much of the work as possi-
ble before rendering. Preprocessing of dataistypicaly done at initialization time
or when changing from a modeling to a fast-rendering mode.

See “Rendering Geometry Efficiently” and “Rendering Images Efficiently” for
tips on how to store your geometric data and image datato make it more efficient
for rendering.

Minimizing State Changes. Your program will almost always benefit if you re-
duce the number of state changes. A good way to do thisisto sort your scene data

171

Programming with OpenGL: Advanced Rendering

according to what stateis set and render primitiveswith the same state settingsto-
gether. Primitives should be sorted by the most expensive state settingsfirst. Typi-
cally itisexpensiveto changetexture binding, material parameters, fog parameters,
texture filter modes, and the lighting model. However, some experimentation will
be required to determine which state settings are most expensive on the system you
arerunning on. For example, on systemsthat accelerate rasterization, it may not be
that expensive to change rasterization controls such as the depth test function and
whether or not depth testing is enabled. But if you are running on a system with
software rasterization, this may cause the graphics pipelineto be revalidated.

It isaso important to avoid redundant state changes. If your datais storedina
hierarchical database, make decisions about which geometry to display and which
modesto use at the highest possiblelevel. Decisionsthat are made too far downthe
tree can be redundant.

16.2.3 Per-Platform Tuning

Many of the performance tuning techniques discussed here (e.g., minimizing the
number of state changesand disabling features that aren’t required) are agood idea
no matter what system you are running on. Other tuning techniquesneed to be pro-
grammed for aparticular system. For example, before you sort your database based
on state changes, you need to determine whi ch state changes are the most expensive
for each system you are interested in running on.

In addition, you may want to modify the behavior of your program depending
onwhich modes arefast. Thisis especialy important for programsthat must run at
aparticular frame rate. Features may need to be disabled in order to maintain the
frame rate. For example, if a particular texture mapping environment is slow on
one of your target systems, you may need to disable texture mapping or changethe
texture environment whenever your program is running on that platform.

Before you can tune your program for each of the target platforms, you will
need to do some performance characterization. Thisisn’'t always straightforward.
Oftenaparticular deviceisableto accelerate certain features, but not al at the same
time. Thusit isimportant to test the performance for combinations of features that
you will be using. For example, agraphics adapter may accel erate texture mapping
but only for certain texture parameters and texture environment settings. Evenif all
texture modes are accelerated, experimentation will be required to see how many
texturesyou can use at once without causing the adapter to page texturesin and out
of thelocal memory.

An even more complicated situation arises if the graphics adapter has a shared
pool of memory that isallocated to several tasks. For example, the adapter may not
have a frame buffer deep enough to contain a depth buffer and a stencil buffer. In

172

Programming with OpenGL: Advanced Rendering

thiscase, theadapter would be ableto accel erate both depth buffering and stenciling
but not at the same time. Or perhaps, depth buffering and stenciling can both be
accelerated but only for certain stencil buffer depths.

Typicaly, per-platform testing is done at initiaization time. You should do
some trial runsthrough your data with different combinations of state settings and
calculate thetime it takes to render in each case. You may want to save the results
in afile so your program doesn’'t haveto do thiseach timeit startsup. You can find
an example of how to measure the performance of particular OpenGL operations
and save the results using the isfast program on the website.

16.3 Tuningthe Geometry Subsystem
16.3.1 UseExpensive Modes Efficiently

OpenGL offers many featuresthat create sophisticated effectswith excellent perfor-
mance. However, thesefeatures have some performance cost, compared to drawing
the same scene without them. Use these features only where their effects, perfor-
mance, and quality are justified.

e Turn off features when they are not required. Once afeature has been turned
on, it can slow the transform rate even when it has no visible effect.

For example, the use of fog can slow the transform rate of polygons even
when the polygons are too close to show fog, and even when the fog
density is set to zero. For these conditions, turn off fog explicitly with
gl Di sabl e(AL_FQOG) .

e Minimize mode changes. Be especialy careful about expensive mode
changessuchaschanginggl Dept hRange parametersand changingfog pa
rameters when fog is enabled.

e For optimum performance, use flat shading whenever possible. This re-
duces the number of lighting computations from one per-vertex to one per-
primitive, and a so reduces the amount of datathat must be processed for each
primitive. Thisis particularly important for high-performance line drawing.

16.3.2 Optimizing Transformations

OpenGL implementationsare often ableto optimize transform operationsif the ma-
trix typeis known. Follow these guidelinesto achieve optimal transform rates:

e Usegl Loadl denti ty toinitializeamatrix, rather than loading your own
copy of the identity matrix.

173

Programming with OpenGL: Advanced Rendering

Use specific matrix calls such as gl Rotate, gl Transl ate, and
gl Scal e rather than composing your own rotation, translation, or scale
matrices and calling gl LoadMat ri x and/or gl Mul t Mat ri x.

16.3.3 Optimizing Lighting Performance

OpenGL offers alarge selection of lighting features. The penalties some features
carry may vary depending on the hardware you' re running on. Be prepared to ex-
periment with the lighting configuration.

Asagenera rule, usethesimplest possiblelightingmodel: asingleinfinitelight
withaninfiniteviewer. For somelocal effects, try replacinglocal lightswithinfinite
lightsand alocal viewer.

Use the following settings for peak performance lighting:

Singleinfinite light.

Nonlocal viewing. Set GL_LI GHT_MODEL _LOCAL VI EVER to GL_FALSE
ingl Li ght Model . (the default)

Single-sided lighting. Set GL_LI GHT_MODEL _TWO_SI DE to G _FALSE in
gl Li ght Mbdel . (the default)

Disable GL_COLOR_MATERI AL.

Disable GL_NORMALI ZE. Sinceit is usually necessary to renormalize nor-
mal swhen themodel -view matrix includesascaling transformation, consider
preprocessing the scene to eliminate scaling.

In addition, follow these guidelines to achieve peak lighting performance:

Avoid using multiplelights.
There may be a sharp drop in lighting performance when adding lights.

Avoid using local lights.
Local lightsare noticeably more expensive than infinite lights.

Don’t change material parameters frequently.

Changing material parameters can be expensive. If you need to change
the material parameters many times per frame, consider rearranging
the scene traversal to minimize material changes. Also consider using
gl Col or Materi al if you need to change some materia parameters
often, rather than using gl Mat eri al to change parameters explicitly.

174

Programming with OpenGL: Advanced Rendering

The following code fragment illustrates how to change ambient and diffuse
material parameters at every polygon or at every vertex:

gl Col or Mat eri al (GL_FRONT_AND_BACK, G._AMBI ENT_AND DI FFUSE) ;
gl Enabl e(GL_COLOR_MATERI AL) ;

/* Draw triangles: */

gl Begi n(G._TRI ANGLES) ;

/* Set anmbient and diffuse material paranmeters: */

gl Col or4f(red, green, blue, alpha);

gl Vertex3fv(...);glVertex3fv(...);gl Vertex3fv(...);

gl Col or4f(red, green, blue, alpha);

gl Vertex3fv(...); gl Vertex3fv(...);gl Vertex3fv(...);

gl End();

e Avoidloca viewer.

Local viewing: Setting GL_LI GHT_MODEL _LOCAL _VI EVEER to GL_TRUE
withgl Li ght Model , whileusinginfinitelightsonly, reduces performance
by asmall amount. However, each additional local light noticeably degrades
the transform rate.

¢ Disabletwo-sided lighting.
Two-sided lighting illuminates both sides of a polygon. Thisis much faster
than the alternative of drawing polygons twice. However, using two-sided
lighting is significantly slower than one-sided lighting for a singlerendering
of an object.

e Disable GL_NORMVALI ZE.

If possible, provide unit-length normals and don’t call gl Scal e to avoid
the overhead of GL_NORMALI ZE. On some OpenGL implementations it
may be faster to simply rescae the normal, instead of renormalizing
it, when the modelview matrix contains a uniform scae matrix. The
EXT_rescal e_nor mal extension may be supported by these implemen-
tations to improve the performance of this case. If so, you can enable
GL _RESCALE_NORMAL _EXT and the norma will be rescaled making re-
normalization unnecessary.

¢ Avoid changing the G._SHI NI NESS material parameter if possible.

Setting a new GL_SHI NI NESS val ue requires significant computation each
time.

175

Programming with OpenGL: Advanced Rendering

¢ Avoidusinglighting calsinsideagl Begi n/gl End sequence.

e Ifpossible avoidcallstogl Mat eri al duringagl Begi n/gl End drawing
sequence.

Cdling gl Mat eri al between gl Begi n/gl End has a serious perfor-
mance impact. While making such calls to change colors by changing ma-
terial propertiesis possible, the performance penalty makes it unadvisable.
Usegl Col or Mat eri al instead.

16.3.4 Advanced Geometry-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing.
Follow these guidelinesto draw objects with complex surface characteristics:

e Usetextureto replace complex geometry.

Texture mapping can be used instead of extra polygonsto add detail to a ge-
ometric object. This can greatly simplify geometry, resulting in a net speed
increase and an improved picture, aslong asit does not cause the program to
become fill-limited.

e Usetextured polygons as single-polygon billboards.

Billboards are polygonsthat are fixed at a point and rotated about an axis, or
about a point, so that the polygon always faces the viewer. Billboards can be
used for distant objects to save geometry.

e Usegl Al phaFunc in conjunctionwith oneor more texturesto give the ef-
fect of rather complex geometry on asingle polygon.

Consider drawing an image of a complex object by texturing it onto a sin-
gle polygon. Set alphavauesto zero in the texture outside the image of the
object. (The edges of the object can be antialiased by using alpha values
between zero and one.) Orient the polygon to face the viewer. To prevent
pixelswith zero alphavauesin the textured polygon from being drawn, call
gl Al phaFunc(GL_NOTEQUAL, 0.0).

This effect is often used to create objectslike trees that have complex edges
or many holes through which the background should be visible (or both).

¢ Eliminate objects or polygonsthat will be out of sight or too small to see.

e Usefog to increase visua detail without drawing small background objects.

176

Programming with OpenGL: Advanced Rendering

16.4 Tuningthe Raster Subsystem

An explosion of both data and operationsis required to rasterize a polygon asindi-
vidua pixels. Typically, the operations include depth comparison, Gouraud shad-
ing, color blending, logical operations, texture mapping, and possibly antialiasing.
The following techniques can improve performance for afill-limited applications.

16.4.1 Using Backface/Frontface Removal

To reduce fill-limited drawing, use backface and frontface removal. For exam-
ple, if you are drawing a sphere, half of its polygons are backfacing at any given
time. Backface and frontface removal is done after transformation calculations
but before per-fragment operations. This means that backface removal may make
transform-limited polygons somewhat slower, but make fill-limited polygons sig-
nificantly faster. You can turn on backface removal when you are drawing an object
with many backfacing polygons, then turn it off again when drawing is compl eted.

16.4.2 Minimizing Per-Pixel Calculations

Another way toimprovefill-limited drawing isto reducethework required to render
fragments.

Avoid Unnecessary Per-Fragment Operations. Turn off per-fragment opera
tionsfor objectsthat do not require them, and structure the drawing processto mini-
mi ze their usewithout causi ng excessivetoggling of modes. For example, if youare
using a phablending to draw some partially transparent objects, make surethat you
disable blending when drawing the opague objects. Also, if you enable alpha test
to render textures with holes through which the background can be seen, be sureto
disabl e al phatesting when rendering textures or objectswith no holes. It aso helps
to sort primitives so that primitives that require alpha blending or aphatest to be
enabled, are drawn at the same time.

Use Simple Fill Algorithmsfor Large Polygons. If you are drawing very large
polygons such as “backgrounds’, your performance will be improved if you use
simplefill algorithms. For example, you should set gl ShadeMbdel to GL_FLAT
if smooth shading isn't required. Also, disable per-fragment operations such as
depth buffering, if possible. If you need to texture the background polygons, con-
sider using GL_REPLACE for the texture environment.

177

Programming with OpenGL: Advanced Rendering

Use the Depth Buffer Efficiently. Any rendering operation can become fill-
limited for large polygons. Clever structuring of drawing can eliminate or minimize
per-pixel depth buffering operations. For example, if large backgrounds are drawn
first, they do not need to be depth buffered. It is better to disable depth buffering
for the backgrounds and then enableit for other objects whereit is needed.

Games and flight simulators often use this technique. The sky and ground are
drawn with depth buffering disabled, then the polygons lying flat on the ground
(runway and grid) are drawn without suffering a performance penalty. Finally,
depth buffering is enabled for drawing the mountains and airplanes.

There are many other special cases in which depth buffering might not be re-
quired. For example, terrain, ocean waves, and 3D function plots are often repre-
sented as height fields (X-Y grids with one height value at each lattice point). It's
straightforward to draw height fields in back-to-front order by determining which
edge of the field is furthest away from the viewer, then drawing strips of trian-
glesor quadrilateralsparallel to that starting edge and working forward. The entire
height field can be drawn without depth testing provided it doesn’'t intersect any
piece of previously-drawn geometry. Depth values need not be written at all, un-
less subsequently-drawn depth buffered geometry might intersect the height field;
in that case, depth values for the height field should be written, but the depth test
can be avoided by calling gl Dept hFunc(GL_ALWAYS) .

16.4.3 Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:

¢ Avoid frequent switching between texture maps. If you have many small tex-
tures, consider combining theminto asinglelarger, tiled texture. Rather than
switching to anew texture before drawing atextured polygon choose texture
coordinatesthat select the appropriate small texture tile within the large tex-
ture.

e Use texture objects to encapsulate texture data Place dl the
gl Texl mage calls (including mipmaps) required to completely spec-
ify atexture and the associated gl TexPar anet er calls (which set texture
properties) into a texture object and bind this texture object to the rendering
context. Thisallowstheimplementation to compilethe texture into aformat
that is optimal for rendering and, if the system accelerates texturing, to
efficiently manage textures on the graphics adapter.

e If possible, usegl TexSubl mageD toreplace al or part of an existing tex-
tureimage rather than the more costly operations of deleting and creating an
entire new image.

178

Programming with OpenGL: Advanced Rendering

e Call gl AreText ur esResi dent to make sure that all your textures are
resident during rendering. (On systems where texturing is done on the host,
gl AreText ur esResi dent aways returns G._TRUE.) If necessary, re-
duce the size or internal format resolution of your textures until they all fit
into memory. If such a reduction creates intolerably fuzzy textured objects,
you may give some textures lower priority.

¢ Avoid expensivetexturefilter modes. On some systems, trilinear filtering is
much more expensive than point sampling or bilinear filtering.

16.4.4 Clearingthe Color and Depth Buffers Simultaneously

The most basic per-frame operations are clearing the color and depth buffers. On
some systems, there are optimizations for common special cases of these opera-
tions.

Whenever you need to clear both the color and depth
buffers, don't clear each buffer independently. Instead use
gl A ear (GL_COLOR BUFFER BI T| GL_DEPTH.BUFFER_BI T)

Also, be sure to disable dithering before clearing.

16.5 Rendering Geometry Efficiently
16.5.1 Using Peak-Performance Primitives

This section describes how to draw geometry with optimal primitives. Consider
these guidelinesto optimize drawing:

e Use connected primitives (line strips, triangle strips, triangle fans, and quad
strips).

Connected primitives are desirable because they reduce the amount of data
and the amount of per-polygon or per-line work done by the OpenGL. Be
sure to put as many vertices as possiblein agl Begi n/gl End sequence to
amortize the cost of agl Begi n and gl End.

e Avoidusing gl Begi n(G._POLYGON) .

When rendering independent triangles, use gl Begi n(GL_TRI ANGLES)
instead of gl Begi n(GL._POLYGQN) . Also, when rendering independent
quadrilaterals, use gl Begi n(GL_QUADS) .

e Batch primitives between gl Begi n and gl End.

179

Programming with OpenGL: Advanced Rendering

Use asingle call to gl Begi n(GL_TRI ANGLES) to draw multiple inde-
pendent trianglesrather than calling gl Begi n(GL_TRI ANGLES) multiple
times. Also, use asingle cal to gl Begi n(G._QUADS) to draw multiple
independent quadrilaterals, and a single call to gl Begi n(GL_LI NES) to
draw multiple independent line segments.

o Use“well-behaved” polygons—convexand planar, withonly threeor four ver-
tices.
Concave and self-intersecting polygons must be tessellated by GLU before
they can be drawn, and are therefore prohibitively expensive. Nonplanar
polygonsand polygonswith large numbers of vertices are more likely to ex-
hibit shading artifacts.

If your database has polygons that are not well-behaved, perform an initial
one-time pass over the database to transform the troublemakers into well-
behaved polygonsand use the new database for rendering. You can store the
resultsin OpenGL display lists. Using connected primitives results in addi-
tiona gains.

e Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors
sent per polygon. Setting a color or normal per vertex, regardless of the
gl ShadeMbdel used, may be slower than setting only a color per poly-
gon, because of the time spent sending the extradataand resetting the current
color. The number of normasand colors per polygon also directly affectsthe
size of adisplay list containing the object.

e Group like primitives and minimize state changes to reduce pipeline revali-
dation.
16.5.2 Using Vertex Arrays
Vertex arrays are availablein OpenGL 1.1. They offer the following benefits:
e The OpenGL implementation can take advantage of uniform data formats.

e Thegl I nt erl eavedAr r ays cal letsyou specify packed vertex dataeas-
ily. Packed vertex formats are typically faster for OpenGL to process.

e Thegl Dr awAr r ays call reduces subroutinecall overhead.

e Thegl DrawkEl enent s call reduces subroutine call overhead and also re-
duces per-vertex calculations because vertices are reused.

180

Programming with OpenGL: Advanced Rendering

e Usethe EXT_conpi | ed_vertex_array extensionif itisavailable. This
extension allowsyou to lock down the portions of the arrays that you are us-
ing. Thisway the OpenGL implementation can DMA thearraysto thegraph-
ics adapter or reuse per-vertex calculationsfor verticesthat are shared by ad-
jacent primitives.

If you use glBegin and gl End instead of gl DrawArrays or
gl Dr awEl enent s cals, put as many vertices as possible betweenthegl Begi n
andthegl End cdlls.

16.5.3 Using Display Lists

You can often improve performance by storing frequently used commandsin adis-
play list. If you plan to redraw the same geometry multipletimes, or if you havea
set of state changes that need to be applied multiple times, consider using display
lists. Display listsallow you to define the geometry and/or state changes once and
execute them multiple times. Some graphics hardware may store display listsin
dedicated memory or may store the datain an optimized form for rendering.

The biggest drawback of using display listsis data expansion. The display list
contains an entire copy of al your dataplus additional datafor each command and
for each list. Asaresult, tuning for display listsfocuses mainly on reducing storage
requirements. Performance improves if the data that is being traversed fits in the
cache. Follow these rules to optimize display lists:

e Cadl gl Del et eLi st s todeletedisplay liststhat arenolonger needed. This
frees storage space used by the del eted display listsand expeditesthe creation
of new display lists.

¢ Avoidduplicationof display lists. For example, if you have ascenewith 100
spheres of different sizesand materials, generate onedisplay list that isa unit
sphere centered about the origin. Then reference the sphere many times, set-
ting the appropriate material properties and transforms each time.

e Make the display lists as flat as possible, but be sure not to exceed the
cache size. Avoid using an excessive hierarchy with many invocations to
gl Cal | Li st. Each gl Cal | Li st invocation reguires the OpenGL im-
plementationto do somework (eg., atablelookup) to find the designated dis-
play list. A flat display list requireslessmemory and yieldssimpler and faster
traversal. It aso improves cache coherency.

On the other hand, excessive flattening increases the size. For example, if
you' re drawing a car with four wheels, having a hierarchy with four pointers

181

Programming with OpenGL: Advanced Rendering

from the body to onewhesel is preferable to aflat structurewith one body and
four wheels.

e Avoidcreating very small display lists. Very small listsmay not perform wel
sincethereis some overhead when executingalist. Also, itisofteninefficient
to split primitive definitions across display lists.

o If appropriate, store state settings with geometry; it may improve perfor-
mance.

For example, suppose you want to apply a transformation to some geomet-
ric objects and then draw theresult. If the geometric objects are to be trans-
formed in the sameway each time, itisbetter to storethe matrix inthedisplay
list.

16.5.4 Balancing Polygon Size and Pixel Operations

The optimum size of polygons depends on the other operations going on in the

pipeline:

¢ If the polygons are too large for the fill-rate to keep up with the rest of the
pipeline, the application is fill-rate limited. Smaller polygons balance the
pipeline and increase the polygon rate.

o If the polygons are too small for the rest of the pipelineto keep up with fill-
ing, then the applicationistransform limited. Larger and fewer polygons, or
fewer vertices, balance the pipeline and increase thefill rate.

16.6 Rendering I mages Efficiently

To improve performance when drawing pixel rectangles, follow these guidelines:
e Disableall per-fragment operations.
¢ Disabletexturing and fog.

e Defineimagesin the native hardware format so type conversion is not nec-
essary.

o Know where the bottleneck is.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to
overload in host bandwidth, processing, or rasterizing. When all modes are
off, the path is most likely limited by host bandwidth, and a wise choice of

182

Programming with OpenGL: Advanced Rendering

host pixel format and type pays off tremendously. For thisreason, using type
GL_UNSI GNED_BYTE, for the image components is sometimes faster.

Zooming up pixels may create a raster bottleneck.

¢ A big pixel rectangle has ahigher throughput (that is, pixels per second) than
asmall rectangle. Because the imaging pipelineis tuned to trade off arela-
tively large setup time with ahigh throughput, alarge rectangle amortizesthe
setup cost over many pixels.

16.7 Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of
applications. This section discusses those factors.

16.7.1 Factors Contributing to Animation Speed

The smoothness of an animation depends on its frame rate. The more frames ren-
dered per second, the smoother the motion appears.

Smooth animation also requires double buffering. In double buffering, one
framebuffer holdsthe current frame, which is scanned out to the monitor by video
hardware, while the rendering hardware is drawing into a second buffer that is not
visible. When the new framebuffer is ready to be displayed, the system swaps the
buffers. The system must wait until the next vertical retrace period between raster
scans to swap the buffers, so that each raster scan displays an entire stable frame,
rather than parts of two or more frames.

Frame rates must beintegral multiples of the screen refresh time, whichis 16.7
msec (milliseconds) for a 60-Hz monitor. If the draw time for a frame is slightly
longer than the time for n raster scans, the system waits until the n+ 1st vertical re-
trace before swapping buffers and alowing drawing to continue, so the total frame
timeis (n+1)*16.7 msec.

To summarize: A changein thetime spent rendering a frame has no visible ef-
fect unlessit changes the tota timeto a different integer multiple of the screen re-
fresh time.

If you want an observable performance increase, you must reduce the render-
ing time enough to take a smaller number of 16.7 msec raster scans. Alternatively,
if performance is acceptable, you can add work without reducing performance, as
long as the rendering time does not exceed the current multiple of the raster scan
time.

To help monitor timing improvements, turn off double buffering. If you don't,
it'sdifficult to know if you're near a 16.7 msec boundary.

183

Programming with OpenGL: Advanced Rendering

16.7.2 Optimizing Frame Rate Performance

Themost important aid for optimizing frame rate performanceistaking timing mea-
surements in single-buffer mode only. For more detailed information, see “ Taking
Timing Measurements’.

In addition, follow these guidelines to optimize frame rate performance:

¢ Reduce drawing timeto alower multiple of the screen refresh time.
Thisisthe only way to produce an observable performance increase.

e Perform non-graphics computation after swapping buffers.

A program is free to do non-graphics computation during the wait cycle be-
tween vertical retraces. Therefore, the procedure for rendering a frame is:
call swap buffersimmediately after sending the last graphicscall for the cur-
rent frame, perform computation needed for the next frame, then execute
OpenGL callsfor the next frame.

¢ Do non-drawing work after a screen clear.

Clearing a full screen takes time. If you make additional drawing callsim-
mediately after ascreen clear, you may fill up the graphics pipelineand force
the program to stall. Instead, do some non-drawing work after the clear.

16.8 Taking Timing M easurements

Timing, or benchmarking, parts of your program is an important part of tuning. It
helps you determine which changes to your code have a noticeable effect on the
speed of your application.

To achieve performance that is demonstrably closeto the best the hardware can
achieve, you can first follow the more general tuning tips provided here, but you
then need to apply arigorousand systematic analysis.

16.8.1 Benchmarking Basics

A detailed analysisinvolves examining what your program is asking the systemto
do and then cal culating how long that should take, based on the known performance
characteristics of the hardware. Compare this calculation of expected performance
with the performance actually observed and continueto apply the tuning techniques
until the two match more closely. At this point, you have a detailed accounting of
how your program spendsitstime, and you are in astrong position both to tune fur-
ther and to make appropriate decisions considering the speed-versus-quality trade-
Off.

184

Programming with OpenGL: Advanced Rendering

The following parameters determine the performance of most applications:

Total number of polygonsin aframe

Transform rate for the given polygon type and mode settings
Number of pixelsfilled

Fill rate for the given mode settings

Time of color and depth buffer clear

Time of buffer swap

Time of application overhead

Number of attribute changes and time per change

16.8.2 Achieving Accurate Timing M easurements

Consider these guidelinesto get accurate timing measurements:

Take measurements on a quiet system. Verify that no unusual activity istak-
ing place on your system while you take timing measurements. Terminate
other applications. For example, don’'t have aclock or anetwork application
running while you are benchmarking.

Choose timing trialsthat are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time
that’s at |east one hundred times the clock resolution. A good rule of thumb
isto benchmark something that takes at |east two seconds so that the uncer-
tainty contributed by the clock reading islessthan one percent of thetotal er-
ror. To measure something that’s faster, write aloop to execute the test code
repeatedly.

Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of a
giventimingtrial. If the scene changes, the current bottleneck in the graphics
pipeline may change, making your timing measurements meaningless. For
example, if you are benchmarking the drawing of arotating airplane, choose
asingle frame and draw it repeatedly, instead of letting the airplane rotate.
Once a single frame has been analyzed and tuned, look at frames that stress
the graphics pipelinein different ways, then analyze and tune them individ-
ually.

185

Programming with OpenGL: Advanced Rendering

e Compare multipletrials.

Run your program multiple times and try to understand variance in the tri-
as. Variance may be due to other programs running, system activity, prior
memory placement, or other factors.

e Call gl Fi ni sh before reading the clock at the start and at the end of the
timetrial.

Thisisimportant if you are using a machine with hardware accel eration be-
cause the graphics commands are put into a hardware queue in the graphics
subsystem, to be processed as soon asthegraphicspipelineisready. The CPU
can immediately do other work, including issuing more graphics commands
until the queuefills up.

When benchmarking a piece of graphicscode, you must includein your mea
surements the time it takes to process al the work Ieft in the queue after the
last graphics call. Call gl Fi ni sh at the end of your timing trial, just be-
fore sampling the clock. Also call gl Fi ni sh before sampling the clock
and starting thetrial, to ensure no graphics callsremain in the graphics queue
ahead of the process you aretiming.

16.8.3 Achieving Accurate Benchmarking Results

To benchmark performance for a particular code fragment, follow these steps:

e Determine how many polygonsare being drawn and estimate how many pix-
els they cover on the screen. Have your program count the polygons when
you read in the database. To determine the number of pixelsfilled, start by
making a visual estimate. Be sure to include surfaces that are hidden behind
other surfaces, and noticewhether or not backface €liminationisenabled. For
greater accuracy, use feedback mode and cal cul ate the actual number of pix-
esfilled or use the stencil buffer technique described in Section 14.3.

e Determine the transform and fill rates on the target system for the mode set-
tings you are using. Refer to the product literature for the target system to
determinesometransform andfill rates. Determineothersby writingand run-
ning small benchmarks.

¢ Divide the number of polygonsdrawn by the transform rate to get the time
spent on per-polygon operations.

e Dividethe number of pixelsfilled by thefill rate to get the time spent on per-
pixel operations.

186

Programming with OpenGL: Advanced Rendering

e Measure the time spent in the application. To determine time spent execut-
ing instructionsin the application, stub out the OpenGL calls and benchmark
your application.

Thisprocesstakes some effort to complete. In practice, it’sbest to make aquick
start by making some assumptions, then refine your understanding as you tune and
experiment. Ultimately, you need to experiment with different rendering techniques
and do repeated benchmarks, especialy when the unexpected happens.

17 List of Demo Programs

This list shows the demonstration programs available on the Programming with
OpenGL: Advanced Rendering web site at:

http://ww. sgi . coml Technol ogy/ Open@G./ advanced_si g97. ht ni

Theprograms are grouped by the sectionsin which they’ rediscussed. Eachline
gives a short description of the program.

Modelling

e tvertex.c - show problems caused by t-vertices

e quad_decomp.c - shows example of quadrilateral decomposition

e tess.c - shows examples of sphere tessellation

e cap.c - shows how to cap the region exposed by a clipping plane

e Csg.c - showshow to render CSG solids with the stencil buffer
Geometry and Transformations

e depth.c - compare screen and eye space z

e decal.c - shows how to decal coplanar polygonswith the stencil buffer

e hiddenline.c - shows how to render wireframe objectswith hidden lines

stereo.c - shows how to generate stereo image pairs

tile.c - showshow to tileimages
e raster.c - shows how to move the current raster position off-screen
Texture Mapping

e mipmap_lines.c - shows different mipmap generation filters

187

Programming with OpenGL: Advanced Rendering

genmipmap.c - shows how to use the OpenGL pipelineto generate mipmaps
textile.c - shows how to tile textures

texpage.c - shows how to page textures

textrim.c - shows how to trim textures

textext.c - shows how draw characters with texture maps

projtex.c - shows how to do spotlight illumination using projective textures
cyl _billboard.c - shows how to do cylindrical billboards

sph_billboard.c - shows how to do spherical billboards

warp.c - shows how to warp images with textures

noise.c - shows how to make a filtered noise function

spectral.c - shows how to make a spectral function from filtered noise
spotnoise.c - shows how to use spot noise

tex3dsolid.c - renders a solid image with a 3d texture

tex3dfunc.c - creates a 2d texture that varies withr value

Blending

comp.c - shows Porter/Duff compositing
transp.c - shows how to draw transparent objects

imgproc.c - shows image processing operations

Antialiasing

lineaa.c - shows how to draw antialiased lines
texaa.c - shows how to antialias with texture

accumaa.c - shows how to antialias a scene with the accumul ation buffer

Lighting

envphong.c - shows how to draw phong highlights with environment map-
ping

188

Programming with OpenGL: Advanced Rendering

lightmap2d.c - shows how to do 2D texture lightmaps
lightmap3d.c - shows how to do 3D texture lightmaps

bumpmap.c - shows how to bumpmap with texture

Scene Realism

motionblur.c - shows how to do motion blur with the accumulation buffer

field.c - shows how to achieve depth of field effects with the accumulation
buffer

genspheremap.c - shows how to generate sphere maps

mirror.c - shows how to do planar mirror reflections

projshadow.c - shows how to render projection shadows
shadowvol.c - shows how to render shadows with shadow volumes
shadowmap.c - shows how to render shadows with shadow maps

softshadow.c - shows how to do soft shadows with the accumulation buffer
by jittering light sources

softshadow?2.c - shows how to do soft shadows by creating lighting textures
with the accumulation buffer

Transparency

screendoor.c - shows how to do screen-door transparency

alphablend.c - shows how to do transparency with alphablending

Natural Phenomena

smoke.c - shows how to render smoke

smoke3d.c - shows how to render 3D smoke using volumetric techniques
cloud.c - shows how to render a cloud layer

cloud3d.c - shows how to render a 3D cloud using volumetric techniques
fire.c - showshow to render fire using movie loops

water.c - shows an example water rendering technique

189

Programming with OpenGL: Advanced Rendering

¢ lightpoint.c - shows how to render point light sources

I mage Processing

e convolve.c - shows how to convolve with the accumulation buffer
e cmatrix - shows how to modify colorswith a color matrix
Volume Visualization with Texture

e vol2dtex.c - volume visualization with 2D textures

e vol3dtex.c - volume visualization with 3D textures

Using the Stencil Buffer

e dissolve.c - shows how to do dissolveswith the stencil buffer

e zcomposite.c - showshow to composite depth-buffered images with the sten-
cil buffer

Line Rendering Techniques
¢ haloed.c - shows how to draw haloed lines using the depth buffer

¢ silhouette.c - shows how to draw the silhouette edge of an object with the
stencil buffer

18 Equation Appendix

This Appendix describes some important formula and matrices referred to in the
text.

18.1 Projection Matrices

18.1.1 Perspective Projection

Thecdl gl Frustun{l, r, b, t, n, f) generatesR, where:

2n r41 r— r
= = o000
2n_ +b t—b 1+
P 0 B 0 |agpio| 0 52 0 520
0 0 o2 0 0 0 -1
0o 0 -1 0 0 0 = b

Risdefinedaslongas! # r,t # b,andn # f.

190

Programming with OpenGL: Advanced Rendering

18.1.2 Orthographic Projection
Thecdl gl Otho(l, r, b, t, u, f) generatesR,where:

N
<

|
—

|

%
*

2 r
=, T = 00
R e B
0 0 - - 0 0 5 =
0 0 0 1 0 0 0 1

Risdefinedaslongas! # r,t # b,andn # f.

18.2 Lighting Equations
18.2.1 Attenuation Factor

The attenuation factor is defined to be:

1
ke + kid + kyd?

attenuation factor =
where
d = distance between the light’s position and the vertex
k. = GL_CONSTANT_ATTENUATI ON
k; = GL_LI NEAR_ATTENUATI ON
k, = GL_QUADRATI C_ATTENUATI ON

If thelightis directional, the attenuation factor is 1.

18.2.2 Spotlight Effect

The spotlight effect evaluatesto one of three possibleval ues, depending on whether
thelight isactually aspotlight and whether thevertex liesinside or outsidethe cone
of illumination produced by the spotlight:

o 1if thelight isn’t a spotlight (GL_SPOT_CUTOFF is 180.0).

e Oif thelightisaspotlight but the vertex lies outside the cone of illumination
produced by the spotlight.

191

Programming with OpenGL: Advanced Rendering

e (max{v - d,0})FLSPOT-EXPONENT wheret v = (v, vy, v,) isthe unit
vector that points from the spotlight (GL_PCSI TI ON) to the vertex.

d = (dg, dy,d.) isthe spotlight’s direction (A._SPOT_DI RECTI ON), as-
suming thelight isaspotlight and the vertex liesinside the cone of illumina-
tion produced by the spotlight.

The dot product of the two vectors v and d varies as the cosine of the angle
between them; hence, objectsdirectly in line get maximum illumination, and
objects off the axis have their illumination drop as the cosine of the angle.

To determine whether a E)articular vertex Iie;s within the cone of illumination,
OpenGL evaluates (max{v-d, 0}) where ¢ and d are asdefined above. If thisvalue
islessthan the cosine of the spotlight’scutoff angle (GL_SPOT_CUTOFF), thenthe
vertex lies outside the cone; otherwise, it'sinside the cone.

18.2.3 Ambient Term

The ambient term is simply the ambient color of the light scaled by the ambient
material property:

ambi entlight * ambi entmaterial
18.2.4 Diffuse Term

Thediffuseterm needsto takeinto account whether light fallsdirectly on thevertex,
the diffuse color of the light, and the diffuse material property:

(max{l -n, 0}) * diffuse”ght * diffusematerial
where:

[= (Iz,1,,!.) isthe unit vector that points from the vertex to the light position
(GL_PCsI TI ON).

n = (ny, ny, n,) istheunit normal vector at the vertex.

18.2.5 Specular Term

The specular term also depends on whether light falls directly on the vertex. If - 7
is less than or equal to zero, there is no specular component at the vertex. (If it's
less than zero, the light is on the wrong side of the surface.) If there's a specular
component, it depends on the following:

e Theunit normal vector at the vertex (n,, ny, n,).

192

Programming with OpenGL: Advanced Rendering

e The sum of the two unit vectors that point between (1) the vertex and
the light position and (2) the vertex and the viewpoint (assuming that
GL_LI GHT_MODEL _LOCAL _VI EVER is true; if it's not true, the vector
(0,0, 1) isused as the second vector in the sum). Thisvector sum isnormal-
ized (by dividing each component by the magnitude of the vector) to yield
s = (Sg, Sy, S2).

e The specular exponent (G__SHI NI NESS).

e The specular color of the light (GL_SPECULAR;1.¢).

e The specular property of the material (G._SPECULAR,,, .teria1)-

Using these definitions, here’s how OpenGL calcul ates the specular term:
(max{s - n,0})""""e55 « specular;,,, * SPECUlar,, 41ep ia;

However, if [- 7 = 0, the specular term is 0.

18.2.6 Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following
represents the entire lighting calculation in RGBA mode.

vertex color = emission,,qserial +
ambientlightmodel * ambientmaterial +

n—1
1 -
Z (m) (spotlight effect);
¢ q

=0
(ambienty;, s, + ambient,, o¢c iar +

(max{l - n, 0}) * diffuse”ght * difoS@matem'al +
(max{s - n, 0})*"""** x specular; ;,, + specular

material)i

19 References

References

[1] J. Airey, B. Cabral, and M. Peercy. Explanation of bump mapping with tex-
ture. Personal Communication, 1997.

193

Programming with OpenGL: Advanced Rendering

[2]
(3]

[4]
(3]

[6]

[7]

(8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

K. Akeley. The hidden charms of z-buffer. Iris Universe, (11):31-37, 1990.

K. Akeley. OpenGL philosophy and the philosopher’ sdrinking song. Personal
Communication, 1996.

Y. Attarwala. Rendering hidden lines. IrisUniverse, Fall:39, 1988.

Y. Attarwala and M. Kong. Picking from the picked few. Iris Universe,
Summer:40-41, 1989.

JamesF. Blinn. Simulation of wrinkled surfaces. In Computer Graphics (S G-
GRAPH ' 78 Proceedings), volume 12, pages 286-292, August 1978.

OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-
Wesley, Menlo Park, 1992.

B. Cabral and C. Leedom. Highly parallel vector visuaizationusinglineinte-
gra convolution. In Proceedings of the Seventh Sam Conference On Parall €l
Processing for Scientific Computing, volume 7, pages 803-807, 1995.

The VRML Consortium. The virtua reality modeling language specification.
web site, August 1996. http://vag.vrml.org.

J. D. Cutndll and K. W. Johnson. Physics. John Wiley & Sons, 1989.

Raobert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering.
In John Dill, editor, Computer Graphics (S GGRAPH ’ 88 Proceedings), vol-
ume 22, pages 65—74, August 1988.

Tom Duff. Compositing 3-D rendered images. In B. A. Barsky, editor, Com-
puter Graphics (S GGRAPH ' 85 Proceedings), volume 19, pages 41-44, July
1985.

David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Worley. Tex-
turing and Modeling: A Procedural Approach. Academic Press, October
1994. I1SBN 0-12-228760-6.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics. Principles and Practice. Addison-Wesley Publishing
Company, 1990.

Alain Fournier and William T. Reeves. A simple mode of ocean waves.
In David C. Evans and Russell J. Athay, editors, Computer Graphics (G-
GRAPH ' 86 Proceedings), volume 20, pages 75-84, August 1986.

194

Programming with OpenGL: Advanced Rendering

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

Geoffrey Y. Gardner. Visua simulation of clouds. In B. A. Barsky, editor,
Computer Graphics (SGGRAPH ’85 Proceedings), volume 19, pages 297—
303, July 1985.

Jack Goldfeather, Jeff P. M. Hultquist, and Henry Fuchs. Fast constructive-
solid geometry display in the Pixel-Powers graphics system. In David C.
Evans and Russell J. Athay, editors, Computer Graphics (S GGRAPH '86
Proceedings), volume 20, pages 107-116, August 1986.

P. Haeberli. Matrix operations for image processing. web site, November
1993. http://www.sgi.com/grafica/matrix/index.html.

P. Haeberli and D. Voorhies. Image processing by linear interpolation and
extrapolation. Iris Universe, (28):8-9, 1994.

Paul Haeberli and Mark Segal. Texture mapping as a fundamental drawing
primitive. In Michagl F. Cohen, Claude Puech, and Francois Sillion, editors,
Fourth EurographicsWorkshop on Rendering, pages 259-266. Eurographics,
June 1993. held in Paris, France, 14-16 June 1993.

Paul E. Haeberli and Kurt Akeley. The accumulation buffer: Hardware sup-
port for high-quality rendering. In Forest Baskett, editor, Computer Graphics
(S GGRAPH " 90 Proceedings), volume 24, pages 309-318, August 1990.

Peter M. Hall and Alan H. Wett. Rapid volume rendering using a boundary-
fill guided ray cast algorithm. In N. M. Patrikal akis, editor, Scientific Visual-
ization of Physical Phenomena (Proceedings of CG International ’ 91), pages
235-249. Springer-Verlag, 1991.

Roy Hall. Illuminationand Color in Computer Generated Imagery. Springer-
Verlag, New York, 1989. includes C code for radiosity agorithms.

Paul S. Heckbert and Michael Herf. Fast soft shadows. In Visual Proceedings,
S GGRAPH 96, page 145. ACM Press, 1996. |SBN 0-89791-784-7.

Paul S. Heckbert and Michadl Herf. Shadow generation a gorithms. web site,
April 1997. http://www.cs.cmu.edu/ ph/shadow.html.

T. Heidmann. Real shadowsred time. Iris Universe, (18):28-31, 1991.

Russ Herrell, Joe Baldwin, and Chris Wilcox. High quality polygon edging.
|EEE Computer Graphicsand Applications, 15(4):68-74, July 1995.

195

Programming with OpenGL: Advanced Rendering

[28] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer
graphics. In Forest Baskett, editor, Computer Graphics (9 GGRAPH ' 90 Pro-
ceedings), volume 24, pages 49-57, August 1990.

[29] John-Peter Lewis. Algorithmsfor solid noise synthesis. In Jeffrey Lane, ed-
itor, Computer Graphics (S GGRAPH ’89 Proceedings), volume 23, pages
263-270, July 1989.

[30] Don P. Mitchell and Arun N. Netravali. Reconstruction filters in computer
graphics. In John Dill, editor, Computer Graphics (S GGRAPH ' 88 Proceed-
ings), volume 22, pages 221228, August 1988.

[31] H. R. Myler and A. R. Weeks. The Pocket Handbook of Image Processing
Algorithmsin C. University of Central Florida Department of Electrical &
Computer Engineering, 1993.

[32] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide. Addison-
Wesley, Menlo Park, 1993.

[33] Tomoyuki Nishitaand Eihachiro Nakamae. Method of displaying optical ef-
fectswithinwater using accumul ationbuffer. In Andrew Glassner, editor, Pro-
ceedings of SGGRAPH '94 (Orlando, Florida, July 24-29, 1994), Computer
GraphicsProceedings, Annual Conference Series, pages 373-381. ACM SIG-
GRAPH, ACM Press, July 1994. |SBN 0-89791-667-0.

[34] Darwyn R. Peachey. Modeling waves and surf. In David C. Evans and Rus-
sdll J. Athay, editors, Computer Graphics (S GGRAPH ' 86 Proceedings), vol-
ume 20, pages 65—74, August 1986.

[35] M. Peercy. Explanation of sphere mapping. Personal Communication, 1997.

[36] Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping hard-
ware. In Computer Graphics (3 GGRAPH ' 97 Proceedings), 1997.

[37] Bui-T.Phong. Illuminationfor computer generated pictures. Communications
of the ACM, 18(6):311-317, June 1975.

[38] Thomas Porter and Tom Duff. Compositing digital images. In Hank
Christiansen, editor, Computer Graphics (S GGRAPH ’ 84 Proceedings), vol-
ume 18, pages 253-259, July 1984.

[39] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering an-
tialiased shadows with depth maps. In Maureen C. Stone, editor, Computer
Graphics (S GGRAPH ’87 Proceedings), volume 21, pages 283-291, July
1987.

196

Programming with OpenGL: Advanced Rendering

[40] P Rustagi. Silhouettelinedisplay from shaded models. IrisUniverse, Fall:42—
44, 1989.

[41] P Rustagi. Image roaming with the help of tiling and memory-mapped files.
IrisUniverse, (15):12-13, 1991.

[42] John Schlag. Fast Embossing Effectson Raster Image Data. Academic Press,
Cambridge, 1994.

[43] M. Schulman. Rotation aternatives. Iris Universe, Spring:39, 19809.

[44] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul E. Hae-
berli. Fast shadows and lighting effects using texture mapping. In Ed-
win E. Catmull, editor, Computer Graphics (SGGRAPH ’92 Proceedings),
volume 26, pages 249-252, July 1992.

[45] M. Teschner. Texture mapping: New dimensionsin scientific and technical
visualization. IrisUniverse, (29):8-11, 1994.

[46] T. Tessman. Casting shadowson flat surfaces. IrisUniverse, Winter:16, 1989.

[47] Jarke J. van Wijk. Spot noise-texture synthesis for data visuaization. In
Thomas W. Sederberg, editor, Computer Graphics (39 GGRAPH ' 91 Proceed-
ings), volume 25, pages 309318, July 1991.

[48] DouglasVoorhiesand Jim Foran. Reflection vector shading hardware. In An-
drew Glassner, editor, Proceedingsof SGGRAPH ' 94 (Orlando, Florida, July
24-29, 1994), Computer Graphics Proceedings, Annual Conference Series,
pages 163-166. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-
667-0.

[49] Mark Watt. Light-water interaction using backward beam tracing. In For-
est Baskett, editor, Computer Graphics (3 GGRAPH ’90 Proceedings), vol-
ume 24, pages 377-385, August 1990.

[50] T.F Wiegand. Interactive rendering of csg models. In Computer Graphics
Forum, volume 15, pages 249-261, 1996.

[51] LanceWilliams. Pyramidal parametrics. In Computer Graphics (S GGRAPH
'83 Proceedings), volume 17, pages 1-11, July 1983.

197

Programming with OpenGL: Advanced Rendering

Fast Shadows and Lighting Effects Using Texture Mapping

Mark Segal
Carl Korobkin
Rolf van Widenfelt
Jim Foran
Paul Haeberli

Silicon Graphics Computer Systems™

Abstract

Generating images of texture mapped geometry requires
projecting surfaces onto a two-dimensional screen. If
this projection involves perspective, then a division
must be performed at each pixel of the projected surface
in order to correctly calculate texture map coordinates.
We show how a simple extension to perspective-
correct texture mapping can be used to create vari-
ous lighting effects. These include arbitrary projec-
tion of two-dimensional images onto geometry, realis-
tic spotlights, and generation of shadows using shadow
maps[10]. These effects are obtained in real time using
hardware that performs correct texture mapping.

CR Categories and Subject Descriptors: 1.3.3
[Computer Graphics]: Picture/Tmage Generation;
1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - color, shading, shadowing, and
texture

Additional Key Words and Phrases: lighting,
texture mapping

1 Introduction

Producing an image of a three-dimensional scene re-
quires finding the projection of that scene onto a two-
dimensional screen. In the case of a scene consisting of
texture mapped surfaces, this involves not only deter-
mining where the projected points of the surfaces should
appear on the screen, but also which portions of the
texture image should be associated with the projected
points.

*2011 N. Shoreline Blvd., Mountain View, CA 94043

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notie is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or permission.

If the image of the three-dimensional scene is to ap-
pear realistic, then the projection from three to two di-
mensions must be a perspective projection. Typically,
a complex scene is converted to polygons before projec-
tion. The projected vertices of these polygons determine
boundary edges of projected polygons.

Scan conversion uses iteration to enumerate pixels on
the screen that are covered by each polygon. This itera-
tion in the plane of projection introduces a homogeneous
variation into the parameters that index the texture of
a projected polygon. We call these parameters texture
coordinates. If the homogeneous variation is ignored in
favor of a simpler linear iteration, incorrect images are
produced that can lead to objectionable effects such as
texture “swimming” during scene animation[5]. Correct
interpolation of texture coordinates requires each to be
divided by a common denominator for each pixel of a
projected texture mapped polygon[6].

We examine the general situation in which a tex-
ture is mapped onto a surface via a projection, after
which the surface is projected onto a two dimensional
viewing screen. This 1s like projecting a slide of some
scene onto an arbitrarily oriented surface, which is then
viewed from some viewpoint (see Figure 1). Tt turns out
that handling this situation during texture coordinate
iteration is essentially no different from the more usual
case in which a texture is mapped linearly onto a poly-
gon. We use projective textures to simulate spotlights
and generate shadows using a method that is well-suited
to graphics hardware that performs divisions to obtain
correct texture coordinates.

2 Mathematical Preliminaries

To aid in describing the iteration process, we introduce
four coordinate systems. The clip coordinate system
is a homogeneous representation of three-dimensional
space, with z, y, z, and w coordinates. The origin of
this coordinate system is the viewpoint. We use the
term clip coordinate system because it is this system
in which clipping is often carried out. The screen co-

Texture

o
Light Viewpoint

Figure 1. Viewing a projected texture.

Object Geometry

(X,y,z,w)

 (dwyiw)

X~
P Light View
(texture)

s)
X" Eye View 2
(screen)

Figure 2. Object geometry in the light and clip coordi-
nate systems.

ordinate system represents the two-dimensional screen
with two coordinates. These are obtained from clip co-
ordinates by dividing and y by w, so that screen co-
ordinates are given by #° = z/w and y* = y/w (the
s superscript indicates screen coordinates). The light
coordinate system is a second homogeneous coordinate
system with coordinates z', i, 2, and w'; the origin of
this system is at the light source. Finally, the texture
coordinate system corresponds to a texture, which may
represent a slide through which the light shines. Tex-
ture coordinates are given by #' = z!/w' and y' = y' /u!
(we shall also find a use for 2! = 2! /w'). Given (z*,y*),
a point on a scan-converted polygon, our goal is to find
its corresponding texture coordinates, (z*, y').

Figure 2 shows a line segment in the clip coordi-
nate system and its projection onto the two-dimensional
screen. This line segment represents a span between two
edges of a polygon. In clip coordinates, the endpoints

of the line segment are given by

Q, = (x1,y1, 21, w1) and Q3 = (x2, Y2, 22, wa).

A point Q along the line segment can be written in clip
coordinates as

Q=(1-1)Q1+1Q: (1)

for some ¢ € [0,1]. In screen coordinates, we write the
corresponding projected point as

Q =(1-1)Q]+°Q3 (2)

where Q3 = Q1 /w; and Q5 = Qa/ws.

To find the light coordinates of Q given Q°, we must
find the value of t corresponding to ¢* (in general ¢t # ¢°).
This is accomplished by noting that

(1-1)Q: +1Qy

Q= (0= Qufur Qo = (1 —t)wy + tws

(3)
and solving for ¢. This is most easily achieved by choos-
ing a and b such that 1—¢* = a/(a+b) and t* = b/(a+b);
we also choose A and B such that (1 —¢) = A/(A+ B)
and t = B/(A+ B). Equation 3 becomes

aQi/wy +0Qo/wy AQ1 + BQs
(a+1D) " Awy + Bws

Q' = (4)
It is easily verified that A = aws and B = bw; satisfy
this equation, allowing us to obtain ¢ and thus Q.
Because the relationship between light coordinates
and clip coordinates is affine (linear plus translation),
there 1s a homogeneous matrix M that relates them:

A B
Q = MQ Q! l
fu— fu— 5
A+B ! + A+ B Az 5)
where Q% = (xll, yll, zll, wll) and le = (xlz, ylz, zlz, wlz) are

the light coordinates of the points given by Qi and Q-
in clip coordinates.
We finally obtain

Q = Q/u
AQl + BQ)
Awl + Bu,

aQj /w1 +bQj /ws

= () + blub) ©)

Equation 6 gives the texture coordinates correspond-
ing to a linearly interpolated point along a line segment
in screen coordinates. To obtain these coordinates at
a pixel, we must linearly interpolate z'/w, 3 /w, and
w'/w, and divide at each pixel to obtain

1
xl/wl: z'fw

y [w)

wh/w’

and Y Jut =

wh Jw

(For an alternate derivation of this result, see [6].)
If w' is constant across a polygon, then Equation 7
becomes

_ s/

_tjw
5= 1/w 1/w (8)

and t= 1w’
where we have set s = 2! /w! and t = y' /uw!. Equation 8
governs the iteration of texture coordinates that have
simply been assigned to polygon vertices. It still implies
a division for each pixel contained in a polygon. The
more general situation of a projected texture implied
by Equation 7 requires only that the divisor be w!/w
instead of 1/w.

3 Applications

To make the various coordinates in the following exam-
ples concrete, we introduce one more coordinate system:
the world coordinate system. This is the coordinate sys-
tem in which the three-dimensional model of the scene
is described. There are thus two transformation ma-
trices of interest: M, transforms world coordinates to
clip coordinates, and M; transforms world coordinates
to light coordinates. Iteration proceeds across projected
polygon line segments according to equation 6 to obtain
texture coordinates (z',y") for each pixel on the screen.

3.1 Slide Projector

One application of projective texture mapping consists
of viewing the projection of a slide or movie on an arbi-
trary surface[9][2]. In this case, the texture represents
the slide or movie. We describe a multi-pass drawing
algorithm to simulate film projection.

Each pass entails scan-converting every polygon in the
scene. Scan-conversion yields a series of screen points
and corresponding texture points for each polygon. As-
sociated with each screen point is a color and z-value,
denoted ¢ and z, respectively. Associated with each cor-
responding texture point is a color and z-value, denoted
¢y and z;. These values are used to modify correspond-
ing values in a framebuffer of pixels. Each pixel, denoted
p, also has an associated color and z-value, denoted ¢,
and zp.

A color consists of several indepenedent components
(e.g. red, green, and blue). Addition or multiplication
of two colors indicates addition or multiplication of each
corresponding pair of components (each component may
be taken to lie in the range [0, 1]).

Assume that z, is initialized to some large value for all
p, and that ¢, is initialized to some fixed ambient scene
color for all p. The slide projection algorithm consists
of three passes; for each scan-converted point in each
pass, these actions are performed:

Pass 1 If z < zp, then z, « z (hidden surface

removal)
Pass 2 If z = zp, then ¢, < ¢, + ¢;
(final rendering)

(illumination)

Pass 3 Set ¢, =c-¢p

Pass 1 is a z-buffering step that sets z, for each pixel.
Pass 2 increases the brightness of each pixel accord-
ing to the projected spotlight shape; the test ensures
that portions of the scene visible from the eye point are
brightened by the texture image only once (occlusions
are not considered). The effects of multiple film projec-
tions may be incorporated by repeating Pass 2 several
times, modifying M; and the light coordinates appropri-
ately on each pass. Pass 3 draws the scene, modulating
the color of each pixel by the corresponding color of the
projected texture image. Effects of standard (i.e. non-
projective) texture mapping may be incorporated in this
pass. Current Silicon Graphics hardware is capable of
performing each pass at approximately 10° polygons per
second.

Figure 3 shows a slide projected onto a scene. The
left image shows the texture map; the right image shows
the scene illuminated by both ambient light and the pro-
jected slide. The projected image may also be made to
have a particular focal plane by rendering the scene sev-
eral times and using an accumulation buffer as described
in [4].

The same configuration can transform an image cast
on one projection plane into a distinct projection plane.
Consider, for instance, a photograph of a building’s fa-
cade taken from some position. The effect of viewing
the facade from arbitrary positions can be achieved by
projecting the photograph back onto the building’s fa-
cade and then viewing the scene from a different vantage
point. This effect is useful in walk-throughs or fly-bys;
texture mapping can be used to simulate buildings and
distant scenery viewed from any viewpoint[1][7].

3.2 Spotlights

A similar technique can be used to simulate the effects
of spotlight illumination on a scene. In this case the
texture represents an intensity map of a cross-section of
the spotlight’s beam. That is, it is as if an opaque screen
were placed in front of a spotlight and the intensity at
each point on the screen recorded. Any conceivable spot
shape may be accommodated. In addition, distortion
effects, such as those attributed to a shield or a lens,
may be incorporated into the texture map image.

Angular attenuation of illumination is incorporated
into the intensity texture map of the spot source. At-
tenuation due to distance may be approximated by ap-
plying a function of the depth values 2* = 2! /w!' iterated
along with the texture coordinates (z', y") at each pixel
in the image.

This method of illuminating a scene with a spotlight is
useful for many real-time simulation applications, such

Figure 3. Simulating a slide projector.

as aircraft landing lights, directable aircraft taxi lights,
and automotive headlights.

3.3 Fast, Accurate Shadows

Another application of this technique is to produce
shadows cast from any number of point light sources.
We follow the method described by Williams[10], but in
a way that exploits available texture mapping hardware.

First, an image of the scene is rendered from the view-
point of the light source. The purpose of this render-
ing 18 to obtain depth values in light coordinates for
the scene with hidden surfaces removed. The depth
values are the values of z!/w! at each pixel in the im-
age. The array of 2! values corresponding to the hidden
surface-removed image are then placed into a texture
map, which will be used as a shadow map[10][8]. We
refer to a value in this texture map as z,.

The generated texture map is used in a three-pass ren-
dering process. This process uses an additional frame-
buffer value o, in the range [0, 1]. The initial conditions
are the same as those for the slide projector algorithm.

Pass 1 If z < zp, then z, < 2z, ¢, < ¢ (hidden
surface removal)

Pass 2 If z; = z%, then o, « 1;else ap < 0 (shadow
testing)

Pass 3 ¢, < ¢p + (c modulated by «,)
dering)

(final ren-

Pass 1 produces a hidden surface-removed image of the
scene using only ambient illumination. If the two values
in the comparison in Pass 2 are equal, then the point
represented by p is visible from the light and so is not
in shadow; otherwise, it is in shadow. Pass 3, drawn
with full illumination, brightens portions of the scene
that are not in shadow.

In practice, the comparison in Pass 2 is replaced with
zr > z'4€, where € is a bias. See [8] for factors governing
the selection of e.

This technique requires that the mechanism for set-
ting «, be based on the result of a comparison between
a value stored in the texture map and the iterated z°.
For accuracy, it also requires that the texture map be
capable of representing large z,. Our latest hardware
posseses these capabilites, and can perform each of the
above passes at the rate of at least 10° polygons per
second.

Correct illumination from multiple colored lights may
be produced by performing multiple passes. The
shadow effect may also be combined with the spotlight
effect described above, as shown in Figure 4. The left
image in this figure is the shadow map. The center
image is the spotlight intensity map. The right image
shows the effects of incorporating both spotlight and
shadow effects into a scene.

This technique differs from the hardware implemen-
tation described in [3]. Tt uses existing texture map-
ping hardware to create shadows, instead of drawing
extruded shadow volumes for each polygon in the scene.
In addition, percentage closer filtering [8] is easily sup-
ported.

4 Conclusions

Projecting a texture image onto a scene from some light
source is no more expensive to compute than simple tex-
ture mapping in which texture coordinates are assinged
to polygon vertices. Both require a single division per-
pixel for each texture coordinate; accounting for the tex-
ture projection simply modifies the divisor.

Viewing a texture projected onto a three-dimensional
scene is a useful technique for simulating a number of
effects, including projecting images, spotlight illumina-
tion, and shadows. If hardware is available to perform
texture mapping and the per-pixel division it requires,
then these effects can be obtained with no performance
penalty.

Figure 4. Generating shadows using a shadow map.

Acknowledgements

Many thanks to Derrick Burns for help with the tex-
ture coordinate iteration equations. Thanks also to Tom
Dayvis for useful discussions. Dan Baum provided helpful
suggestions for the spotlight implementation. Software
Systems provided some of the textures used in Figure

3.

References

(1]

[2]

Robert N. Devich and Frederick M. Weinhaus. Im-
age perspective transformations. SPIFE, 238, 1980.

Julie O’B. Dorsey, Francois X. Sillion, and Don-
ald P. Greenberg. Design and simulation of opera
lighting and projection effects. In Proceedings of
SIGGRAPH 91, pages 41-50, 1991.

Henry Fuchs, Jack Goldfeather, and Jeff P.
Hultquist, et al. Fast spheres, shadows, textures,
transparencies, and image enhancements in pixels-
planes. In Proceedings of SIGGRAPH '85, pages
111-120, 1985.

Paul Haeberli and Kurt Akeley. The accumulation
buffer: Hardware support for high-quality render-
ing. In Proceedings of SIGGRAPH 90, pages 309—
318, 1990.

Paul S. Heckbert. Fundamentals of texture map-
ping and image warping. Master’s thesis, UC

Berkeley, June 1989.

Paul S. Heckbert and Henry P. Moreton. Interpo-
lation for polygon texture mapping and shading.
In David F. Rogers and Rae A. Earnshaw, editors,
State of the Art in Computer Graphics: Visualiza-
tion and Modeling, pages 101-111. Springer-Verlag,
1991.

[7]

Kazufumi Kaneda, Eihachiro Nakamae, Tomoyuki
Nishita, Hideo Tanaka, and Takao Noguchi. Three
dimensional terrain modeling and display for en-
vironmental assessment. In Proceedings of SIG-

GRAPH ’89, pages 207-214, 1989.

William T. Reeves, David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth
maps. In Proceedings of SIGGRAPH ‘87, pages
283-291, 1987.

Steve Upstill. The RenderMan Companion, pages
371-374. Addison Wesley, 1990.

Lance Williams. Casting curved shadows on curved
surfaces. In Proceedings of SIGGRAPH 78, pages
270-274, 1978.

Texture Mapping in Technical, Scientific and Engineering
Visualization

Michael Teschnérand Christian Henh

1Chemistry and Health Industry Marketing,
Silicon Graphics Basel, Switzerland

2Maurice E. Mueller—Institute for Microscopy,
University of Basel, Switzerland

Executive Summary

As of today, texture mapping is used in visual simulation and computer animation to reduce geometric
complexity while enhancing realism. In this report, this common usage of the technology is extended by
presenting application models of real-time texture mapping that solve a variety of visualization problems in
the general technical and scientific world, opening new ways to represent and analyze large amounts o
experimental or simulated data.

The topics covered in this report are:

Abstract definition of the texture mapping concept
Visualization of properties on surfaces by color coding
Information filtering on surfaces

Real-time volume rendering concepts
Quality—enhanced surface rendering

In the following sections, each of these aspects will be described in detail. Implementation techniques are
outlined using pseudo code that emphasizes the key aspects. A basic knowledge in GL programming i
assumed. Application examples are taken from the chemical market. However, for the scope of this repor
no particular chemical background is required, since the data being analyzed can in fact be replaced by an
other source of technical, scientific or engineering information processing.

Note, that this report discusses the potential of released advanced graphics technology in a very detaile
fashion. The presented topics are based on recent and ongoing research and therefore subjected to change

The methods described are the result of a team—work involving scientists from different research areas an
institutions, and is called thEexture Teangonsisting of the following members:

» Prof. Juergen Brickmann, Technische Hochschule, Darmstadt, Germany

» Dr. Peter Fluekiger, Swiss Scientific Computing Center, Manno, Switzerland

e Christian Henn, M.E. Mueller-Institute for Microscopy, Basel, Switzerland

» Dr. Michael Teschner, Silicon Graphics Marketing, Basel, Switzerland
Further support came from SGI's Advanced Graphics Division engineering group.

Colored pictures and sample code are available from sgigate.sgi.com via anonymous ftp. The files will be
there starting November 1st 1993 and will be located in the directory pub/SciTex.

For more information, please contact:

Michael Teschner (41)61 670903 (phone)
SGI Marketing, Basel (41)61 671201 (fax)
Erlenstraesschen 65

CH-4125 Riehen, Switzerland micha@basel.sgi.com (email)

Version 1.0 -1- O SGI, August 4, 1995

Introduction

Color—coding based application solutions
Isocontouring on surfaces

1

2

.3 Information filtering

4 Arbitrary surface clipping

5 Color—coding pseudo code example
Real-time volume rendering techniques

1 Volume rendering using 2-D textures

2 Volume rendering using 3-D textures

High quality surface rendering
Real-time Phong shading
Phong shading pseudo code example

Conclusions

Version 1.0

Abstract definition of the texture mapping concept

Displaying metrics on arbitrary surfaces

[] SGI, August 4, 1995

1 Introduction

Texture mapping [1,2] has traditionally been used to add realism in computer generated images. In recel
years, this technique has been transferred from the domain of software based rendering systems to
hardware supported feature of advanced graphics workstations. This was largely motivated by visue
simulation and computer animation applications that use texture mapping to map pictures of surface textur
to polygons of 3-D objects [3].

Thus, texture mapping is a very powerful approach to add a dramatic amount of realism to a compute
generated image without blowing up the geometric complexity of the rendered scenario, which is essentiz
in visual simulators that need to maintain a constant frame rate. E.g., a realistically looking house can b
displayed using only a few polygons with photographic pictures of a wall showing doors and windows
being mapped to. Similarly, the visual richness and accuracy of natural materials such as a block of woo
can be improved by wrapping a wood grain pattern around a rectangular solid.

Up to now, texture mapping has not been used in technical or scientific visualization, because the abov
mentioned visual simulation methods as well as non-interactive rendering applications like computel
animation have created a severe bias towards what texture mapping can be used for, i.e. wooden [4] «
marble surfaces for the display of solid materials, or fuzzy, stochastic patterns mapped on quadrics t
visualize clouds [5,6].

It will be demonstrated that hardware—supported texture mapping can be applied in a much broader range
application areas. Upon reverting to a strict and formal definition of texture mapping that generalizes the
texture to be a general repository for pixel-based color information being mapped on arbitrary 3-D
geometry, a powerful and elegant framework for the display and analysis of technical and scientific
information is obtained.

2 Abstract definition of the texture mapping concept

In the current hardware implementation of SGI [7], texture mapping is an additional capability to modify

pixel information during the rendering procedure, after the shading operations have been completec
Although it modifies pixels, its application programmers interface is vertex—based. Therefore texture
mapping results in only a modest or small increase in program complexity. Its effect on the image
generation time depends on the particular hardware being used: entry level and interactive systems show
significant performance reduction, whereas on third generation graphics subsystems texture mapping m
be used without any performance penalty.

Three basic components are needed for the texture mapping procedure: (1) the texture, which is defined

the texture space, (2) the 3—-D geometry, defined on a per vertex basis and (3) a mapping function that link
the texture to the vertex description of the 3—-D object.

The texture space [8,9] is a parametric coordinate space which can be 1,2 or 3 dimensional. Analogous
the pixel (picture element) in screen space, each element in texture space is called texel (texture elemen
Current hardware implementations offer flexibility with respect to how the information stored with each
texel is interpreted. Multi—-channel colors, intensity, transparency or even lookup indices corresponding to :
color lookup table are supported.

In an abstract definition of texture mapping, the texture space is far more than just a picture within a
parametric coordinate system: the texture space may be seen as a special memory segment, where a var
of information can be deposited which is then linked to object representations in 3—-D space. Thus this
information can efficiently be used to represent any parametric property that needs to be visualized.

Although the vertex—based nature of 3—D geometry in general allows primitives such as points or lines tc
be texture-mapped as well, the real value of texture mapping emerges upon drawing filled triangles o
higher order polygons.

The mapping procedure assigns a coordinate in texture space to each vertex of the 3-D object. It i
important to note that the dimensionality of the texture space is independent from the dimensionality of the
displayed object. E.g., coding a simple property into a 1-D texture can be used to generate isocontour line
on arbitrary 3—-D surfaces.

Version 1.0 -3 - O SGI, August 4, 1995

3 Color-coding based application solutions

Color—coding is a popular means of displaying scalar information on a surface [10]. E.g., this can be use
to display stress on mechanical parts or interaction potentials on molecular surfaces.

The problem with traditional, Gouraud shading—based implementations occurs when there is a higt
contrast color code variation on sparsely tesselated geometry: since the color coding is done by assignir
RGB color triplets to the vertices of the 3-D geometry, pixel colors will be generated by linear
interpolation in RGB color space.

As a consequence, all entries in the defined color ramp laying outside the linear color ramp joining two
RGB triplets are never taken into account and information will be lost. In Figure 1, a symmetric grey scale
covering the property range is used to define the color ramp. On the left hand side, the interpolation in the
RGB color space does not reflect the color ramp. There is a substantial loss of information during the
rendering step.

With a highly tessellated surface, this problem can be reduced. An alignment of the surface vertices witt
the expected color code change or multi-pass rendering may remove such artifacts completely. Howeve
these methods demand large numbers of polygons or extreme algorithmic complexity, and are therefor
not suited for interactive applications.

~—

Figure 1: Color coding with RGB interpolation (left) and texture mapping (right).

This problem can be solved by storing the color ramp as a 1-D texture. In contrast to the above describe
procedure, the scalar property information is used as the texture coordinates for the surface vertices. T}
color interpolation is then performed in the texture space, i.e. the coloring is evaluated at every pixel
(Figure 1 right). High contrast variation in the color code is now possible, even on sparsely tessellatec
surfaces.

It is important to note that, although the texture is one—dimensional, itis possible to tackle a 3—D problem.
The dimensionality of texture space and object space is independent, thus they do not affect each othe
This feature of the texture mapping method, as well as the difference between texture interpolation an
color interpolation is crucial for an understanding of the applications presented in this report.

Version 1.0 -4 - O SGI, August 4, 1995

Figure 2: Electrostatic potential coded on the solvent accessible surface of ethanol.

Figure 2 shows the difference between the two procedures with a concrete example: the solvent accessit
surface of the ethanol molecule is colored by the electrostatic surface potential, using traditional RGB colo
interpolation (left) and texture mapping (right).

The independence of texture and object coordinate space has further advantages and is well suited
accommodate immediate changes to the meaning of the color ramp. E.g., by applying a simple 3-L
transformation like a translation in texture space the zero line of the color code may be shifted. Applying a
scaling transformation to the texture adjusts the range of the mapping. Such modifications may be
performed in real-time.

With texture mapping, the resulting sharp transitions from one color-value to the next significantly
improves the rendering accuracy. Additionally, these sharp transitions help to visually understand the
object’s 3-D shape.

3.1 Isocontouring on surfaces

Similar to the color bands in general color-coding, discrete contour lines drawn on an object provide
valuable information about the object’'s geometry as well as its properties, and are widely used in visua
analysis applications. E.g., in a topographic map they might represent height above some plane that is eith
fixed in world coordinates or moves with the object [11]. Alternatively, the curves may indicate intrinsic
surface properties, such as an interaction potential or stress distributions.

With texture mapping, discrete contouring may be achieved using the same setup as for general colc
coding. Again, the texture is 1-D, filled with a base color that represents the objects surface appearance.
each location of a contour threshold, a pixel is set to the color of the particular threshold. Figure 3 shows al
application of this texture to display the hydrophobic potential of Gramicidine A, a channel forming
molecule as a set of isocontour lines on the surface of the molecular surface.

Scaling of the texture space is used to control the spacing of contour thresholds. In a similar fashion
translation of the texture space will result in a shift of all threshold values. Note that neither the underlying
geometry nor the texture itself was modified during this procedure. Adjustment of the threshold spacing is
performed in real-time, and thus fully interactive.

Version 1.0 -5 - O SGI, August 4, 1995

Figure 3: Isocontour on a molecular surface with different scaling in texture space.

3.2 Displaying metrics on arbitrary surfaces

An extension of the concept presented in the previous section can be used to display metrics on an arbitra
surface, based on a set of reference planes. Figure 4 demonstrates the application of a 2—-D texture to atta
tick marks on the solvent accessible surface of a zeolithe.

In contrast to the property—based, per vertex binding of texture coordinates, the texture coordinates for th
metric texture are generated automatically: the distance of an object vertex to a reference plane i
calculated by the harware and on-the—fly translated to texture coordinates. In this particular case twc
orthogonal planes are fixed to the orientation of the object’'s geometry. This type of representation allows
for exact measurement of sizes and distance units on a surface.

g Lo b A

Figure 4: Display of metrics on a Zeolithe’s molecular surface with a 2-D texture.

Version 1.0 -6 - O SGI, August 4, 1995

3.3 Information filtering

The concept of using a 1-D texture for color—coding of surface properties may be extended to 2—-D or evel
3-D. Thus a maximum of three independent properties can simultaneously be visualized. However
appropriate multidimensional color lookup tables must be designed based on a particular application
because a generalization is either non—trivial or eventually impossible. Special care must be taken not t
overload the surface with too much information.

One possible, rather general solution can be obtained by combining a 1-D color ramp with a 1-D threshol
pattern as presented in the isocontouring example, i.e. color bands are used for one property, where
orthogonal, discrete isocontour lines code for the second property. In this way it is possible to display twc
properties simultaneously on the same surface, while still being capable of distinguishing them clearly.

Another approach uses one property to filter the other and display the result on the objects surface
generating additional insight in two different ways: (1) the filter allows the scientist to distinguish between
important and irrelevant information, e.g. to display the hot spots on an electrostatic surface potential, or (2
the filter puts an otherwise qualitative property into a quantitative context, e.g., to use the standard deviatio
from a mean value to provide a hint as to how accurate a represented property actually is at a given locatic
on the object surface.

A good role model for this is the combined display of the electrostatic potential (ESP) and the molecular
lipophilic potential (MLP) on the solvent accessible surface of Gramicidine A. The electrostatic potential
gives some information on how specific parts of the molecule may interact with other molecules, the
molecular lipophilic potential gives a good estimate where the molecule has either contact with water
(lipophobic regions) or with the membrane (lipophilic regions). The molecule itself is a channel forming

protein, and is loacted in the membrane of bioorganisms, regulating the transport of water molecules an
ions. Figure 5 shows the color—coding of the solvent accessible surface of Gramicidine A against the ESI
filtered with the MLP. The texture used for this example is shown in Figure 8.

Figure 5: Solvent accessible surface of Gramicidine A, showing the ESP filtered with the MLP.

The surface is color-coded, or grey—scale as in the printed example, only at those loactions, where th
surface has a certain lipophobicity. The surface parts with lipophilic behavior are clamped to white. In this
example the information is filtered using a delta type function, suppressing all information not exceeding a
specified threshold. In other cases, a continouos filter may be more appropriate, to allow a more fine
grained quantification.

Version 1.0 -7 - O SGI, August 4, 1995

Another useful application is to filter the electrostatic potential with the electric fileld. Taking the absolute
value of the electric field, the filter easily pinpoints the areas of the highest local field gradient, which helps
in identifying the binding site of an inhibitor without further interaction of the scientist. With translation in
the texture space, one can interactively modify the filter threshold or change the appearance of the colc
ramp.

3.4 Arbitrary surface clipping

Color-coding in the sense of information filtering affects purely the color information of the texture map.
By adding transparency as an additional information channel, a lot of flexibility is gained for the
comparison of multiple property channels. In a number of cases, transparency even helps in geometrical
understanding of a particular property. E.g., the local flexibility of a molecule structure according to the
crystallographically determined B—factors can be visually represented: the more rigid the structure is, the
more opaque the surface will be displayed. Increasing transparency indicates higher floppyness of th
domains. Such a transparency map may well be combined with any other color coded property, as it is G
interest to study the dynamic properties of a molecule in many different contexts.

An extension to the continuous variation of surface transparency as in the example of molecular flexibility
mentioned above is the use of transparency to clip parts of the surface away completely, depending on
property coded into the texture. This can be achieved by setting the alpha values at the appropriate vertic
directly to zero. Applied to the information filtering example of Gramicidine A, one can just clip the surface
using a texture where all alpha values in the previously white region a set to 0, as is demonstrated in Figur
6.

Figure 6: Clipping of the solvent accessible surface of Gramicidine A according to the MLP.

There is a distinct advantage in using alpha texture as a component for information filtering: irrelevant
information can be completely eliminated, while geometric information otherways hidden within the
surface is revealed directly in the context of the surface. And again, it is worthwhile to mention, that by a
translation in texture space, the clipping range can be changed interactively!

Version 1.0 -8 - O SGI, August 4, 1995

3.5 Color-coding pseudo code example

All above described methods for property visualization on object surfaces are based upon the same textu
mapping requirements. Neither are they very demanding in terms of features nor concerning the amount ¢
texture memory needed.

Two options are available to treat texture coordinates that fall outside the range of the parametric uni
square. Either the texture can be clamped to constant behaviour, or the entire texture image can
periodically repeated. In the particular examples of 2-D information filtering or property clipping, the
parametric s coordinate is used to modify the threshold (clamped), and the t coordinate is used to change tl
appearance of the color code (repeated). Figure 7 shows different effects of transforming this texture maj
while the following pseudo code example expresses the presented texture setup. GL specific calls ar
constants are highlighted boldface

texParams = {
TX_MINIFILTER , TX_POINT,
TX_MAGFILTER TX_POINT,

TX_WRAP_S TX_CLAMP
TX_WRAP_T TX_REPEAT
TX_NULL

%

texdef2d (
texindex,numTexComponents,
texWidth,texHeight,teximage,
numTexParams,texParams

);

texbind (texIndex);

The texture image is an array of unsigned integers, where the packing of the data depends on the number
components being used for each texel.

Figure 7: Example of a 2—-D texture used for information filtering, with different transformations applied:
original texture (left), translation in s coordinates to adjust filter threshold (middle) and scaling along in t
coordinates to change meaning of the texture colors (right).

The texture environment defines how the texure modifies incoming pixel values. In this case we want to
keep the information from the lighting calculation and modulate this with the color coming from the
texture image:

Version 1.0 -9 - O SGI, August 4, 1995

texEnvParams = {
TV_MODULATE TV_NULL
I3

tevdef (texEnvindex,numTexEnvParams,texEnvParams);
tevbind (texEnvindex);

Matrix transformations in texture space must be targeted to a matrix stack that is reserved for texture
modifications

mmodé MTEXTURE
translate (texTransX,0.0,0.0);
scale (1.0,texScaleY,1.0);
mmod€ MVIEWING;

The drawing of the object surface requires the binding of a neutral material to get a basic lighting effect.
For each vertex, the coordinates, the surface normal and the texture coordinates are traversed in form
calls tov3f , n3f andt2f .

The afunction() call is only needed in the case of surface clipping. It will prevent the drawing of any
part of the polygon that has a texel color with alpha = 0:

pushmatrix ();
loadmatrix (modelViewMatrix);
if(clippingEnabled) {
afunction (0, AF_NOTEQUAL

drawTexturedSurface();
popmatrix ();
v3f(coo)

n3f (norm)
t2f(quality)

for (all vertices) { n3f(), t2f(), v3f() }

Figure 8: Schematic representation of tdeawTexturedSurface() routine.

Version 1.0 -10- O SGI, August 4, 1995

4 Real-time volume rendering techniques

Volume rendering is a visualization technique used to display 3-D data without an intermediate step o
deriving a geometric representation like a solid surface or a chicken wire. The graphical primitives being
characteristic for this technique are called voxels, derived from volume element and analog to the pixel
However, voxels describe more than just color, and in fact can represent opacity or shading parameters
well.

A variety of experimental and computational methods produce such volumetric data sets: compute
tomography (CT), magnetic resonance imaging (MRI), ultrasonic imaging (Ul), confocal light scanning
microscopy (CLSM), electron microscopy (EM), X-ray crystallography, just to name a few. Characteristic
for these data sets are a low signal to noise ratio and a large number of samples, which makes it difficult t
use surface based rendering technique, both from a performance and a quality standpoint.

The data structures employed to manipulate volumetric data come in two flavours: (1) the data may be
stored as a 3—-D grid, or (2) it may be handled as a stack of 2-D images. The former data structure is ofte
used for data that is sampled more or less equally in all the three dimensions, wheras the image stack
preferred with data sets that are high resolution in two dimensions and sparse in the third.

Historically, a wide variety of algorithms has been invented to render volumetric data and range from ray
tracing to image compositing [12]. The methods cover an even wider range of performance, where the
advantage of image compositing clearly emerges, where several images are created by slicing the volun
perpendicular to the viewing axis and then combined back to front, thus summing voxel opacities and color
at each pixel.

In the majority of the cases, the volumetric information is stored using one color channel only. This allows
to use lookup tables (LUTSs) for alternative color interpretation. l.e., before a particular entry in the color
channel is rendered to the frame buffer, the color value is interpreted as a lookup into a table that aliases tt
original color. By rapidly changing the color and/or opacity transfer function, various structures in the

volume are interactively revealed.

By using texture mapping to render the images in the stack, a performance level is reached that is fe
superior to any other technique used today and allows the real-time manipulation of volumetric data. Ir
addition, a considerable degree of flexibility is gained in performing spatial transformations to the volume,
since the transformations are applied in the texture domain and cause no performance overhead.

4.1 Volume rendering using 2—-D textures

As a linear extension to the original image compositing algotrithm, the 2-D textures can directly replace the
images in the stack. A set of mostly quadrilateral polygons is rendered back to front, with each polygon
binding its own texture if the depth of the polygon corresponds to the location of the sampled image.
Alternatively, polygons inbetween may be textured in a two—pass procedure, i.e. the polygon is rendere:
twice, each time binding one of the two closest images as a texture and filtering it with an appropriate lineal
weighting factor. In this way, inbetween frames may be obtained even if the graphics subsystem doesn
support texture interpolation in the third dimension.

The resulting volume looks correct as long as the polygons of the image stack are alligned parallel to th
screen. However, it is important to be able to look at the volume from arbitrary directions. Because the
polygon stack will result in a set of lines when being oriented perpendicular to the screen, a correc
perception of the volume is no longer possible.

This problem can easily be soved. By preprocessing the volumetric data into three independent image stac
that are oriented perpendicular to each other, the most appropriate image stack can be selected for render
based on the orientation of the volume object. l.e., as soon as one stack of textured polygons is rotate
towards a critical viewing angle, the rendering function switches to one of the two additional sets of
textured polygons, depending on the current orientation of the object.

Version 1.0 -11- O SGI, August 4, 1995

4.2 Volume rendering using 3-D textures

As described in the previous section, it is not only possible, but almost trivial to implement real-time
volume rendering using 2-D texture mapping. In addition, the graphics subsystems will operate at pea
performance, because they are optimized for fast 2-D texture mapping. However, there are certai
limitations to the 2-D texture approach: (1) the memory required by the triple image stack is a factor of
three larger than the original data set, which can be critical for large data sets as they are common in medic
imaging or microscopy, and (2) the geometry sampling of the volume must be aligned with the 2-D textures
concerning the depth, i.e. arbitrary surfaces constructed from a triangle mesh can not easily be colore
depending on the properties of a surrounding volume.

For this reason, advanced rendering architectures support hardware implementations of 3-D textures. Tl
correspondence between the volume to be rendered and the 3-D texture is obvious. Any 3-D surface c:
serve as a sampling device to monitor the coloring of a volumetric property. l.e., the final coloring of the
geometry reflects the result of the intersection with the texture. Following this principle, 3-D texture
mapping is a fast, accurate and flexible technique for looking at the volume.

The simplest application of 3-D textures is that of a slice plane, which cuts in arbitrary orientations through
the volume, which is now represented directly by the texture. The planar polygon being used as geometry |
this case will then reflect the contents of the volume as if it were exposed by cutting the object with a knife,
as shown in Figure 9: since the transformation of the sampling polygon and that of the 3-D texture is
independent, it may be freely oriented within the volume. The property visualized in Figure 9 is the
probability of water beeing distributed around a sugar molecule. The orientation of the volume, that mean
the transformation in the texture space is the same as the molecular structure. Either the molecule, togett
with the volumetric texture, or the slicing polygon may be reoriented in real-time.

An extension of the slice plane approach leads to complete visualization of the entire volume. A stack o
slice planes, oriented in parallel to the computer screen, samples the entire 3-D texture. The planes a
drawn back to front and in sufficiently small intervals. Geometric transformations of the volume are
performed by manipulating the orientation of the texture, keeping the planes in screen—parallel orientatior
as can be seen in Figure 10, which shows a volume rendered example of a medical application.

This type of volume visualization is greatly enhanced by interactive updates of the color lookup table use
to define the texture. In fact a general purpose color ramp editor may be used to vary the lookup colors c
the transparency based on the scalar information at a given point in the 3—D volume.

v

Figure 9: Slice plane through the water density surrounding a sugar molecule.

Version 1.0 -12- O SGI, August 4, 1995

The slice plane concept can be extended to arbitrarily shaped objects. The idea is to probe a volumetric
property and to display it wherever the geometric primitives of the probing object cut the volume. The
probing geometry can be of any shape, e.g. a sphere, collecting information about the property at a certair
distance from a specified point, or it may be extended to describe the surface of an arbitrary object.

The independence of the object’s transformation from that of the 3-D texture, offers complete freedom in
orienting the surface with respect to the volume. As a further example of a molecular modeling
application, this provides an opportunity to look at a molecular surface and have the information about a
surrounding volumetric property updated in real-time, based on the current orientation of the surface.

Figure 10: Volume rendering of MRI data using a stack of screen—parallel sectioning planes,
which is cut in half to reveal detail in the inner part of the object.

5 High quality surface rendering

The visualization of solid surfaces with a high degree of local curvature is a major challenge for accurate
shading, and where the simple Gouraud shading [13] approach always fails. Here, the lighting calculation is
performed for each vertex, depending on the orientation of the surface normal with respect to the light
sources. The output of the lighting calculations is an RGB value for the surface vertex. During rasterization
of the surface polygon the color value of each pixel is computed by linear interpolation between the vertex
colors. Aliasing of the surface highlight is then a consequence of undersampled surface geometry, resulting
in moving Gouraud banding patterns on a surface rotating in real-time, which is very disturbing. Moreover,
the missing accuracy in shading the curved surfaces often leads to a severe loss of information on the
object’s shape, which is not only critical for the evaluation and analysis of scientific data, but also for the
visualization of CAD models, where the visual perception of shape governs the overall design process.

Figure 11 demonstrates this problem using a simple example: on the left, the sphere exhibits typical
Gouraud artifacts, on the right the same sphere is shown with a superimposed mesh that reveals the
tessellation of the sphere surface. Looking at these images, it is obvious how the shape of the highlight of
the sphere was generated from linear interpolation. When rotating the sphere, the highlight begins to
oscillate, depending on how near the surface normal at the brightest vertex is with respect to the precise
highlight position.

Version 1.0 -13- O SGI, August 4, 1995

Figure 11: Gouroud shading artifacts on a moderately tessellated sphere.

Correct perception of the curvature and constant, non oscillating highlights can only be achieved with

computationally much more demanding rendering techniques such as Phong shading [14]. In contrast tc
linear interpolation of vertex colors, the Phong shading approach interpolates the normal vectors for each
pixel of a given geometric primitive, computing the lighting equation in the subsequent step for each pixel.

Attempts have been made to overcome some of the computationally intensive steps of the procedure [15]
but their performance is insufficient to be a reasonable alternative to Gouraud shading in real-time
applications.

5.1 Real-time Phong shading

With 2-D texture mapping it is now possible to achieve both, high performance drawing speed and highly
accurate shading. The resulting picture compares exactly to the surface computed with the complete Phon
model with infinite light sources.

The basic idea is to use the image of a high quality rendered sphere as texture. The object’s unit length
surface normal is interpreted as texture coordinate. Looking at an individual triangle of the polygonal
surface, the texture mapping process may be understood as if the image of the perfectly rendered spher
would be wrapped piecewise on the surface polygons. In other words, the surface normal serves as a looku,
vector into the texture, acting as a 2—-D lookup table that stores precalculated shading information.

The advantage of such a shading procedure is clear: the interpolation is done in texture space and not it
RGB, therefore the position of the highlight will never be missed. Note that the tessellation of the texture
mapped sphere is exactly the same as for the Gouraud shaded reference sphere in Figure 11.

-—ll-'"'-._

<-4 N
%

Q[
LS
oy

=y

Figure 12: Phong shaded sphere using surface normals as a lookup for the texture coordinate.

Version 1.0 —-14- O SGI, August 4, 1995

As previously mentioned, this method of rendering solid surfaces with highest accuracy can be applied to
arbitrarily shaped objects. Figure 13 shows the 3—-D reconstruction of an electron microscopic experiment,
visualizing a large biomolecular complex, the asymmetric unit membrane of the urinary bladder. The
difference between Gouraud shading and the texture mapping implementation of Phong shading is obvious
and for the sake of printing quality, can be seen best when looking at the closeups. Although this trick is so
far only applicable for infinitely distant light sources, it is a tremendous aid for the visualization of highly

complex surfaces.

Figure 13: Application of the texture mapped Phong shading to a complex surface representing a
biomolecular structure. The closeups demonstrate the difference between Gouraud shading (above right) ar
Phong shading (below right) when implemented using texture mapping

5.2 Phong shading pseudo code example

The setup for the texture mapping as used for Phong shading is shown in the following code fragment:

texParams = {
TX_MINIFILTER , TX_POINT,
TX_MAGFILTER TX_ BILINEAR,
TX_NULL

h

texdef2d (
texindex,numTexComponents,
texWidth,texHeight,teximage,
numTexParams,texParams

);

Version 1.0 -15-

[] SGI, August 4, 1995

texbind (texIndex);
texenvParams = { TV_MODULATE TV_NULL };

tevdef (texEnvindex,numTexEnvParams,texEnvParams);
tevbind (texEnvindex);

As texture, we can use any image of a high quality rendered sphere either with RGB or one intensity
component only. The RGB version allows the simulation of light sources with different colors.

The most important change for the vertex calls in this model is that we do not pass the surface normal data
with then3f command as we normally do when using Gouraud shading. The normal is passed as texture
coordinate and therefore processed withtBfe command.

Surface normals are transformed with the current model view matrix, although only rotational components

are considered. For this reason the texture must be aligned with the current orientation of the object. Also,
the texture space must be scaled and shifted to cover a circle centered at the origin of the s/t coordinate
system, with a unit length radius to map the surface normals:

mmodé MTEXTURE
loadmatrix (identityMatrix);
translate (0.5,0.5,0.0);
scale (0.5,0.5,1.0);
multmatrix (rotationMatrix);
mmodé MVIEWING;

t3f (norm)

drawTexPhongSurface(); v3f(coo)

for (all vertices) { t3f(), v3f() }

Figure 15: Schematic representation of theawTexPhongSurface() routine.

6 Conclusions

Silicon Graphics has recently introduced a new generation of graphics subsystems, which support a variety
of texture mapping techniques in hardware without performance penalty. The potential of using this
technique in technical, scientific and engineering visualization applications has been demonstrated.

Hardware supported texture mapping offers solutions to important visualization problems that have either
not been solved yet or did not perform well enough to enter the world of interactive graphics applications.
Although most of the examples presented here could be implemented using techniques other than textur
mapping, the tradeoff would either be complete loss of performance or an unmaintainable level of
algorithmic complexity.

Most of the examples were taken from the molecular modelling market, where one has learned over the

Version 1.0 -16- O SGI, August 4, 1995

years to handle complex 3-D scenarios interactively and in an analytic manner. What has been shown h
can also be applied in other areas of scientific, technical or engineering visualization. With the example
shown in this report, it should be possible for software engineers developing application software in othe
markets to use the power and flexibility of texture mapping and to adapt the shown solutions to the
specific case.

One important, general conclusion may be drawn from this work: one has to leave the traditional mind s
about texture mapping and go back to the basics in order to identify the participating components and
understand their generic role in the procedure. Once this step is done it is very simple to use this technic
in a variety of visualization problems.

All examples were implemented on a Silicon Graphics Crimson Reality Engine [7] equipped with two raste
managers. The programs were written in C, either in mixed mode GLX or pure GL.

[1]

[2]
[3]

[4]
[5]

[6]
[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

References

Blinn, J.F. and Newell, M.ETexture and reflection in computer generated imagsmmunications
of the ACM 1976,19, 542-547.

Blinn, J.F.Simulation of wrinkled surfacgSomputer Graphics 19782, 286—-292.

Haeberli, P. and Segal, M.exture mapping as a fundamental drawing primitireoceedings
of the fourth eurographics workshop on rendering, 1993, 259-266.

Peachy, D.RSolid texturing of complex surfageggomputer Graphics 19839, 279-286.

Gardner, G.Y Simulation of natural scenes using textured quadric surfaCesyputer
Graphics 198418, 11-20.

Gardner, G.Y Visual simulations of cloud€omputer Graphics 198%9,279-303.
Akeley, K. Reality Engine GraphiggComputer Graphics 19927, 109-116.

Catmull, E.A.Subdivision algorithm for computer display of curved surfa&sD. thesis
University of Utah, 1974.

Crow, F.C.Summed-area tables for texture mappi@pmputer Graphics 19848, 207-212.

Dill, J.C. An application of color graphics to the display of surface curvat@emputer
Graphics 198115, 153-161.

Sabella, PA rendering algorithm for visualizing 3d scalar fieldSpmputer Graphics, 1988
22,51-58.

Drebin, R. Carpenter, L. and HanrahanM®@lume Rendering;omputer Graphics, 1988,
22, 65-74.

Gouraud, HContinuous shading of curved surfacHSEE Transactions on Computers,
1971,20, 623-628.

Phong, B.Tlllumination for computer generated picturédpmmunications of the ACM
1978,18, 311-317.

Bishop, G. and Weimer, D.Mrast Phong shadingComputer Graphics, 19880, 103-106.

Version 1.0 —-17- O SGI, August 4, 1995

Appeared in Proc. Fourth Eurographics Workshop on Rendering,
Michael Cohen, Claude Puech, and Francois Sllion, eds.
Paris, France, June, 1993. pp. 259-266.

Texture Mapping
asa
Fundamental Drawing Primitive

Paul Haeberli
Mark Segal
Silicon Graphics Computer Systems*

Abstract

Texture mapping has traditionally been used to add
realism to computer graphics images. In recent years,
this technique has moved from the domain of software
rendering systems to that of high performance graphics
hardware.

But texture mapping hardware can be used for many
more applications than simply applying diffuse pat-
terns to polygons.

We survey applications of texture mapping including
simple texture mapping, projective textures, and image
warping. We then describe texture mapping techniques
for drawing anti-aliased lines, air-brushes, and anti-
aliased text. Next we show how texture mapping may
be used as a fundamental graphics primitive for volume
rendering, environment mapping, color interpolation,
contouring, and many other applications.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image Generation; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics
and Realism - color, shading, shadowing, texture-mapping,
line drawing, and anti-aliasing

1 Introduction

Texture mapping[Cat74][Hec86] is a powerful tech-
nique for adding realism to a computer-generated
scene. In its basic form, texture mapping lays an image
(the texture) onto an object in a scene. More general
forms of texture mapping generalize the image to other
information; an “image” of altitudes, for instance, can
be used to control shading across a surface to achieve
such effects as bump-mapping.

Because texture mapping is so useful, it is being
provided as a standard rendering technique both in
graphics software interfaces and in computer graph-
ics hardware[HL90][DWS*88]. Texture mapping can

*2011 N. Shoreline Blvd., Mountain View, CA 94043 USA

therefore be used in a scene with only a modest in-
crease in the complexity of the program that generates
that scene, sometimes with little effect on scene genera-
tion time. The wide availability and high-performance
of texture mapping makes it a desirable rendering tech-
nique for achieving a number of effects that are nor-
mally obtained with special purpose drawing hard-
ware.

After a brief review of the mechanics of texture map-
ping, we describe a few of its standard applications.
We go on to describe some novel applications of tex-
ture mapping.

2 Texture Mapping

When mapping an image onto an object, the color of the
objectat each pixel is modified by a corresponding color
from the image. In general, obtaining this color from
the image conceptually requires several steps[Hec89].
The image is normally stored as a sampled array, so a
continuous image must first be reconstructed from the
samples. Next, the image must be warped to match
any distortion (caused, perhaps, by perspective) in the
projected object being displayed. Then this warped
image is filtered to remove high-frequency components
that would lead to aliasing in the final step: resampling
to obtain the desired color to apply to the pixel being
textured.

In practice, the required filtering is approximated by
one of several methods. One of the most popular is
mipmapping[Wil83]. Other filtering techniques may also
be used[Cro84].

There are a number of generalizations to this basic
texture mapping scheme. The image to be mapped
need not be two-dimensional; the sampling and fil-
tering techniques may be applied for both one- and
three-dimensional images[Pea85]. In the case of a three-
dimensional image, a two-dimensional slice must be
selected to be mapped onto an object’s boundary, since
the result of rendering must be two-dimensional. The

image may not be stored as an array but may be pro-
cedurally generated[Pea85][Per85]. Finally, the image
may not represent color at all, but may instead describe
transparency or other surface properties to be used in
lighting or shading calculations[CG85].

3 Previous Uses of Texture Map-
ping

In basic texture mapping, an image is applied to a poly-
gon (or some other surface facet) by assigning texture
coordinates to the polygon’s vertices. These coordi-
nates index a texture image, and are interpolated across
the polygon to determine, at each of the polygon’s pix-
els, a texture image value. The result is that some por-
tion of the texture image is mapped onto the polygon
when the polygon is viewed on the screen. Typical
two-dimensional images in this application are images
of bricks or aroad surface (in this case the texture image
is often repeated across a polygon); a three-dimensional
image might represent a block of marble from which
objects could be “sculpted.”

3.1 Projective Textures

A generalization of this technique projects a texture
onto surfaces as if the texture were a projected slide or
movie[SKvWT92]. In this case the texture coordinates
at a vertex are computed as the result of the projection
rather than being assigned fixed values. This technique
may be used to simulate spotlights as well as the re-
projection of a photograph of an object back onto that
object’s geometry.

Projective textures are also useful for simulating
shadows. In this case, an image is constructed that rep-
resents distances from a light source to surface points
nearest the light source. This image can be computed by
performing z-buffering from the light’s point of view
and then obtaining the resulting z-buffer. When the
scene is viewed from the eyepoint, the distance from
the light source to each point on a surface is computed
and compared to the corresponding value stored in the
texture image. If the values are (nearly) equal, then
the point is not in shadow; otherwise, it is in shadow.
This technique should not use mipmapping, because
filtering must be applied after the shadow comparison
is performed[RSC87].

3.2 Image Warping

Image warping may be implemented with texture map-
ping by defining a correspondence between a uni-
form polygonal mesh (representing the original im-
age) and a warped mesh (representing the warped

image)[OTOK87]. The warp may be affine (to gen-
erate rotations, translations, shearings, and zooms) or
higher-order. The points of the warped mesh are as-
signed the corresponding texture coordinates of the
uniform mesh, and the mesh is texture mapped with
the original image. This technique allows for easily-
controlled interactive image warping. The technique
can also be used for panning across a large texture im-
age by using a mesh that indexes only a portion of the
entire image.

3.3 Transparency Mapping

Texture mapping may be used to lay transparent or
semi-transparent objects over a scene by representing
transparency values in the texture image as well as
color values. This technique is useful for simulating
clouds[Gar85] and trees for example, by drawing ap-
propriately textured polygons over a background. The
effect is that the background shows through around
the edges of the clouds or branches of the trees. Texture
map filtering applied to the transparency and color val-
ues automatically leads to soft boundaries between the
clouds or trees and the background.

3.4 Surface Trimming

Finally, a similar technique may be used to cut holes
out of polygons or perform domain space trimming on
curved surfaces[Bur92]. Animage of the domain space
trim regions is generated. As the surface is rendered, its
domain space coordinates are used to reference thisim-
age. The value stored in the image determines whether
the corresponding point on the surface is trimmed or
not.

4 Additional Texture Mapping Ap-
plications

Texture mapping may be used to render objects that are
usually rendered by other, specialized means. Since itis
becoming widely available, texture mapping may be a
good choice to implement these techniques even when
these graphics primitives can be drawn using special
purpose methods.

4.1 Anti-aliased Points and Line Segments

One simple use of texture mapping is to draw anti-
aliased points of any width. In this case the texture
image is of a filled circle with a smooth (anti-aliased)
boundary. When a point is specified, it’s coordinates
indicate the center of a square whose width is deter-
mined by the point size. The texture coordinates at the

/i

Figure 1. Anti-aliased line segments.

square’s corners are those corresponding to the corners
of the texture image. This method has the advantage
that any point shape may be accommodated simply by
varying the texture image.

A similar technique can be used to draw anti-aliased,
line segments of any width[Gro90]. The texture image
is a filtered circle as used above. Instead of a line seg-
ment, a texture mapped rectangle, whose width is the
desired line width, is drawn centered on and aligned
with the line segment. If line segments with round
ends are desired, these can be added by drawing an
additional textured rectangle on each end of the line
segment (Figure 1).

4.2 Air-brushes

Repeatedly drawing a translucent image on a back-
ground can give the effect of spraying paint onto a
canvas. Drawing an image can be accomplished by
drawing a texture mapped polygon. Any conceivable
brush “footprint”, even a multi-colored one, may be
drawn using an appropriate texture image with red,
green, blue, and alpha. The brush image may also eas-
ily be scaled and rotated (Figure 2).

4.3 Anti-aliased Text

If the texture image is an image of a character, then a
polygon textured with that image will show that char-
acter on its face. If the texture image is partitioned
into an array of rectangles, each of which contains the
image of a different character, then any character may
be displayed by drawing a polygon with appropriate
texture coordinates assigned to its vertices. An advan-
tage of this method is that strings of characters may

be arbitrarily positioned and oriented in three dimen-
sions by appropriately positioning and orienting the
textured polygons. Character kerning is accomplished
simply by positioning the polygons relative to one an-
other (Figure 3).

Antialiased characters of any size may be obtained
with a single texture map simply by drawing a polygon
of the desired size, but care must be taken if mipmap-
ping is used. Normally, the smallest mipmap is 1 pixel
square, so if all the characters are stored in a single tex-
ture map, the smaller mipmaps will contain a number
of characters filtered together. This will generate unde-
sirable effects when displayed characters are too small.
Thus, if a single texture image is used for all characters,
then each must be carefully placed in the image, and
mipmaps must stop at the point where the image of a
single character is reduced to 1 pixel on a side. Alterna-
tively, each character could be placed in its own (small)
texture map.

4.4 Volume Rendering

There are three ways in which texture mapping may be
used to obtain an image of a solid, translucent object.
The first is to draw slices of the object from back to
front[DCHS88]. Each slice is drawn by first generating
a texture image of the slice by sampling the data rep-
resenting the volume along the plane of the slice, and
then drawing a texture mapped polygon to produce the
slice. Each slice is blended with the previously drawn
slices using transparency.

The second method uses 3D texture mapping[Dre92].
In this method, the volumetric data is copied into the
3D texture image. Then, slices perpendicular to the
viewer are drawn. Each slice is again a texture mapped

EOZI:Awn;:nN._
>eWCrsou+mmn

W XY Z5\6#t,;<
O%PliRSTUV

FGHI&KLMN
3210?@ABCDE
kYPIh&1db7894

f1QJ$/({1[}]

polygon, but this time the texture coordinates at the
polygon’s vertices determine aslice through the 3D tex-
ture image. This method requires a 3D texture mapping
capability, but has the advantage that texture memory
need be loaded only once no matter what the view-
point. If the data are too numerous to fit in a single
3D image, the full volume may be rendered in multiple
passes, placing only a portion of the volume data into
the texture image on each pass.

A third way is to use texture mapping to implement
“splatting” as described by[Wes90][LH91].

4.5 Movie Display

Three-dimensional texture images may also be used to
display animated sequences[Ake92]. Each frame forms
one two-dimensional slice of a three-dimensional tex-

L. % N \\I".
= s AL
T o lx."ti
o8 & 4 ay
N T
A A
R U il
. e ™ A peads
moar b HW”] b

-~) il
i Pk =} 1, A,
Lo A .,a;;(} ff({fgf,_wﬁ
. P o /,f' e
& E s . 2
S S = e

Figure 3. Anti-aliased text.

ture. A frame is displayed by drawing a polygon with
texture coordinates that select the desired slice. This
can be used to smoothly interpolate between frames of
the stored animation. Alpha values may also be asso-
ciated with each pixel to make animated “sprites”.

4.6 Contouring

Contour curves drawn on an object can provide valu-
able information about the object’s geometry. Such
curves may represent height above some plane (as in a
topographic map) that is either fixed or moves with the
object[Sab88]. Alternatively, the curves may indicate
intrinsic surface properties, such as geodesics or loci of
constant curvature.

Contouring is achieved with texture mapping by first
defining a one-dimensional texture image that is of con-

Figure 4. Contouring showing distance from a plane.

stant color except at some spot along its length. Then,
texture coordinates are computed for vertices of each
polygon in the object to be contoured using a texture co-
ordinate generation function. This function may calculate
the distance of the vertex above some plane (Figure 4),
or may depend on certain surface properties to produce,
for instance, a curvature value. Modular arithmetic is
used in texture coordinate interpolation to effectively
cause the single linear texture image to repeat over and
over. The result is lines across the polygons that com-
prise an object, leading to contour curves.

A two-dimensional (or even three-dimensional) tex-
ture image may be used with two (or three) texture
coordinate generation functions to produce multiple
curves, each representing a different surface character-
istic.

4.7 Generalized Projections

Texture mapping may be used to produce a non-
standard projection of a three-dimensional scene, such
asacylindrical or spherical projection[Gre86]. The tech-
nique is similar to image warping. First, the scene is
rendered six times from a single viewpoint, but with
six distinct viewing directions: forward, backward, up,
down, left, and right. These six views form a cube en-
closing the viewpoint. The desired projection is formed
by projecting the cube of images onto an array of poly-
gons (Figure 5).

4.8 Color Interpolation in non-RGB Spaces

The texture image may not represent an image at all,
but may instead be thought of as a lookup table. In-
termediate values not represented in the table are ob-
tained through linear interpolation, a feature normally
provided to handle image filtering.

One way to use a three-dimensional lookup table is to
fill it with RGB values that correspond to, for instance,
HSV (Hue, Saturation, Value) values. The H, S, and V
values index the three dimensional tables. By assigning
HSV values to the vertices of a polygon linear color in-
terpolation may be carried out in HSV space rather than
RGB space. Other color spaces are easily supported.

4.9 Phong Shading

Phong shading with an infinite light and a local viewer
may be simulated using a 3D texture image as follows.
First, consider the function of z, y, and =z that assigns
a brightness value to coordinates that represent a (not
necessarily unit length) vector. The vector is the reflec-
tion off of the surface of the vector from the eye to a
point on the surface, and is thus a function of the nor-
mal at that point. The brightness function depends on
the location of the light source. The 3D texture image
is a lookup table for the brightness function given a re-
flection vector. Then, for each polygon in the scene, the
reflection vector is computed at each of the polygon’s
vertices. The coordinates of this vector are interpolated

!

‘\\\\\\ i
Tl
o
R
0%
G
7

25

X

$oats
TR
iiis

.

L

L HI
S
0,

/77
Iy,

it

7

'llll,",

i,
7

L7
7

Sl gl

%
b2y
g0
igtte

7
177
(7
o)

TR
2L
5
o’

L7
%

oy

77
{7
2

i1
",'
L
i
S5
2%
05
o
o
:‘

<
5%
5

%

yy

7
LAY
AL
otets

2

R0
2::’:2‘::‘: \‘
SRR, e

T \\\\“

8
S ‘\“‘

o,
TR
it

L

I/
L
ST /]
LA
<7

el
Bt SO

Figure 5. 360 Degree fisheye projection.

across the polygon and index the brightness function
stored in the texture image. The brightness value so
obtained modulates the color of the polygon. Multi-
ple lights may be obtained by incorporating multiple
brightness functions into the texture image.

4.10 Environment Mapping

Environment mapping[Gre86] may be achieved
through texture mapping in one of two ways. The first
way requires six texture images, each corresponding to
aface of a cube, that represent the surrounding environ-
ment. At each vertex of a polygon to be environment
mapped, a reflection vector from the eye off of the sur-
face is computed. This reflection vector indexes one of
the six texture images. As long as all the vertices of the
polygon generate reflections into the same image, the
image is mapped onto the polygon using projective tex-
turing. If a polygon has reflections into more than one
face of the cube, then the polygon is subdivided into
pieces, each of which generates reflections into only
one face. Because a reflection vector is not computed at
each pixel, this method is not exact, but the results are
quite convincing when the polygons are small.

The second method is to generate a single texture
image of a perfectly reflecting sphere in the environ-
ment. This image consists of a circle representing the
hemisphere of the environment behind the viewer, sur-
rounded by an annulus representing the hemisphere in
front of the viewer. The image is that of a perfectly
reflecting sphere located in the environment when the
viewer is infinitely far from the sphere. Ateach polygon
vertex, a texture coordinate generation function gen-
erates coordinates that index this texture image, and
these are interpolated across the polygon. If the (nor-
malized) reflection vector ata vertexisr = (z y =z),
and m = \/2(z + 1), then the generated coordinates
are «/m and y/m when the texture image is indexed

x. ¥, 2
(Xt Yo \’ %1)
00— - | (C 0
X, = ———
w/2(z+1)
- y
2@)
Note:

X2 + y2 +(z +1)2 =2(z+1) Texture

Image

Figure 6. Spherical reflection geometry.

by coordinates ranging from -1 to 1. (The calculation
is diagrammed in Figure 6). This method has the dis-
advantage that the texture image must be recomputed
whenever the view direction changes, but requires only
a single texture image with no special polygon subdi-
vision (Figure 7).

4.11 3D Halftoning

Normal halftoned images are created by thresholding
a source image with a halftone screen. Usually this
halftone pattern of lines or dots bears no direct rela-
tionship to the geometry of the scene. Texture map-
ping allows halftone patterns to be generated using a
3D spatial function or parametric lines of a surface (Fig-
ure 8). This permits us to make halftone patterns that
are bound to the surface geometry[ST90].

Figure 8. 3D halftoning.

5 Conclusion

Many graphics systems now provide hardware that
supports texture mapping. As a result, generating a
texture mapped scene need not take longer than gener-
ating a scene without texture mapping.

We have shown that, in addition to its standard uses,
texture mapping can be used for a large number of
interesting applications, and that texture mapping is a
powerful and flexible low level graphics drawing prim-
itive.

References

[Ake92] Kurt Akeley. Personal Communication,
1992.

[Bur92] Derrick Burns. Personal Communication,
1992.

[Cat74]

[CG85]

[Cro84]

[DCHSS]

[Dre92]

Ed Catmull. A Subdivision Algorithm for
Computer Display of Curved Surfaces. PhD
thesis, University of Utah, 1974.

Richard J. Carey and Donald P. Green-
berg. Textures for realistic image synthe-
sis. Computers & Graphics, 9(3):125-138,
1985.

F. C.Crow. Summed-areatables for texture
mapping. Computer Graphics (SIGGRAPH
’84 Proceedings), 18:207-212, July 1984.

Robert A. Drebin, Loren Carpenter, and
Pat Hanrahan. Volume rendering. Com-
puter Graphics (SIGGRAPH ’88 Proceed-
ings), 22(4):65-74, August 1988.

Bob Drebin. Personal Communication,
1992.

[DWS*88]

[Gar85]

[Gre86]

[Gro90]

[Hec86]

[Hec89]

[HL90]

[LH91]

[OTOKS7]

[Pea85]

[Per85]

[RSC87]

Michael Deering, Stephanie Winner, Bic
Schediwy, Chris Duffy, and Neil Hunt.
The triangle processor and normal vector
shader: A VLSI system for high perfor-
mance graphics. Computer Graphics (SIG-
GRAPH ’88 Proceedings), 22(4):21-30, Au-
gust 1988.

G. Y. Gardner. Visual simulation of clouds.
Computer Graphics (SIGGRAPH "85 Proceed-
ings), 19(3):297-303, July 1985.

Ned Greene. Applications of world projec-
tions. Proceedings of Graphics Interface '86,
pages 108-114, May 1986.

Mark Grossman. Personal Communica-

tion, 1990.

Paul S. Heckbert. Survey of texture map-
ping. IEEE Computer Graphics and Applica-
tions, 6(11):56-67, November 1986.

Paul S. Heckbert. Fundamentals of tex-
ture mapping and image warping. M.sc.
thesis, Department of Electrical Engineer-
ing and Computer Science, University of
California, Berkeley, June 1989.

Pat Hanrahan and Jim Lawson. A lan-
guage for shading and lighting calcula-
tions. Computer Graphics (SIGGRAPH ’90
Proceedings), 24(4):289-298, August 1990.

David Laur and Pat Hanrahan. Hierar-
chical splatting: A progressive refinement
algorithm for volume rendering. Com-
puter Graphics (SIGGRAPH 91 Proceed-
ings), 25(4):285-288, July 1991.

Masaaki Oka, Kyoya Tsutsui, Akio Ohba,
and Yoshitaka Kurauchi. Real-time ma-
nipulation of texture-mapped surfaces.
Computer Graphics (Proceedings of SIG-
GRAPH ’87), July 1987.

D. R. Peachey. Solid texturing of complex
surfaces. Computer Graphics (SIGGRAPH
"85 Proceedings), 19(3):279-286, July 1985.

K. Perlin. An image synthesizer. Com-
puter Graphics (SIGGRAPH ’85 Proceed-
ings), 19(3):287-296, July 1985.

William Reeves, David Salesin, and Rob
Cook. Rendering antialiased shadows
with depth maps. Computer Graphics (SIG-
GRAPH ’87 Proceedings), 21(4):283-291,
July 1987.

[Sab8s]

[SKvW+92]

[ST90]

[Wes90]

[Wil83]

Paolo Sabella. A rendering algorithm
for visualizing 3d scalar fields. Com-
puter Graphics (SIGGRAPH ’88 Proceed-
ings), 22(4):51-58, August 1988.

Mark Segal, Carl Korobkin, Rolf van
Widenfelt, Jim Foran, and Paul Haeberli.
Fast shadows and lighting effects using
texture mapping. Computer Graphics (SIG-
GRAPH 92 Proceedings), 26(2):249-252,
July 1992.

Takafumi Saito and Tokiichiro Takahashi.
Comprehensible rendering of 3-d shapes.
Computer Graphics (SIGGRAPH "90 Proceed-
ings), 24(4):197-206, August 1990.

Lee Westover. Footprint evaluation for
volume rendering. Computer Graphics
(SIGGRAPH ’90 Proceedings), 24(4):367-
376, August 1990.

Lance Williams. Pyramidal parametrics.
Computer Graphics (SIGGRAPH "83 Proceed-
ings), 17(3):1-11, July 1983.

Simulating Soft Shadows
with Graphics Hardware

Paul S. Heckbert and Michag Herf
January 15, 1997
CMU-CS-97-104

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

email: ph@cs.cmu.edu, herf+@cmu.edu
World Wide Web: http://www.cs.cmu.edu/~ph

This paper was written in April 1996. An abbreviated version appeared in [Michael Herf and Paul S. Heckbert, Fast
Soft Shadows, Visual Proceedings, SSGGRAPH 96, Aug. 1996, p. 145].

Abstract

This paper describes an algorithm for simulating soft shadows at interactive rates using graphics hardware. On current graphics
workstations, the technique can calculate the soft shadows cast by moving, complex objects onto multiple planar surfacesin
about asecond. In astatic, diffuse scene, these high quality shadows can then be displayed at 30 Hz, independent of the number
and size of the light sources.

For a diffuse scene, the method precomputes a radiance texture that captures the shadows and other brightness variations on
each polygon. Thetexture for each polygon is computed by creating registered projections of the scene onto the polygon from
multiple sample points on each light source, and averaging the resulting hard shadow images to compute a soft shadow image.
After this precomputation, soft shadows in a static scene can be displayed in real-time with simple texture mapping of the
radiancetextures. All pixel operationsemployed by the algorithm are supported in hardware by existing graphics workstations.
The technique can be generalized for the simulation of shadows on specular surfaces.

Thiswork was supported by NSF Young Investigator avard CCR-9357763. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of NSF or the U.S. government.

Keywords: penumbra, texture mapping, graphics workstation,
interaction, real-time, SGI Reality Engine.

1 Introduction

Shadows are both an important visual cue for the perception of
spatial relationships and an essential component of realisticimages.
Shadows differ according to the type of light source causing them:
point light sources yield hard shadows, while linear and area (also
known as extended) light sources generally yield soft shadows with
an umbra (fully shadowed region) and penumbra (partially shad-
owed region).

Thereal world contains mostly soft shadows dueto thefinitesize
of sky light, the sun, and light bulbs, yet most computer graphics
rendering software simulates only hard shadows, if it smulates
shadows at al. Excessive sharpness of shadow edges is often a
telltale sign that a picture is computer generated.

Shadows are even less commonly simulated with hardware ren-
dering. Current graphics workstations, such as Silicon Graphics
(SGI) and Hewlett Packard (HP) machines, provide z-buffer hard-
ware that supports real-time rendering of fairly complex scenes.
Such machines are wonderful tools for computer aided design and
visudization. Shadows are seldom simulated on such machines,
however, because existing algorithms are not general enough, or
they require too much time or memory. The shadow algorithms
most suitable for interaction on graphics workstations have a cost
per frame proportional to the number of point light sources. While
such algorithms are practical for one or two light sources, they are
impractical for alarge number of sources or the approximation of
extended sources.

We present here a new algorithm that computes the soft shad-
ows due to extended light sources. The algorithm exploits graphics
hardware for fast projective (perspective) transformation, clipping,
scan conversion, texture mapping, visibility testing, and image av-
eraging. The hardware is used both to compute the shading on
the surfaces and to display it, using texture mapping. For diffuse
scenes, the shading is computed in a preprocessing step whose cost
isproportiona to the number of light source samples, but while the
sceneisstatic, it can be redisplayed in timeindependent of the num-
ber of light sources. The method is also useful for simulating the
hard shadows due to alarge number of point sources. The memory
requirements of the algorithm are also independent of the number
of light source samples.

1.1 Theldea

For diffuse scenes, our method works by precomputing, for each
polygon in the scene, a radiance texture [12,14] that records the
color (outgoing radiance) at each point in the polygon. In a diffuse
scene, the radiance at each surface point is view independent, so it
can be precomputed and re-used until the scene geometry changes.
This radiance texture is analogous to the mesh of radiosity values
computed in a radiosity agorithm. Unlike a radiosity algorithm,
however, our algorithm can compute this texture almost entirely in
hardware.

The key idea is to use graphics hardware to determine visibility
and calculate shading, that is, to determine which portions of a
surface are occluded with respect to a given extended light source,
and how brightly they are lit. In order to simulate extended light
sources, we approximate them with anumber of light sample points,
and we do visibility tests between a given surface point and each
light sample. To keep as many operations in hardware as possible,
however, we do not use a hemicube [7] to determine visibility.
Instead, to compute the shadows for a single polygon, we render
the scene into a scratch buffer, with all polygons except the one
being shaded appropriately blackened, using a specia projective
projection from the point of view of each light sample. Theseviews
areregistered sothat corresponding pixelsmap toidentical pointson

the polygon. When the resulting hard shadow images are averaged,
a soft shadow image results (figure 1). This image is then used
directly as a texture on the polygon in order to simulate shadows
correctly. The textures so computed are used for real-time display
until the scene geometry changes.

In the remainder of the paper, we summarize previous shadow
algorithms, we present our method for diffuse scenesin more detail
we discuss generalizations to scenes with specular and general re-
flectance, we present our implementation and results, and we offer
some concluding remarks.

2 PreviousWork

2.1 Shadow Algorithms

Woo et al. surveyed a number of shadow algorithms [19]. Here
we summarize soft shadows methods and methods that run at inter-
activerates. Shadow algorithmscan bedividedintothreecategories:
those that compute everything on the fly, those that precompute just
visibility, and those that precompute shading.

ComputationontheFly. Simpleray tracing computes everything
on the fly. Shadows are computed on a point-by-point basis by
tracing rays between the surface point and a point on each light
source to check for occluders. Soft shadows can be simulated by
tracing rays to anumber of points distributed across the light source
[8].
The shadow volume approach is another method for computing
shadows on the fly. With this method, one constructs imaginary
surfaces that bound the shadowed volume of space with respect
to each point light source. Determining if a point is in shadow
then reduces to point-in-volume testing. Brotman and Badler used
an extended z-buffer algorithm with linked lists at each pixel to
support soft shadows using this approach [4].

The shadow volume method has also been used in two hardware
implementations. Fuchs et al. used the pixel processors of the
Pixel Planes machine to simulate hard shadows in real-time [10].
Heidmann used the stencil buffer in advanced SGI machines [13].
With Heidmann's agorithm, the scene must be rendered through
the stencil created from each light source, so the cost per frame
is proportional to the number of light sources times the number
of polygons. On 1991 hardware, soft shadows in a fairly smple
scene required several seconds with his algorithm. His method
appears to be one of the algorithms best suited to interactive use on
widely available graphics hardware. We would prefer, however, an
algorithm whose cost is sublinear in the number of light sources.

A simple, brute force approach, good for casting shadows of
objects onto a plane, is to find the projective transformation that
projects objects from a point light onto a plane, and to use it to
draw each squashed, blackened object on top of the plane [3], [15,
p. 401]. Thisalgorithm effectively multipliesthe number of objects
in the scene by the number of light sources times the number of
receiver polygons onto which shadows are being cast, however,
so it is typicaly practical only for very smal numbers of light
sources and receivers. Another problem with this method is that
occluders behind the receiver will cast erroneous shadows, unless
extraclipping is done.

Precomputation of Visibility. Instead of computing visibility on
the fly, one can precompute visibility from the point of view of each
light source.

The z-buffer shadow algorithm uses two (or more) passes of z-
buffer rendering, first from the light sources, and then from the
eye [18]. The z-buffers from the light views are used in the final

Figure 1: Hard shadow images from 2 x 2 grid of sample points on light source.

NEN

Figure 2: Left: scenewith squarelight source (foreground), triangular occluder (center), and rectangul ar receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2 x 2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16 x 16 sampling). Thisimageis used as the texture on the receiver at | eft.

passto determine if agiven 3-D point isilluminated with respect to
each light source. Thetransformation of pointsfrom one coordinate
system to another can be accelerated using texture mapping hard-
ware [17]. This latter method, by Segal et al., achieves real-time
rates, and is the other leading method for interactive shadows. Soft
shadows can begenerated on agraphi csworkstation by rendering the
scene multiple times, using different points on the extended light
source, averaging the resulting images using accumulation buffer
hardware [11].

A variation of the shadow volume approach is to intersect these
volumes with surfaces in the scene to precompute the umbra and
penumbra regions on each surface [16]. During the final rendering
pass, illumination integrals are evaluated at a sparse sampling of
pixels.

Precomputation of Shading. Precomputation can be taken fur-
ther, computing not just visibility but also shading. This is most
relevant to diffuse scenes, since their shading is view-independent.
Some of these methods compute visibility continuously, while oth-
ers compute it discretely.

Several researchers have explored continuous visibility methods
for soft shadow computation and radiosity mesh generation. With
this approach, surfaces are subdivided into fully lit, penumbra, and
umbra regions by splitting along lines or curves where visibility
changes. In Chin and Feiner’s soft shadow method, polygons are
split using BSP trees, and these sub-polygons are then pre-shaded
[6]. They achieved rendering times of under a minute for smple
scenes. Drettakisand Fiume used more sophisticated computational
geometry techniques to precompute their subdivision, and reported
rendering times of several seconds [9].

Most radiosity methods discretize each surface into a mesh of
elements and then use discrete methods such as ray tracing or
hemicubes to compute visibility. The hemicube method computes
visibility from alight source point to an entire hemisphere by pro-
jecting the scene onto a half-cube [7]. Much of this computation
can be donein hardware. Radiosity meshestypically do not resolve
shadows well, however. Typical artifacts are Mach bands along the
mesh element boundaries and excessively blurry shadows. Most
radiosity methods are not fast enough to support interactive changes
to the geometry, however. Chen's incremental radiosity method is
an exception [5].

Our own method can be categorized next to hemicube radiosity
methods, since it also precomputes visibility discretely. Its tech-
nique for computing visibility also has parallels to the method of
flattening objectsto aplane.

2.2 GraphicsHardware

Current graphics hardware, such as the Silicon Graphics Reality
Engine [1], can projective-transform, clip, shade, scan convert, and
texture tens of thousands of polygons in real-time (in 1/30 sec.).
We would like to exploit the speed of this hardware to simulate soft
shadows.

Typically, such hardware supports arbitrary 4 x 4 homogeneous
transformations of planar polygons, clipping to any truncated pyra-
midal frustum (right or oblique), and scan conversion with z-
buffering or overwriting. On SGI machines, Phong shading (once
per pixel) isnot possible, but faceted shading (once per polygon) and
Gouraud shading (once per vertex) are supported. Phong shading

can be smulated by splitting polygonsinto small piecesoninput. A
common, genera form for hardware-supported illumination is dif-
fuse reflection from multiple point spotlight sources, with atexture
mapped reflectance function and attenuation:

cosd; cosb}® L.
a+ Br; + 'yrlz

L(z,y) = T.(u,0) »

l

where ¢ is color channel index (=, g, or b), I.(z,y) is the pixel
value at screen space (z,y), T.(u,v) is a texture parameterized
by texture coordinates (u, v), which are a projective transform of
(z,y), 6 is the polar angle for the ray to light source [, ; is the
angle away from the directiona axis of the light source, e is the
spotlight exponent, L,. is the radiance of light I, r; is distance to
light sourcel, and «, 3, and +y are constants controlling attenuation.
Texture mapping, lights, and attenuation can be turned on and off
independently on a per-polygon basis. Most systems also support
Phong illumination, which has an additional specular term that we
have not shown. The most advanced, expensive machines support
all of these functions in hardware, while the cheaper machines do
some of these calculations in software. Since the graphics subrou-
tine interface, such as OpenGL [15], is typicaly identical on any
machine, these differences are transparent to the user, except for
the dramatic differences in running speed. So when we speak of a
computation being done “in hardware”, that istrue only on high end
machines.

The accumulation buffer [11], another feature of some graphics
workstations, ishardware that allowsalinear combination of images
to be easily computed. It is capable of computing expressions of

the general form:
= Z ailic(z,y)

where I;. is a channel of image ¢, and A. is a channd of the
accumulator array.

3 Diffuse Scenes

Our shadow generation method for diffuse scenestakes advantage
of these hardware capabilities.

Direct illumination in a scene of opaque surfaces that emit or
reflect light diffusely is given by the following formula:

!
Le(x) = pe(x) (Lac + / Wv(x,x’wxx’)dx') :
lights

2

where, as shown in Figure 3,
e X = (z,y,2) isa3-D point on areflective surface, and x’ is
apoint on alight source,
6 ispolar angle (angle from normal) at x, §’ istheangle at x’,
r isthe distance between x and x’,
6,6, and r are functions of x and x’,
L.(x) isoutgoing radiance at point x for color channel ¢, due
to either emission or reflection, L. isambient radiance,
pe(x) isreflectance,
e v(x,x") isaBoolean visibility function that equals 1 if point
x isvisible from point x’, else 0,
e C0s.6 = max(cos#, 0), for backface testing, and
e theintegral isover all points on al light sources, with respect
to dx’, whichisan infinitesimal areaon alight source.
The inputs to the problem are the geometry, the reflectance p. (x),
and emitted radiance L.(x") on all light sources, the ambient radi-
ance L., and the output is the reflected radiance function L. (x).

Figure 3: Geometry for direct illumination. The radiance at point
X on the receiver is being caculated by summing the contributions
from a set of point light sources at x;; on light [.

3.1 Approximating Extended Light Sources

Although such integrals can be solved in closed form for planar
surfaces with no occlusion (v = 1), the complexity of the visibility
function makes these integrals intractable in the general case. We
can compute approximations to the integral, however, by replacing
each extended light source [by a set of n; point light sources:

zZZaliL (x') 8(
l i=1

where §(x) isa3-D Dirac delta function, x;; is sample point ¢ on
light source [, and a;; isthe area associated with this sample paint.
Typically, each sample on alight source hasequd area: a;; =ai/n,
where q; isthe area of light sourcel.

With thisapproximation, theradiance of areflective surface point
can be computed by summing the contributions over al sample
points on all light sources:

Le(x) = pe(x)Lac
+pc ZZ

The formulas above can be generalized to linear and point light
sources, as well as area light sources.

The most difficult and expensive part of the above calculation
is evaluation of the visibility function v, since it requires global
knowledge of the scene, whereas the remaining factors require only
local knowledge. But computing v isnecessary in order to simulate
shadows. The above formula could be evaluated using ray tracing,
but the resulting algorithm would be slow due to the large number
of light source samples.

X, - X;i):

808 (i) Lo

3.2 Soft Shadowsin Hardware

Equation (1) can be rewritten in a form suitable to hardware
computation:

L¢(x) = pe(X) Lac

ny . ’
303 () (22
I =1 b

L) . xi).
@

Each term in the inner summation can be regarded as a hard
shadow image resulting from a point light source at x;;, where x is
afunction of screen (z,y).

That summand consists of the product of three factors. The first
one, which isan areatimesthe reflectance of the receiving polygon,
can be calculated in software. The second factor is the cosine of
the angle on the receiver, times the cosine of the angle on the light

b+e,

Figure 4: Pyramid with parallelogram base. Faces of pyramid are
marked with their plane equations.

source, times the radiance of the light source, divided by r2. This
can be computed in hardware by rendering the receiver polygon
with asingle spotlight at x;; turned on, using a spotlight exponent
of e = 1and quadratic attenuation. On machinesthat do not support
Phong shading, we will have to finely subdivide the polygon. The
third factor is visibility between a point on alight source and each
point on the receiver. Visibility can be computed by projecting al
polygons between light source point xj, and the receiver onto the
receiver.

Wewant to simulate soft shadows as quickly as possible. To take
full advantage of the hardware, we can precompute the shading for
each polygon using the formula above, and then display views of
the scene from moving viewpoints using real-time texture mapping
and z-buffering.

To compute soft shadow textures, we need to generate a number
of hard shadow images and then average them. If these hard shadow
images are not registered (they would not be, using hemi-cubes),
then it would be necessary to resample them so that corresponding
pixelsin each hard shadow image map to the same surface point in
3-D. Thiswould be very slow. A faster aternative is to choose the
transformation for each projection so that the hard shadow images
are perfectly registered with each other.

For planar receiver surfaces, this is easily accomplished by ex-
ploiting the capabilities of projective transformations. If we fit a
parallelogram around the receiver surface of interest, and then con-
struct a pyramid with this as its base and the light point asits apex,
there is a 4 x 4 homogeneous transformation that will map such a
pyramid into an axis-aligned box, as described shortly.

The hard shadow image due to sample point ¢ on light [is created
by loading this special transformation matrix and rendering the
receiver polygon. The polygon isilluminated by the ambient light
plus a single point light source at x};, using Phong shading or a
good approximation to it. The visibility function is then computed
by rendering the remainder of the scene with all surfaces shaded as
if they were the receiver illuminated by ambient light: (r, g,b) =
(prLar, pgLag, poLap). Thisis most quickly done with z-buffering
off, and clipping to a pyramid with the receiver polygon asits base.
Drawing each polygon with an unsorted painter’s algorithm suffices
here because all polygons are the same color, and after clipping,
the only polygon fragments remaining will lie between the light
source and the receiver, so they all cast shadows on the receiver.
To compute the weighted average of the hard shadow images so
created, we use the accumulation buffer.

3.3 Projective Transformation of a Pyramid to a Box

We want a projective (perspective) transformation that maps a
pyramid with parallelogram base into a rectangular parallelepiped.
The pyramid lies in object space, with coordinates (o, yo, z0). It

has apex a and its parallelogram base has one vertex at b and edge
vectors ex and ey (bold lower case denotes a 3-D point or vector).
The parallelepiped liesin what we will call unit screen space, with
coordinates (xu, yu, zu). Viewed from the apex, the left and right
sides of the pyramid map to the paralel planes z, =0 and z, =1,
the bottom and top map to y, =0 and y, = 1, and the base plane and
aplane paralld to it through the apex map to 2z, = 1 and z, = oo,
respectively. Seefigure 4.

A 4x 4 homogeneous matrix effecting this transformation can be
derived from these conditions. It will have the form:

Mmoo o1 M2 T3
mip M1 M m
M = 10 11 12 =N
0 0 0 1
M3 M3l M32 M33

and the homogeneous transformation and homogeneous division to
transform object space to unit screen space are:

z Lo Zu x/w
ﬁl' =M | % and [yu]:[y/w].
Zf 2u 1/w

Thethird row of matrix M takesthis simpleform because aconstant
zu value is desired on the base plane. The homogeneous screen
coordinates z, y, and w are each affine functions of o, yo, and z,
(that is, linear plus trandation). The constraints above specify the
value of each of the three coordinates at four points in space — just
enough to uniquely determine the twelve unknowns in IM.

The w coordinate, for example, has vaue 1 a the points b,
b+ey, and b+ey, and value 0 at a. Therefore, the vector ny, =
ey X ex isnormal to any plane of constant w, thus fixing the first
three elements of the last row of the matrix within a scale factor:
(mao, ma1, ma2)” = awnw. Settingw toOata and 1at b constrains
maz=—awly-a and aw =1/ny-ew, wheree, =b — a. Thefirst
two rows of IM can be derived similarly (see figure 4). The result
is:

QixTixx Qi Ty QixMNixz —Qxy - b

M= | o ayny ayny —ayny b
-)

QwTiwx Qwlwy QwNlwz —QwIly-a

where

ny = eyxey
ny = exxey and
ny = ey xex

ax = 1/ny-ex
Qy = 1/ny'6y .
aw = 1/ny-ey

Blinn [3] uses arelated projective transformation for the genera-
tion of shadows on a plane, but hisis a projection (it collapses 3-D
to 2-D), while ours is 3-D to 3-D. We use the third dimension for

clipping.

3.4 Usingthe Transformation

To use this transformation in our shadow algorithm, we first fit
a parallelogram around the receiver polygon. If the receiver is a
rectangle or other paralelogram, the fit is exact; if the receiver is
atriangle, then we fit the triangle into the lower left triangle of the
parallelogram; and for more general polygons with four or more
sides, a smple 2-D bounding box in the plane of the polygon can
be used. Itispossibleto go further with projective transformations,
mapping arbitrary planar quadrilaterals into squares (using the ho-
mogeneous texture transformation matrix of OpenGL, for example).
Weassume for simplicity, however, that the transformation between
texture space (the screen spacein theselight source projections) and
object spaceisaffine, and so we restrict ourselves to parallel ograms.

3.5 Soft Shadow Algorithm for Diffuse Scenes
To precompute soft shadow radiance textures:

turn off z-buffering
for each receiver polygon R
choose resolution for receiver’s texture (sx x sy pixels)
clear accumulator image of sx x sy pixelsto black
create temporary image of sx x sy pixels
for each light source !
first backface test: if [isentirely behind R
or Risentirely behind £, then skip to next
for each sample point ¢ on light source
second backface test: if x]; is behind R then skip to next 4
compute transformation matrix M, wherea=x{;,
and the base parallelogram fits tightly around R
set current transformation matrix to scale(sx, sy, 1)-M
set clipping planesto zu,near =1 — € and zy far =big
draw R with illumination from x;; only, as described in
equation (2), into temp image
for each other object in scene
draw object with ambient color into temp image
add temp image into accumulator image with weight a; /n;
save accumulator image as texture for polygon R

A hard shadow image is computed in each iteration of the ¢ loop.
These are averaged together to compute a soft shadow image, which
isused asaradiance texture. Notethat objects casting shadows need
not be polygonal; any object that can be quickly scan converted will
work well.

To display a static scene from moving viewpoints, simply:

turn on z-buffering

for each object in scene
if object receives shadows, draw it textured but without illumination
else draw object with illumination

3.6 Backface Testing

Thecaseswherecos.f cos,#’ = 0 can be optimized using backface
testing.

To test if polygon p is behind polygon ¢, compute the signed
distances from the plane of polygon ¢ to each of the vertices of
p (signed positive on the front of ¢ and negative on the back). If
they are al positive, then p is entirely in front of ¢, if they are all
nonpositive, p is entirely in back, otherwise, part of p isin front of
q and part isin back.

To test if the apex a of the pyramid is behind the receiver R that
defines the base plane, simply test if ny-ew <0.

The above checks will ensure that cosé > 0 at every point on the
receiver, but there is still the possibility that cosé’ < 0 on portions
of thereceiver (i.e. that the receiver isonly partialy illuminated by
the light source). Thisfina case should be handled at the polygon
level or pixel level when shading thereceiver inthe a gorithm above.
Phong shading, or a good approximation to it, is needed here.

3.7 Sampling Extended Light Sources

Theset of samplesused on eachlight sourcegreatly influencesthe
speed and quality of theresults. Too few samples, or apoorly chosen
sample distribution, result in penumbras that appear stepped, not
continuous. If too many samples are used, however, the simulation
runs too slowly.

If auniform grid of sample points is used, the stepping is much
more pronounced in some cases. For example, if a uniform grid of
mxm samplesisused on aparallelogram light source, an occluder
edge coplanar with one of the light source edges will cause m big

steps, while an occluder edge in general position will cause m?2
small steps.

Stochastic sampling [8] with the same number of samplesyields
smoother penumbrathan auniform grid, because the steps no longer
coincide. Weuseajittered uniformgrid becauseit givesgood results
and is very easy to compute.

Using a fixed number of samples on each light source is ineffi-
cient. Fine sampling of alight source is most important when the
light source subtends a large solid angle from the point of view of
thereceiver, since that is when the penumbrais widest and stepping
artifacts would be most visible. A good approach is to choose the
light source sample resolution such that the solid angle subtended
by the light source area associated with each sample is below a
user-specified threshold.

The agorithm can easily handle diffuse (non-directional) light
sources whose outgoing radiance varies with position, such as
stained glass windows. For such light sources, importance sam-
pling might be preferable: concentration of samplesin the regions
of the light source with highest radiance.

3.8 Texture Resolution

The resolution of the shadow texture should be roughly equal to
theresolution at which it will be viewed (one texture pixel mapping
to one screen pixel); lower resolution resultsin visible artifacts such
as blocky shadows, and higher resolution is wasteful of time and
memory. In the absence of information about probable views, a
reasonable technique is to set the number of pixels on a polygon’s
texture, in each dimension, proportiond toitssizeinworld space us-
ing a“desired pixel size’ parameter. With this scheme, the required
texture memory, in pixels, will be the total world space surface area
of all polygons in the scene divided by the square of the desired
pixel size.

Texturememory for triangles can befurther optimized by packing
the textures for two triangles into one rectangular texture block.

If there are too many polygons in the scene, or the desired pixel
sizeis too small, the texture memory could be exceeded, causing
paging of texture memory and slow performance.

Radiance textures can be antialiased by supersampling: gener-
ating the hard and initial soft shadow images at several times the
desired resolution, and then filtering and downsampling the images
before creating textures. Textured surfaces should be rendered with
good texture filtering.

Some polygons will contain penumbral regions with respect to
a light source, and will require high texture resolution, but others
will be either totally shadowed (umbral) or totally illuminated by
each light source, and will have very smooth radiance functions.
Sometimes these functions will be so smooth that they can be ad-
equately approximated by a single Gouraud shaded polygon. This
optimization saves significant texture memory and speeds display.

This idea can be carried further, replacing the textured planar
polygon with a mesh of coplanar Gouraud shaded triangles. For
complex shadow patterns and radiance functions, however, textures
may render faster than the corresponding Gouraud approximation,
depending on the relative speed of texture mapping and Gouraud-
shaded triangle drawing, and the number of triangles required to
achieve a good approximation.

3.9 Complexity

We now analyze the expected complexity of our algorithm (worst
case costs are not likely to be observed in practice, so we do not
discuss them here). Although more sophisticated schemes are pos-
sible, we will assume for the purposes of analysis that the same set

sample

plane R

Figure 5. Shadows are computed on plane R and projected onto the
receiving object at right.

of light samples are used for shadowing all polygons. Suppose we
have a scene with s surfaces (polygons), atotal of n=7 , T light
source samples, a total of ¢ radiance texture pixels, and the output
images are rendered with p pixels. We assume the depth compl exity
of the scene (the average number of surfaces intersecting aray) is
bounded, and that ¢ and p are roughly linearly related. The average
number of texture pixels per polygon ist/s.

With our technique, preprocessing renders the scene ns times.
A painter’s algorithm rendering of s polygons into an image of ¢/s
pixelstakes O(s+t/s) timefor scenes of bounded depth complexity.
The total preprocessing time is thus O(ns®+nt), and the required
texture memory is O(t). Display requires only z-buffered texture
mapping of s polygons to an image of p pixels, for a time cost
of O(s+p). The memory for the z-buffer and output image is
O(p)=0(t).

Our display algorithm isvery fast for complex scenes. Itscost is
independent of the number of light source samples used, and also
independent of the number of texture pixels (assuming no texture
paging).

For scenes of low or moderate complexity, our preprocessing
algorithm is fast because all of its pixel operations can be done in
hardware. For very complex scenes, our preprocessing algorithm
becomes impractical because it is quadratic in s, however. In such
cases, performance can beimproved by cal cul ating shadows only on
asmall number of surfacesin the scene (e.g. floor, walls, and other
large, important surfaces), thereby reducing the cost to O (nsscnt),
where s; isthe number of textured polygons.

In an interactive setting, a progressive refinement of images can
be used, in which hard shadows on a small number of polygons
(precomputation with n = 1, s; small) are rendered while the user
is moving objects with the mouse, a full solution (precomputation
withn large, st large) iscomputed when they complete amovement,
and then top speed rendering (display with texture mapping) isused
as the viewer moves through the scene.

More fundamentally, the quadratic cost can be reduced using
more intelligent data structures. Because the angle of view of most
of the shadow projection pyramids is narrow, only asmall fraction
of the polygons in a scene shadow a given polygon, on average.
Using spatia data structures, entire objects can be culled with afew
quick tests [2], obviating transformation and clipping of most of
the scene, speeding the rendering of each hard shadow image from
O(s+t/s)t0 O(s*+t/s), whereaw & .3 or s0.

An dternative optimization, which would make the algorithm
more practical for the generation of shadows on complex curved or
many-faceted objects, is to approximate a receiving object with a
plane, compute shadows on this plane, and then project the shadows
onto the object (figure 5). This has the advantage of replacing
many renderings with asingle rendering, but its disadvantage isthat
self-shadowing of concave objectsis not simulated.

3.10 Comparisonto Other Algorithms

We can compare the complexity of our algorithm to other algo-
rithms capable of simulating soft shadows at near-interactive rates.
The main aternatives are the stencil buffer technique by Heidmann,
the z-buffer method by Segadl et al., and hardware hemicube-based
radiosity algorithms.

The stencil buffer technique renders the scene once for each light
source, so its cost per frame is O(ns + np), making it difficult
to support soft shadows in real-time. With the z-buffer shadow
algorithm, the preprocessing time is acceptable, but the memory
cost and display time cost are O(np). This makes the agorithm
awkward for many point light sources or extended light sources
with many samples (large n). When soft shadows are desired, our
approach appears to yield faster walkthroughs than either of these
two methods, because our display processis so fast.

Among current radiosity algorithms, progressive radiosity using
hardware hemicubes is probably the fastest method for complex
scenes. With progressive radiosity, very high resolution hemicubes
and many elementsare needed to get good shadows, however. While
progressive radiosity may be a better approach for shadow genera-
tion in very complex scenes (very large s), it appears slower than
our technique for scenes of moderate complexity because every
pixel-level operation in our agorithm can be done in hardware, but
thisis not the case with hemicubes, since the process of summing
differential form factors while reading out of the hemicube must be
done in software [7].

4 Sceneswith General Reflectance

Shadows on specular surfaces, or surfaces with more general
reflectance, can be simulated with a generalization of the diffuse
algorithm, but not without added time and memory costs.

Shadows from a single point light source are easily simulated
by placing just the visibility function v(x, x") in texture memory,
creating a Boolean shadow texture, and computing the remaining
local illumination factorsat verticesonly. Thismethod costs O (sst+
t) for precomputation, and O(s+p) for display.

Shadows from multiple point light sources can also be simulated.
After precomputing a shadow texture for each polygon when illu-
minated with each light source, the total illumination due to » light
sources can be calculated by rendering the scene n times with each
of these sets of shadow textures, compositing the final image using
blending or with the accumulation buffer. The cost of this method
isnt one-bit texture pixels and O(ns+np) display time.

Generalizing this method to extended light sources in the case of
general reflectance ismore difficult, asthe computation involvesthe
integration of light from polygonal light sources weighted by the
bidirectional reflectance distribution functions (BRDFs). Specular
BRDF sare spiky, so careful integrationisrequired or thehighlights
will betray the point sampling of the light sources. We believe,
however, that with careful light sampling and numerical integration
of the BRDF's, soft shadows on surfaces with genera reflectance
could be displayed with O(nt) memory and O(ns+mnp) time.

5 Implementation

We implemented our diffuse algorithm using the OpenGL sub-
routine library, running with the IRIX 5.3 operating system on an
SGI Crimson with 100 MHz MIPS R4000 processor and Reality
Engine graphics. This machine has hardware for texture mapping
and an accumulation buffer with 24 bits per channel.

The implementation is fairly simple, since OpenGL supports
loading of arbitrary 4 x 4 matrices, and we intentionally cast our

shading formulasin aform that maps cleanly into OpenGL's model.
The source code is about 2,000 lines of C++. Our implementation
renders at about 900 x 900 resolution, and uses 24-bit textures at
sizes of 2 x 2% pixels, for 2 < kx, ky < 8. Phong shading is
simulated by subdividing each receiver polygon into agrid of 8x 8-
pixel parallelograms during preprocessing.

Our software allows interactive movement of objects and the
camera. When the scene geometry is changed, textures are recom-
puted. On a scene with s = 749 polygons, st = 3 of them textured,
with two area light sources sampled with n = 8 points total, gen-
erating textures with about ¢+ = 200, 000 pixels total, and a fina
picture of about p =810, 000 pixels, preprocessing has a redisplay
rate of 2 Hz. For simple scenes, the slowest part of preprocessing
is the transfer of radiance textures from system memory to texture
memory.

When only the view is changed, we simply redisplay the scene
with texture mapping. The use of OpenGL display lists helps us
achieve 30 Hz ratesin most cases. When we allocate more radiance
texture memory than the hardware can hold, however, paging slows
redisplay.

Since we know the size and perceptual importance of each object
at modeling time, we have found it convenient to have each receiver
object control the number of light source samples that are used to
illuminateit. The floor and walls, for example, might specify many
light source samples, while table and chairs might specify asingle
light sourcesample. Tofacilitatefurther testing of shadow sampling,
adlider that acts asamultiplier on the requested number of samples
per light source is provided. More automatic and intelligent light
sampling schemes are certainly possible.

6 Results

Thecolor figuresillustrate high quality resultsachievablein afew
seconds with fine light source sampling. Figure 6 shows a scene
with 6,142 polygons, 3 of them shadowed, which was computed in
5.5 seconds using n = 32 light samples total on two light sources.
Figure 7 illustrates the calculation of shadows on more complex
objects, with atotal of s;=25 shadowed polygons. For thisimage,
7 x 7 light sampling was used when shadowing the walls and floor,
while 3x 3 sampling was used to compute shadows on the table top,
and 2 x 2 sampling was used for the table legs. The textures for
the table polygons are smaller than those for the walls and floor, in
proportion to their world space size. Thisimage was caculated in
13 seconds.

7 Conclusions

Wehavedescribed asimpleal gorithmfor generating soft shadows
at interactive rates by exploiting graphics workstation hardware.
Previous shadow generation methods have not supported both the
computation and display of soft shadows at these speeds.

To achieve rea time rates with our method, one probably needs
hardware support for transformation, clipping, scan conversion, tex-
ture mapping, and accumulation buffer operations. Incoming years,
such hardware will only become more affordable, however. Soft-
ware implementations will also work, of course, but at reduced
speeds.

For most scenes, realistic images can be generated by computing
soft shadows only for a small set of polygons. Thiswill run quite
fast. If it is necessary to compute shadows for every polygon, our
preprocessing method has quadratic growth with respect to scene
complexity s, but we believe this can be reduced to about O(s™3),
using spatial data structures to cull off-screen objects.

Once preprocessing is done, the display cost is independent of
the number and size of light sources. This cost is little more than
the display cost without shadows.

The method also has potential as a form factor calculation tech-
nique for progressive radiosity.

8 Acknowledgments & Notes

Wethank Silicon Graphicsfor the gift of aReality Engine, which
made this work possible. Jeremiah Blatz and Michad Garland
provided modeling assistance. This paper grew out of a project by
Herf in a graduate course on Rendering taught by Heckbert, Fall
1995.

References

[1] Kurt Akeley. RedlityEngine graphics. In SGGRAPH '93 Proc., pages
109-116, Aug. 1993.

[2] James Arvo and David Kirk. A survey of ray tracing acceleration
techniques. In Andrew S. Glassner, editor, An introduction to ray
tracing, pages 201-262. Academic Press, 1989.

[3] JamesF. Blinn. Me and my (fake) shadow. |EEE Computer Graphics
and Applications, 8(1):82—86, Jan. 1988.

[4] Lynne Shapiro Brotman and Norman |. Badler. Generating soft shad-
ows with a depth buffer algorithm. |EEE Computer Graphics and
Applications, 4(10):5-24, Oct. 1984.

[5] Shenchang Eric Chen. Incremental radiosity: An extension of pro-
gressive radiosity to an interactive image synthesis system. Com-
puter Graphics (SGGRAPH '90 Proceedings), 24(4):135-144, Au-
gust 1990.

[6] Norman Chin and Steven Feiner. Fast object-precision shadow gen-
eration for area light sources using BSP trees. In 1992 Symp. on
Interactive 3D Graphics, pages 21-30. ACM SIGGRAPH, Mar. 1992.

[7] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: A ra
diosity solution for complex environments. Computer Graphics (SG-
GRAPH ' 85 Proceedings), 19(3):31-40, July 1985.

[8] Robert L. Cook. Stochastic sampling in computer graphics. ACM
Trans. on Graphics, 5(1):51-72, Jan. 1986.

[9] George Drettakis and Eugene Fiume. A fast shadow algorithm for area
light sources using backprojection. In SGGRAPH ’94 Proc., pages
223-230, 1994. http://safran.imag.fr/Membres/George.Drettakis/
pub.html.

[10] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, JohnD.
Austin, Frederick P. Brooks, Jr., John G. Eyles, and John Poulton. Fast
spheres, shadows, textures, transparencies, and image enhancements
in Pixel-Planes. Computer Graphics (S GGRAPH '85 Proceedings),
19(3):111-120, July 1985.

[11] Paul Haeberli and Kurt Akeley. The accumulation buffer: Hardware
support for high-quality rendering. Computer Graphics (S GGRAPH
'90 Proceedings), 24(4):309-318, Aug. 1990.

[12] Paul S. Heckbert. Adaptive radiosity texturesfor bidirectiona ray trac-
ing. Computer Graphics (SGGRAPH "90 Proceedings), 24(4):145—
154, Aug. 1990.

[13] Tim Heidmann. Real shadows, real time. Iris Universe, 18:28-31,
1991. Silicon Graphics, Inc.

[14] Karol Myszkowski and Tosiyasu L. Kunii. Texture mapping as an
alternative for meshing during walkthrough animation. In Fifth Euro-
graphics Workshop on Rendering, pages 375-388, June 1994.

[15] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming
Guide. Addison-Wesley, Reading MA, 1993.

[16] Tomoyuki Nishita and Eihachiro Nakamae. Half-tone representation
of 3-D objects illuminated by area sources or polyhedron sources. In
COMPSAC ’'83, Proc. |IEEE 7th Intl. Comp. Soft. and Applications
Conf., pages 237-242, Nov. 1983.

[17] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul
Haeberli. Fast shadows and lighting effects using texture mapping.
Computer Graphics (SGGRAPH 92 Proceedings), 26(2):249-252,
July 1992.

[18] Lance Williams. Casting curved shadows on curved surfaces. Com-
puter Graphics (SGGRAPH ' 78 Proceedings), 12(3):270-274, Aug.
1978.

[19] Andrew Woo, Pierre Poulin, and Alain Fournier. A survey of shadow
algorithms. |EEE Computer Graphics and Applications, 10(6):13-32,
Nov. 1990.

Figure 6: Shadows on walls and floor, computed in 5.5 seconds.

Figure 7: Shadows on walls, floor, and table, computed in 13 seconds.

Volume 15, (1997) number 4 pp. 249-261

Interactive Rendering of CSG Models

T. F. Wiegand'

The Martin Centre for Architectural and Urban Studies
The University of Cambridge, Cambridge, UK

Abstract

We describe a CSG rendering algorithm that requires no evaluation of the CSG tree beyond normal-
ization and pruning. It renders directly from the normalized CSG tree and primitives described (to
the graphics system) by their facetted boundaries. It behaves correctly in the presence of user defined,
“near” and “far” clipping planes. It has been implemented on standard graphics workstations using
Iris GL 7 and OpenGL * graphics libraries. Modestly sized models can be evaluated and rendered at

interactive (less than a second per frame) speeds. We have combined the algorithm with an ezisting

B-rep based modeller to provide interactive rendering of incremental updates to large models.

1. Introduction

Constructive Solid Geometry (CSG) within an inter-
active modelling environment provides a simple and
intuitive approach to solid modelling. In conventional
modelling systems primitives are first positioned, a
boolean operation is performed and the results then
rendered. Often the correct position cannot be gauged
easily from display of the primitives alone. A sequence
of trial and error may be initiated or perhaps a break
from the normal modelling process to calculate the
correct position numerically. Conceptual modelling is
inhibited — usually a design is fully fledged before
modelling commences. Interactive rendering offers the
promise of a modelling system where designers can
easily explore possibilities within the CSG paradigm.
For instance, a designer could drag a hole defined by a
complex solid through a workpiece, observing the new
forms that emerge.

Interactive rendering of CSG models has previ-
ously been implemented with special purpose hard-
ware 7 7 7. We believe that such systems should be
based on an existing, commonly available graphics li-
brary. Use of an existing graphics library simplifies de-
velopment, protects investment in proprietary graph-
ics hardware, and leverages off future improvements

i Supported by Informatix, Inc. Tokyo.

© The Eurographics Association 1997. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 238 Main
Street, Cambridge, MA 02142, USA.

in the hardware supported by the library. Conversion
of the CSG tree for a model into a boundary repre-
sentation (B-rep) meets this goal but is typically too
slow for interactive modification.

The surfaces in the B-rep of a model are a subset
of the surfaces of the primitives in the CSG tree for
the model. Conversion to a B-rep is then the clas-
sification of the surfaces of each primitive into por-
tions that are “inside”, “outside”, or “on” the surface
of the fully evaluated model. Display of the model
only requires classification of the points on the sur-
faces which project to each pixel. Point classification
is much simpler than surface classification. Geomet-
rically, point classification requires intersection of the
primitives with rays through each pixel, while surface
classification requires intersection of the primitive sur-
faces with each other.

Thibault and Naylor 7 describe a surface classifica-
tion based approach. They build BSP trees for each
primitive and perform the classification by merging
the trees together. The resulting tree is equivalent to
a BSP tree built from the B-rep of the model. The
complete evaluation process is too slow for interac-
tive rendering. They describe an incremental version
of their algorithm which provides interactive rendering
speeds within a modelling environment.

There are variations of most rendering algorithms
which use point classification. These include ray trac-

2 T. F. Wiegand / Interactive Rendering of CSG Models

ing 7, scan line methods ?, and depth-buffer methods
%% 7 Much attention has been focused on optimis-
ing point classification for this purpose °. These al-
gorithms all add point classification within the lowest
levels of the standard algorithms. We require an al-
gorithm which can be implemented using an existing
graphics library.

Goldfeather, Molnar, Turk and Fuchs * describe
an algorithm that first normalizes a CSG tree be-
fore rendering the normalized form. It operates in a
SIMD pixel parallel way on an augmented frame buffer
(Pixel-planes 4) which has two depth (Z) buffers, two
color buffers and flag bits per pixel. We have devel-
oped a new version of this algorithm capable of being
implemented using an existing graphics library on a
conventional graphics workstation. Our algorithm re-
quires a single depth buffer, single color buffer, stencil
(fag bits) buffer and the ability to save and restore
the contents of the depth buffer.

In section 77 we review the algorithm described by
Goldfeather et. al. . We have restructured the presen-
tation of the ideas to make them more amenable to im-
plementation on a conventional graphics workstation.
Our implementation is described in section ?7. In sec-
tion 77 we describe the integration of user defined,
“near” and “far” clipping planes into the algorithm.
In section 77 we describe use of the algorithm within
an interactive modelling system. The system main-
tains fully evaluated B-rep versions of models and uses
the rendering algorithm for interactive changes to the
models. Section 7?7 presents performance statistics for
our current implementation using the Silicon Graphics

GL library °.

2. Rendering a CSG tree using pixel parallel
operations

We would advise interested readers to refer to Gold-
feather et. al. 7 for a fuller description of the algorithm
which we summarize in this section.

A CSG tree is either a primitive or a boolean combi-
nation of sub-trees with intersection(n), subtraction(—)
or union(U) operators. A CSG tree is in normal (sum
of products) form when all intersection or subtraction
operators have a left subtree which contains no union
operators and a right subtree that is simply a primi-
tive. For example (((ANB)—C)U(DN(E—(FNG))))UH,
where A-H represent primitives, is in normal form.
We shall assume left association of operators so the
previous expression can be written as (ANB—C)U (DN
E—FNG)UH. This expression has three products. The
primitives A, B, D, E, G, H are uncomplemented, C
and F' are complemented.

The normalization process recursively applies a set

of production rules to a CSG tree which use the as-
sociative and distributive properties of boolean opera-
tions. Determining an appropriate rule and applying it
uses only local information (type of current node and
child node types). The production rules and algorithm

used are :
LX-(YUZ) = (X-Y)-Z
2.XNYUuZ) - (XnY)u(XnZ)
3. X—(YNnZ) - (X=-Y)u(X-2)
4. Xn(YNZ) = (XnY)nZ
5 X—(Y-2) = (X=-Y)u(XnZ)
6. XN(Y-2) - (XnY)-Z
T(X-Y)NZ - (XnZ)-Y
8 (XUY)-Z 5 (X-2)u(Y—-Z2)
9. (XUY)NZ - (XnZ)u(YnZ)

proc normalize(T : tree)
{
if T is a primitive {
return
}
repeat {
while T matches a rule from 1-9 {
apply first matching rule
}

normalize(Tleft)

} until (T.op is a union) or
((T'.right is a primitive) and
(T'.left is not a union))

normalize(T .right)

Goldfeather et. al. * show that the algorithm ter-
minates, generates a tree in normal form and does
not add redundant product terms or repeat primitives
within a product.

Normalization can add many primitive leaf nodes to
a tree with a possibly exponential increase in tree size.
In most cases, a large number of the products gener-
ated by normalization play no part in the final image,
because their primitives do not intersect. A limited
amount of geometric information (bounding boxes of
primitives) is used to prune CSG trees as they are
normalized. Bounding boxes are computed for each
operator node using the rules :

1. Bound(A U B) = Bound(Bound(A) U Bound(B))
2. Bound(ANB) = Bound(Bound(A) NBound(B))
3. Bound(A—B) = Bound(A)

Here A and B are arbitrary child nodes. After each
step of the normalization algorithm the tree is pruned
by applying the following rules to the current node :

© The Eurographics Association 1997

T. F. Wiegand / Interactive Rendering of CSG Models 3

1. ANB — 0, if Bound(A) does not
intersect Bound(B).

2. A—B — A, if Bound(A) does not
intersect Bound(B).

Normalization of the tree allows simplification of the
rendering problem. The union of two or more solids
can be rendered using the standard depth (Z) buffer
hidden surface removal algorithm used by most graph-
ics workstations. The rendering algorithm needs only
to render the correct depth and color for each product
in the normalized CSG tree and then allow the depth
buffer to combine the results for each product.

Each product can be rendered by rendering each vis-
ible surface of a primitive and trimming (intersecting
or subtracting) the surface with the remaining primi-
tives in the product. The visible surfaces are the front
facing surfaces of uncomplemented primitives and the
back facing surfaces of complemented primitives. This
observation allows a further rewriting of the CSG tree
where each product is split into a sum of partial prod-
ucts. A convex primitive has one pair of front and back
surfaces per pixel. A non-convex primitive may have
any number of pairs of front and back surfaces per
pixel. A k-convex primitive is defined as one that has
at most k pairs of front and back surfaces per pixel
from any view point. We shall use the notation Ax to
represent a k-convex primitive and Ay, to represent
the nth front surface (numbered 0 to k — 1) of primi-
tive Ax and Apy to represent the nth back surface of
Ag. In the common case of convex primitives, we shall
drop the numerical subscripts. Thus, A—B expands to
(As—B)U(B#A) in sum of partial products form; while
Az—B expands to (Ago—B)U(A;1—B)U(ByNAz). We
call the primitive whose surface is being rendered the
target primitive of the partial product. The remaining
primitives are called trimming primitives.

The sum of partial products form again simpli-
fies the rendering problem. It is now reduced to cor-
rectly rendering partial products before combining the
results with the depth buffer. Additional difference
pruning may also be carried out when products have
been expanded to partial products :

3 AyNB — 0, if Bound(A) does not
intersect Bound(B).

A partial product is rendered by first rendering the
target surface of the partial product. Each pixel in
the surface i1s then classified in parallel against each
of the trimming primitives. To be part of the partial
product surface, each pixel must be in with respect to
any uncomplemented primitives and out with respect
to any complemented ones. Those pixels which do not
meet these criteria are trimmed away (colour set to
background, depth set to initial value).

© The Eurographics Association 1997

=

Figure 1: Classifying per pizel depth values against a
primative

_>

Viewing Direction

Figure 2: A simple CSG expression

S Af
Classify Classify
: :
1
5 2
Trim Odd Trim Even
Af-B U BpNA = A-B

Figure 3: Rendering figure 77 as two partial products

4 T. F. Wiegand / Interactive Rendering of CSG Models

Primitives must be formed from closed (possibly
nested) facetted shells. Pixels can then be classified
against a trimming primitive by counting the number
of times a primitive fragment is closer during scan con-
version of the primitive’s faces. If the result is odd the
pixel is in with respect to the primitive (figure ?7).
Pixels can be classified in parallel by using a 1 bit flag
per pixel whose value is toggled whenever scan conver-
sion of a trimming primitive fragment is closer than
the pixel’s depth value.

Figure 77 illustrates the process for A— B looking
along the view direction shown in figure ?7. First, Ay
is rendered, classified against B and trimmed (A;—B).
Then By is rendered, classified against A and trimmed
(ByNA). Finally, the two renders are composited to-
gether.

Rendering the appropriate surface of a convex prim-
itive is simple as there is only one pair of front and
back surfaces per pixel. Most graphics libraries sup-
port front and back face culling modes. To render all
possible surfaces of an arbitrary k-convex primitive
separately requires a log, k bit count per pixel. To ren-
der the jth front (or back) facing surface of a primitive,
the front (or back) facing surfaces are rendered incre-
menting the count for each pixel and only enabling
writes to the colour and depth buffers for which the
count is equal to 7.

3. Implementation on a conventional graphics
workstation

The algorithm described in section 7?7 maps naturally
onto a hardware architecture which can support two
depth buffers, two colour buffers and a stencil buffer.
One pair of depth and colour buffers, together with the
stencil buffer, are used to render each partial product.
The results are then composited into the other pair
of buffers. Unfortunately, conventional graphics work-
station hardware typically supports only one depth
buffer. One approach is to use the hardware provided
depth, colour and stencil buffers to render partial
products; retrieving the results from the hardware and
compositing in local workstation memory. The final re-
sult can then be returned direct to the frame buffer.
This approach does not make the best use of the work-
station hardware. Modern hardware tends to be highly
pipelined. Interrupting the pipeline to retrieve results
for each partial product will have a considerable per-
formance penalty. In addition, the hardware is typi-
cally optimized for flow of data from local memory,
through the pipeline and into the frame buffer. Data
paths from the frame buffer back to local memory are
likely to be slow, especially given the volume of data
to be retrieved compared to the compact instructions
given to the hardware to draw the primitives. Finally,

the compositing operation in local memory will receive
no help from the hardware.

Our approach attempts to extract the maximum
benefit from any graphics hardware by minimizing the
traffic between local memory and the hardware and
by making sure that the hardware can be used for all
rendering and compositing operations. The idea is to
divide the rendering process into two phases — clas-
sification and final rendering. Before rendering begins
the current depth buffer contents are saved into local
memory. We then classify each partial product surface
in turn. An extra stencil buffer bit (accumulator) per
surface stores the results of the classification. During
this process updates to the colour buffer are disabled.
Once classification i1s complete, we restore the depth
buffer to the saved state and enable updates to the
colour buffer. Finally, each partial product surface is
rendered again using the stored classification results
as a mask (or stencil) to control update of the frame
buffer. At the same time the depth buffer acts to com-
posite the pixels which pass the stencil test with those
already rendered.

The number of surfaces for which we can perform
classification is limited by the depth of the stencil
buffer. If the capacity of the stencil buffer is exceeded
the surfaces must be processed in multiple passes with
the depth buffer saved and restored during each pass.
We can reduce the amount of data that needs to be
copied by only saving the parts of the depth buffer that
will be modified by classification during each pass. The
first pass of each frame does not need to save the depth
buffer at all as the values are known to be those pro-
duced by the initial clear. Instead of restoring, the
depth buffer is cleared again. Thus, for simple models
rendered at the start of a frame, no depth buffer save
and restore is needed at all.

A surface may appear in more than one partial prod-
uct in the normalized CSG tree. We exploit this by us-
ing the same accumulator bit for all partial products
with the same surface. Classification results for each
partial product are ORed with the current contents of
the accumulator.

The stencil bits are partitioned into count bits
(Scount), a parity bit (Sp) and an accumulator bit (Sq)
per surface. log, k count bits are required where & is
the maximum convexity of any primitive with a sur-
face being classified in the current pass. The count and
parity bits are used independently and may be over-
lapped. Table 77 shows the number of stencil buffer
bits required to classify and render a single surface
for primitives of varying convexity. The algorithm re-
quires an absolute minimum of 2 bits for 1-convex and
2-convex primitives, classifying and rendering a single
surface in a pass. In practice nearly all primitives used

© The Eurographics Association 1997

T. F. Wiegand / Interactive Rendering of CSG Models 5

Convexity 1 2 34 58 916 17-32 33-64 65-128
Sp 1 1 1 1 1 1 1 1
Scount 0 1 2 3 4 5 6 7
Sp and Scount 1 1 2 3 4 5 6 7
With 1 accumulator (Sp) 2 2 3 4 5 6 7 8
With 3 accumulators (Sp.2) 4 4 5 6 7 8 9 10
With 7 accumulators (Sp.6) 8 8 9 10 11 12 13 14

Table 1: Stencel buffer usage with primitive convexity

in pure CSG trees are 1-convex. With 8 stencil bits the
algorithm can render from 7 1-convex primitives, to 1
surface of a 128-convex primitive, in a single pass.

Partial products are gathered into groups such that
all the partial products in a group can be classified
and rendered in one pass. The capacity of a group
is defined as the number of different target surfaces
that partial products in the group may contain. Ca-
pacity is dependent on the stencil buffer depth and
the greatest convexity of any of the target primitives
in the group (table ?7). Groups are formed by adding
partial products in ascending order of target primitive
convexity. Once one partial product with a particular
target surface is added, all others with the same target
surface can be added without using any extra capac-
ity. Adding a partial product with a higher convexity
than any already in the group will reduce the group
capacity. If there is insufficient capacity to add the
minimum convexity remaining partial product, a new
group must be started.

FEach group is processed in a separate pass in which
all target surface primitives are classified and then
rendered. Frame buffer wide operations are limited to
areas defined by the projection of the bounding box
of the current group or partial product. We present
pseudo-code for the complete rendering process be-
low. The procedures “glPrim(prim, tests, buffers, ops,
pops)” and “glSet(value, tests, buffer, ops, pops)”
should be provided by the graphics library. The first
renders (scan converts) a primitive where “tests” are
the tests performed at each pixel to determine if it
can be updated, “buffers” specifies the set of buffers
enabled for writing if the “tests” pass (where C is
colour, Z is depth and S is stencil), “ops” are opera-
tions performed on the stencil bits at each pixel in the
primitive, and “pops” are operations to be performed
on the stencil bits at each pixel only if “tests” pass.
The second procedure is similar but attempts to glob-
ally set values for all pixels. Iris GL * and OpenGL
7 are two graphics libraries which provide equivalents
to the glPrim and glSet procedures described here.
We use the symbol Zp to denote the depth value at

© The Eurographics Association 1997

a pixel due to the scan conversion of a primitive, P.
Hence, “Zp < Z” is the familiar 7 buffer hidden sur-
face removal test. We use Z; to represent the furthest
possible depth value.

glSet(0, ALWAYS, S, 0, 0)
glSet(“far”, ALWAYS, Z, 0, 0)
for first group G {

classify(G)

glSet(Z;, ALWAYS, Z, 0, 0)

renderGroup(G)

} for each subsequent group G {
save depth buffer
glSet(Z;, ALWAYS, Z, 0, 0)
classify(G)
restore depth buffer
renderGroup(G)

}

proc classify(G : group)
{
a=20
for each target surface B in G {
for each partial product R {
renderSurface(B)
for each trimming primitive P in R {

trim(P)

glSet(1, So =0 & Z # Z, Sa, 0, 0)
glSet(Z;, ALWAYS, Z, 0, 0)
}
a

a—+1

}

proc renderGroup(G : group)
{
a=20
for each target primitive P in G {
glPrim(P, So=1& Zp < Z,C & Z,0, 0)
glSet(0, ALWAYS, S,, 0, 0)
a=a-+1

T. F. Wiegand / Interactive Rendering of CSG Models

Maximum Target Primitive Convexity

Capacity
1 2 34 58 9-16 17-32 33-64 65-128
2 1 1 - - - - - -
3 2 2 1 - - - - -
4 3 3 2 1 - - - -
Stencil Buffer Depth 5 4 4 3 2 1 - - -
6 5 5 4 3 2 1 - -
7 6 6 5 4 3 2 1 -
8 7 7 6 5 4 3 2 1

Table 2: Group Capacity

Figure 4: (a) Primitives, (b) Rendering (ANB U A—
CYN(ANDUA—E)

proc renderSurface(B : surface)

{

}

P = target primitive containing B
n = surface number of B
k = convexity of P
if P is uncomplemented {
enable back face culling

} else {

enable front face culling
}
itk=1¢{
glPrim(P, ALWAYS, Z, 0,)
} else {
glPrim(P, Scount = n, Z, inc Scount, 0)
glSet(0, ALWAYS, Scount, 0, 0)
}

proc trim(P : primitive)

{

glPrim(P, Zp < Z, 0, 0, toggle Sy)
if P is uncomplemented {
glSet(Zy, S, =0, Z, 0, 0)

} else {
glSet(Zy, S, =1, 7,0, 0)

glSet (0, ALWAYS, S,, 0, 0)

A EIEN

Group 1 Group 2

.

N ™~

Group 3 Group 4

Figure 5: Rendering each product group separately

Figure 77 shows five primitives and a rendered CSG
tree of the primitives. The expression ((ANB) U (A—
ONN((AND) U (A—E)) normalizes to (ANBND) U
(AND—-C)U(ANB—FE)U (A—C—E). Expanding to

partial products and grouping gives :

0: (ANBND)U(AND—-C)U(AMNB—E)U(A;—C—E)
1: (ByNAND)U (BfNA—E)
2: (ChNAND)U (CrNA—E)
3: (DyNANB)U(DsNA-C)
4: (EsNANB)U (EyNA-C)

Figure 77 shows the result of rendering each prod-
uct group separately. Product groups 2 and 4 are not

© The Eurographics Association 1997

T. F. Wiegand / Interactive Rendering of CSG Models 7

visible in the combined image as they are behind the
surfaces from groups 1 and 3.

4. Clipping planes and half spaces

Interactive inspection of solid models is aided by
means of clipping planes which can help reveal inter-
nal structure. After a clipping plane has been defined
and activated all subsequently rendered geometry is
clipped against the plane and the parts on the out
side discarded. The rendering of solids as closed shells
means that clipping will erroneously reveal the interior
of a shell when a portion of the shell is clipped away.
Rossignac, Megahed and Schneider ? describe a stencil
buffer based technique for “capping” shells where they
intersect a clipping plane. Their algorithm will also
highlight interferences (intersections) between solids
on the clipping plane.

Clipping a solid and then capping is equivalent to
intersection with a half space. We can trivially render
an intersection between a solid S and a halfspace H
by constructing a convex polygonal primitive P where
one face lies on the plane defining H and has edges
which do not intersect the bounding box of S. The
other faces of P should not intersect S at all. Render-
ing SN P is equivalent to rendering the solid defined
by SNH.

o

Rossignac, Megahed and Schneider’s 7 capping al-
gorithm can be easily integrated with our algorithm
to make use of auxiliary clipping planes in rendering
CSG trees involving halfspaces. As a halfspace is infi-
nite we assume that it will always be intersected with
a finite primitive in any CSG expression. Note that
S—H is equivalent to SNH where H is simply H with
the normal of the halfspace defining plane reversed.

A halfspace acts as a trimming primitive by acti-
vating a clipping plane for the halfspace during the
rendering of the target primitive. The stencil buffer
is unused. The set of halfspaces in a product can be
considered as a 1-convex target primitive. Its surface
can be rendered by rendering the defining plane (or
rather a sufficiently large polygon lying on the plane)
of each halfspace while clipping planes are active for
each of the other halfspaces. Each clipping plane is de-
activated while it is being rendered to prevent it from
clipping itself.

proc render(H : halfspace set)

{

for each defining plane P of H {
Activate clipping plane defined by P
}

for each front facing defining plane P of H {
Deactivate clipping plane defined by P
renderPlane(P)

© The Eurographics Association 1997

Activate clipping plane defined by P
}
for each defining plane P of H {
Deactivate clipping plane defined by P
}

This approach has three advantages over rendering
halfspaces as normal primitives. Firstly, the halfspace
set only has to be rendered as a target primitive, all
trimming by halfspaces uses the clipping planes. Sec-
ondly, each target primitive is clipped, reducing the
amount of data written to the frame buffer at the
cost of the extra geometry processing required by clip-
ping. Thirdly, a solid/halfspace intersection can be
correctly rendered using the algorithm for 1-convex
solids (k = 1), independent of actual primitive con-
vexity.

Rendering a k-convex target primitive using the al-
gorithm for 1-convex solids results in the nearest sur-
face being drawn (with depth buffering active). The
nearest surface (after clipping) of a concave primitive
will be visible in the intersection with a half space.
Rendering an arbitrary CSG tree using the 1-convex
algorithm will render the result of evaluating the CSG
description on the “nearest spans” (nearest front to
nearest back facing surface for each pixel) of each
primitive. For interactive use the nearest spans are of-
ten all we are interested in. If not, then clipping planes
may be used to delimit regions of interest within which
the nearest spans will be correctly rendered. Thus, a
lower cost, reduced quality mode of rendering is also
available.

In addition to user defined clipping planes, all ge-
ometry is usually clipped to “near” and “far” planes.
These planes are perpendicular to the viewing direc-
tion. All geometry must be further from the eye posi-
tion than the near plane and nearer than the far plane.
The near and far planes also define the mapping of dis-
tances from the eye point to values stored in the depth
buffer. Points on the near plane map to the minimum
depth buffer value and points on the far plane map to
the maximum depth buffer value. The algorithm de-
scribed in section 77 will fail if any primitive is clipped
by either the near or far clipping plane.

In practice the far clipping plane can always be
safely positioned beyond the primitives. The near
plane is more troublesome. Firstly, it cannot be posi-
tioned behind the eye point. Secondly, the resolution
of the depth buffer is critically dependent on the posi-
tion of the near clip plane. It should be positioned as
far from the eye point as possible. Consider rendering
A—B and positioning the eye in the hole in A formed
by subtracting B. Near plane clipping is unavoidable.
We can extend our algorithm to cap trimming prim-

8 T. F. Wiegand / Interactive Rendering of CSG Models

Figure 6: (a) Primitives, (b) Rendering (ANB U A—
OYN(ANDUA-E)NF

itives if they will be subject to near plane clipping.
Clipping of target primitives is not a problem unless
the eye point is positioned inside the evaluated CSG
model.

The trimming primitive is rendered twice while tog-
gling Sp; firstly, with the depth buffer test disabled;
secondly, with the depth buffer test enabled. The first
render sets the parity bit where capping is required.
The second completes the classification as above.

proc trim(P : primitive)
{
glPrim(P, ALWAYS, 0, 0, toggle Sy)
glPrim(P, Zp < Z, 0, 0, toggle Sy)
if P is uncomplemented {
glSet(Zy, S, =0, Z, 0, 0)
} else {
glSet(Zy, S, =1, 7,0, 0)
}
glSet(0, ALWAYS, S;, 0, 0)
}

Figure 77 shows our earlier example intersected
with a single clipping plane / half space. The nor-
malized CSG description is (ANBNDNF)U (ANDN
F-C)U(ANBNF—-E)U(ANF—-C—E).

The normalization and pruning algorithm described
in section 77 needs to be extended to cope with half-
space primitives. The extensions required are in the
form of additional rules for bounding box generation,
normalization and pruning (H is a halfspace) :

Bounding Box Generation

4. Bound(ANH) = Bound(A)

Normalization

0. X—H = XnH

Pruning
4. AnNH — 0, if Bound(A) is outside H.
5. ANH — A, if Bound(A) is inside H.
6. ANH—B — ANH, if Bound(B) is outside H.
7. Ay H — Ap, if Bound(A) is inside H.
8. Hf—A — Hy, if Bound(A) does not intersect H.

Our earlier example (figure ?7) contains many prun-
ing possibilities. The normalized CSG tree is (ANBN
DNFYU(ANDNF-C)U (ANBNF-E)U(ANF-C-E).
Using rule 1 removes the product ANBNDNF as B
and D don’t intersect. Rule 2 will reduce the products
ANDNF—C and ANBNF—FE to ANDNF and ANBNF
as the complemented primitives do not intersect the
product. Rule 4 removes the product ANBNF', rule 5 re-
duces ANDNE to AND and rule 6 reduces ANF—C—F
to ANF—FE. The normalized and geometric pruned
CSG tree is then (ANDNF) U (ANF—FE). Expanding
to partial products gives (A;NDNF)U (DfNANF)U
(FrnANDYU(AfNF—E)U (FyNA—E)U(EysNANF).
Finally, difference pruning will reduce EFrNANF to
EyNA (rule 7) and FyNA—FE to FyNA (rule 8).

We also prune products against the viewing volume
for the current frame and classify trimming primitive
bounding boxes against the near clipping plane to de-
termine whether the extra capping step is necessary.

5. Interactive Rendering

We have incorporated our rendering algorithm in a
simple, interactive solid modelling system built with
standard components. The main framework is pro-
vided by the Inventor object-oriented 3D toolkit ~.
A model 1s represented by a directed acyclic graph
of nodes. Operations on models, such as rendering
or picking, are performed by means of actions. The
toolkit may be extended by providing user written
nodes and actions. Conventional solid modelling oper-
ations are provided by the ACIS geometric modeller 7.
ACIS is an object-oriented, boundary representation,
solid modelling kernel.

Our modelling system adds new node types to In-
ventor which support ACIS modelled solids and CSG
trees of solids. We also add a new rendering action
which uses our stencil buffer CSG display algorithm to
render CSG trees described by Inventor node graphs.
A CSG evaluate action uses ACIS to fully evaluate
a CSG tree allowing the tree to be replaced with a
single evaluated solid node. All the standard Inventor
interactive tools are available for editing models.

The system supports large CSG trees while main-
taining interactive rendering speeds. During display
and editing of a large CSG tree, only a small part of
the model will be changing at any time. We “cache”

© The Eurographics Association 1997

T. F. Wiegand / Interactive Rendering of CSG Models 9

)

Move

Figure 7: Direct rendering of a CSG tree with cached
geometry : (a) all caches valid, (b) limited direct ren-
dering when a primitive is moved

fully evaluated geometry obtained from the solid mod-
eller at each internal node in the CSG tree. As caches
become invalidated through editing of the model, por-
tions of the tree are rendered directly (see figure ?7),
while the cached geometry is re-evaluated in the back-
ground (possibly on other workstations in a common
network).

Current use of the system follows a common pat-
tern. A user will quickly position and combine prim-
itives using the solid modelling capabilities. During
this stage the model is simple enough for the user
to envisage the CSG operations required and to posi-
tion primitives correctly. Figure 77 shows an example
model of two intersecting corridors. Firstly, the space
occupied by the corridors is modelled using 5 cubes
and two cylinders which are unioned together. The
corridors are then subtracted from a block. At this
point the user wanted to position a skylight through
the intersection of the corridors. Unsure of the exact
positioning required, or the sort of results possible, the
user roughly positioned a cylinder (the hole) and sub-
tracted it from the model. A transparent instance of
the primitive is also displayed by the system for ref-
erence. A manipulator was then used to drag the hole
through the model revealing an unexpected new form.
When satisfied with the positioning the hole is “fixed”
in position. The fixing process doesn’t change the in-
ternal representation of the model (it’s still a complete
CSG tree). It merely hides the apparatus used for in-
teractive manipulation of the hole. The hole can be
unfixed at any time and repositioned. This process of
rough positioning, boolean combination and precise
editing is then repeated.

6. Performance

The time complexity of our algorithm is proportional
to the number of rendering operations carried out. We

© The Eurographics Association 1997

shall consider the rendering of one surface as a single
rendering operation. Each pixel oriented “bookkeep-
ing” operation is considered as an equivalent single
unit. These operations have a lower geometry over-
head than surface rendering but access more pixels.
Equivalent functionality could be achieved by per-
forming the bookkeeping operations with a repeated
surface render. As in “, we ignore the negligible nor-
malization and pruning cost. We present the results
for our current implementation of the algorithm. For
reasons of clarity, some operations are described sep-
arately in section 7?7, whilst being implemented as a
single operation.

Table 7?7 shows the number of rendering opera-
tions required for simple steps within the algorithm.
The rendering algorithm is O((kj)?) for each product
where 7 is the number of primitives in the product
and k is the convexity of the primitives. The number
of products generated by tree normalization is depen-
dent on the structure of the tree and the geometry
of the primitives with a worst case exponential rela-
tionship between number of primitives and products.
In practice, both we, and Goldfeather et. al. 7, have
found that the number of products after pruning is
between O(n)and O(n?)in the total number of prim-
itives. The average product length, j, tends to be small
and independent of the total number of primitives.
Where long products arise they tend to be of the form
A—B—-C—-D—FE... and are susceptible to difference
pruning.

Table 7?7 provides performance statistics for the
eight sample models in figure 77. The images are 500
by 500 pixels and were rendered on a Silicon Graphics
5 span 310/VGXT with a single 33Mhz R3000 proces-
sor. The VGXT has an 8 bit stencil buffer. The first
part of the table provides statistics on normalization
and pruning. We include the number of primitives in
the CSG expression, total triangles used to represent
the primitives and the number of passes required. The
number and average length of partial products pro-
duced by normalization with and without pruning are
given. The second part of the table provides a break-
down of rendering operations into target rendering,
classification & trimming and bookkeeping operations.
The third part of the table provides a breakdown of
rendering time in seconds; both for rendering opera-
tions and depth buffer save/restore time. The depth
buffer save/restore time is given for the general case
algorithm and for the optimization possible when the
model is the first thing rendered in the current frame.

Table 77 shows rendering times together with num-
ber of passes required for different stencil buffer sizes.
The increases in time are modest because the imple-
mentation only saves and restores the areas of the

10 T. F. Wiegand / Interactive Rendering of CSG Models
Convexity 1-convex (k =1) k-convex
Clipping None Near None Near
Classify Target Surface k k kE+1 k41
Trimming Primitive 2k+1 4k + 1 2k4+1 4k +1
Render Target Surface k k kE+1 k41
Table 3: Rendering Operations per Step
Model a b c d e f g h(part) h(full)
Primitives 2 4 7 31 4 8 2 12 72
Triangles 96 256 408 1532 176 496 1928 8888 5536
Partial Products 2 6 32 34 5 14 3 13 72
Average Length 2 3 4 20.4 2.6 7 2 1.2 2.6
Partial Products (pruned) 2 6 32 34 5 14 3 13 72
Average Length (pruned) 2 3 4 2.7 2.6 3 2 1.2 2.3
Passes 1 1 1 5 1 2 1 1 11
Target Render Ops 2 4 7 30 4 8 5 25 72
Classification & Trimming Ops 4 18 128 92 13 42 8 8 164
Bookkeeping Render Ops 4 18 128 92 13 42 10 10 164
Total Render Ops 10 40 263 214 30 92 23 43 400
Target Time 0.005 0.003 0.038 0.039 0.008 0.017 0.031 0.009 0.118
Classification & Trimming Time 0.026 0.049 0.405 0.268 0.052 0.104 0.033 0.011 0.178
Bookkeeping Time 0.023 0.056 0.180 0.197 0.024 0.108 0.016 0.078 0.098
Save and Restore Time (general) 0.103 0.100 0.114 0.239 0.088 0.217 0.039 0.009 0.236
Save and Restore Time (first) 0.004 0.004 0.001 0.136 0.001 0.111 0.002 0.000 0.214
Total Time (general) 0.165 0.215 0.668 0.772 0.182 0.434 0.126 0.075 0.673
Total Time (first) 0.066 0.119 0.555 0.669 0.095 0.328 0.089 0.067 0.650
Table 4: Rendering times (seconds) and statistics
Stencil Bits 8 7 6 5 4 3 2
Model (c) 0.668(1) 0.670(2) 0.701(2) 0.735(2) 0.763(3) 0.782(4) 0.801(7)
Model (d) 0.772(5) 0.779(5) 0.804(6) 0.818(8) 0.837(10) 0.866(15) 0.884(30)
Model (f) 0.434(2) 0.435(2) 0.442(2) 0.426(2) 0.449(3) 0.475(4) 0.504(8)

Table 5: Rendering time and number of passes with varying stencil size

© The Eurographics Association 1997

T. F. Wiegand / Interactive Rendering of CSG Models 11

depth buffer that are changed during the classification
stage. If less work is done in each pass the changed
depth buffer areas typically become smaller. There is
scope for further optimization of save and restore as
the variations in times for the same number of passes
shows. The different stencil buffer size causes a change
in the composition of product groups. Placing partial
products whose projected bounding boxes overlap into
the same product groups will reduce the total area to
be saved and restored.

Our algorithm performs particularly well in the sort
of situations encountered within our interactive mod-
elling system. Typically there is only ever one “dynam-
ically” rendered CSG expression, usually involving a
simple 1l-convex “tool” and a more complex “work-
piece” (figure ??(g)). Often we can achieve better per-
formance by ignoring the top most caches of complex
workpieces in order to expose more of the CSG tree
to pruning. For example, in figure ??(h) an expres-
sion like (AU BUC U D U..)—X can be pruned to
A-XUBUCUDU... This can vastly reduce both the
number of polygons to be rendered (about 3-5 times as
many polygons have to be rendered for A—B compared
to AU B) and the size of the screen area involved in
bookkeeping and depth buffer save and restore opera-
tions. We provide rendering times for both cached (ta-
ble ?? h(full)) and uncached cases (table 7?7 h(part))
of figure ?7(h). The coloured primitives are those that
are being “moved”, the other geometry can be ren-
dered from caches. The version that makes use of the
caches is about 9 times faster than the fully rendered
version. However, the triangle count is higher because
the cached geometry has a more complex boundary
than the original primitives.

Our implementation’s performance compares well
with that obtained by specialized hardware and pure
software solutions. Figure ??(d) is our version of a
model rendered by Goldfeather et. al.
Planes 4. They report a total rendering time of 4.02
seconds compared with our time of 0.67 seconds. The
VGX architecture machine used for our tests was in-

on Pixel-

troduced in 1990 when Pixel-Planes 4 was nearing the
end of its lifetime. Pixel-Planes 5 (the most recent
machine in the Pixel-Planes series ?) has performance
some 50 times better than Pixel-Planes 4 on a full
system with 32 geometry processors and 16 renderers.
Such a system would have performance 10 times that
of our implementation — at a far greater cost.

Figure ?7(f) is our version of a model rendered by
Thibault and Naylor’s BSP tree based algorithm *.
Their total rendering time is 7.2 seconds for a model
with 158 polygons on a VAX 8650. Our time is 0.3
seconds for a model with 496 triangles. Our algorithm

© The Eurographics Association 1997

also scales better with increasing numbers of polygons

(O(kn) compared with O(nlogn)).

6.1. Other implementations

We have also implemented the algorithm using
OpenGL * and tested it on our VGXT, a Silicon
Graphics R3000 Indigo with starter graphics, and an
Indigo® Extreme. The algorithm should run under any
OpenGL implementation. On the systems we tested
performance was comparable to the GL version in all
areas except depth buffer save and restore. This oper-
ation was about 100 times slower than the GL equiv-
alent. The problem appears to be a combination of
poor performance tuning and a specification which re-
quires conversion of the depth buffer values to and
from normalized floating point. This problem should
be resolved with the release of more mature OpenGL
implementations. Single pass renders with the frame
start optimization (the common case for our interac-
tive modeller) run at full speed.

7. Conclusion

We have presented an algorithm which directly ren-
ders an arbitrary CSG tree and is suitable for use
in interactive modelling applications. Unlike Gold-
feather et. al. 7, our algorithm requires only a sin-
gle color buffer, a single depth buffer, a stencil buffer
and the ability to save and restore the contents of
the depth buffer. It can be implemented on many
graphics workstations using existing graphics libraries.
Like Rossignac, Megahed and Schneider 7, the algo-
rithm can display cross-sections of solids using clip-
ping planes but is far more flexible. For instance, the
algorithm could be used to directly display interfer-
ences between solids by rendering the intersection of
the solids.

The algorithm has been implemented on an SGI
310/VGXT using the GL graphics library and has
been integrated into an experimental modelling sys-
tem. Performance compares well with specialized
hardware and pure software algorithms for complete
evaluation and rendering. The algorithm performs
particularly well for incremental updates in an inter-
active modelling environment.

Acknowledgements

This work has been funded by Informatix Inc., Tokyo.
Our thanks go to them for their support of the Martin
Centre CADLAB over the last four years. Brian Lo-
gan, Paul Richens and Simon Schofield have all pro-
vided valuable insights and comments; as have the
anonymous referees. Paul Richens created the models
in figure 7?7 (g) and (h) using our interactive modeller.

12 T. F. Wiegand / Interactive Rendering of CSG Models

Figure 8:

(a) AnB (b) (AUB)—(CuD) (©) ((ANB)U(A-C)) (d) (AnB)U(ANC)u
N((AND)U(A-E)) (AND)u(ANE)U
N((ANF)U(A-G)) (A-F-G-H-...)

(e) (AnD-B)U(CND) (f) (AUB)—C-...— (g) A,-B (h) A,~XUBUCU...

Figure 9: Images generated by the stencil buffer CSG algorithm

© The Eurographics Association 1997

Efficient Bump Mapping Hardware (DRAFT COPY)

Mark Peercy
John Airey
Brian Cabral
Silicon Graphics Computer Systems *

Abstract

We present a bump mapping method that requires minimal hard-
ware beyond that necessary for Phong shading. We eliminate the
costly per-pixel steps of reconstructing atangent space and perturb-
ing the interpolated normal vector by a) interpolating vectors that
have been transformed into tangent space at polygon vertices and b)
storing a precomputed, perturbed normal map asatexture. The sav-
ings represents up to afactor of two in hardware or time compared
to a straightforward implementation of bump mapping.

CR categories and subject descriptors: 1.3.3 [Computer
Graphics]: Picture/lmage generation; 1.3.7 [Image Processing]: En-
hancement

Keywords: hardware, shading, bump mapping, texture map-
ping.

1 INTRODUCTION

Shading calculations in commercially available graphics systems
have been limited to lighting at the vertices of a set of polygons,
with the resultant colorsinterpolated and composited with atexture.
The drawbacksof Gouraud interpolation [9] arewell knownand in-
clude diffused, crawling highlights and mach banding. The use of
this method is motivated primarily by therelatively large cost of the
lighting computation. When done at the vertices, this cost is amor-
tized over the interiors of polygons.

The division of acomputation into per-vertex and per-pixel com-
ponentsis a general strategy in hardware graphics acceleration [1].
Commonly, the vertex computations are performed in a general
floating point processor or cpu, while the per-pixel computations
are in special purpose, fixed point hardware. The division is a
function of cost versus the general applicability, in terms of qual-
ity and speed, of afeature. Naturally, the advance of processor and
application-specific integrated circuit technology has an impact on
the choice.

Because the per-vertex computations are done in a general pro-
cessor, the cost of anew feature tendsto be dominated by additional
per-pixel hardware. If this feature has a very specific application,
the extra hardware is hard to justify becauseit laysidle in applica-
tionsthat donot leverageit. Andinlow-end or game systems, where
every transistor counts, additional rasterization hardware is partic-
ularly expensive. An dternative to extra hardware is the reuse of
existing hardware, but this option necessarily runs much slower.

* { peercy,airey,cabral } @sgi.com
2011 N. Shoreline Boulevard
Mountain View, California 94043-1389

Shading quality can be increased dramatically with Phong shad-
ing [13], which interpolates and normalizes vertex normal vectors
at each pixel. Light and halfangle vectors are computed directly in
world space or interpolated, either of which requires their normal-
ization for a local viewer and light. Figure 1 shows rasterization

interp normalize
L interp normalize
interp normalize

Figure 1. One implementation of Phong shading hardware.

illumination

hardware for one implementation of Phong shading, upon which
we base this discussion.! This adds significant cost to rasterization
hardware. However higher quality lighting is aimost universally
desired in three-dimensional graphics applications, and advancing
semiconductor technology is making Phong shading hardware more
practical. We take Phong shading and texture mapping hardware as
aprerequisite for bump mapping, assuming they will be standard in
graphics hardware in the future.

Bump mapping [3] isatechniqueusedin advanced shading appli-
cationsfor simulating the effect of light reflecting from small pertur-
bations across a surface. A single component texture map, f(up),
isinterpreted asaheight field that perturbsthe surface along its nor-
mal vector, N = (P, x P,)/|(P, x P,)|, a each point. Rather
than actually changing the surface geometry, however, only the nor-
mal vector is modified. From the partial derivatives of the surface
position in the « and v parametric directions (P, and P,), and the
partial derivatives of the image height field in » and v (f,, and f,),
aperturbed normal vector N’ is given by [3]:

N' = ((P.xP,)+D)/|(P,xP,)+D| ()

D = _fu(Pv XN)_f'U(NXPu) (2)

In these equations, P, and P, are not normalized. As Blinn
points out [3], this causes the bump heights to be a function of the
surfacescalebecause P, x P, changesat adifferent rate than D. If
the surface scale is doubled, the bump heights are halved. This de-
pendence on the surface often is an undesirable feature, and Blinn
suggestsone way to enforce a constant bump height.

A full implementation of these equationsin arasterizer isimprac-
tical, so the computation isdivided among a preprocessing step, per-
vertex, and per-pixel calculations. A natural method to implement
bump mapping in hardware, and one that is planned for a high-end
graphics workstation [6], is to compute P, x P,, P, x N, and
N x P, at polygon vertices and interpolate them to polygon interi-
ors. The perturbed normal vector is computed and normalized asin
Equation 1, with £, and f, read from a texture map. The resulting
normal vector is usedin an illumination model.

The hardware for this method is shown in Figure 2. Because P,

where

1Several different implementations of Phong shading have been suggested
[11][20][4][5][7][2] with their own costs and benefits. Our bump mapping algorithm
can leverage many variations, and we usethis form aswell as Blinn’s introduction of
the halfangle vector for clarity.

NxPu
urv

PVxN

N [wide interp i
L |interp '_‘normalize
:

Figure 2. A suggested implementation of bump mapping hard-
ware.

illumination

normalize

and P, are unbounded, the three interpolators, the vector addition,
vector scaling, and normalization must have much greater range and
precision than those needed for bounded vectors. These require-
ments are noted in the figure. One approximation to this implemen-
tation has been been proposed [8], whereP, x N and N x P, are
held constant across a polygon. While avoiding their interpolation,
this approximation is known to have artifacts [8].

We present an implementation of bump mapping that leverages
Phong shading hardware at full speed, eliminating either alarge in-
vestment in special purpose hardware or a slowdown during bump
mapping. The principal idea is to transform the bump mapping
computation into a different reference frame. Becauseillumination
modelsare afunction of vector operations (such asthe dot product)
between the perturbed normal vector and other vectors (such asthe
light and halfangle), they can be computed relativeto any frame. We
are able to push portions of the bump mapping computation into a
preprocess or the per-vertex processor and out of the rasterizer. As
aresult, minimal hardwareis added to a Phong shading circuit.

2 OUR BUMP-MAPPING ALGORITHM

We proceed by recognizing that the original bump mapping approx-
imation [3] assumesa surfaceis locally flat at each point. The per-
turbation is, therefore, a function only of the local tangent space.
We define this space by the normal vector, N, a tangent vector,
T =P,/|P,|, ard abinormal vector, B = (N x T). T, B, and
N form an orthonormal coordinate system in which we perform the
bump mapping. In this space, the perturbed normal vector is (see

appendix):

ITS = (a7 b7 C)/ Vv a? + b? + c? (3)

a = —f,(B-P,) (4)
= _(fv|Pu|_fu(T'P”)) (5)
¢ = |P,xP,| (6)

The coefficients @, b, and ¢ are afunction of the surface itself (via
P, and P,) and the height field (via f,, and f,). Provided that the
bump map isfixed to asurface, the coefficients can be precomputed
for that surfaceat each point of theheight field and stored asatexture
map (we discuss approximations that relax the surface dependence
below). Thetexel componentslie intherange-1to 1.

Thetexture map containing the perturbed normal vector isfiltered
as a simple texture using, for instance, tri-linear mipmap filtering.
Thetexelsin the coarser levels of detail can be computed by filter-
ing finer levels of detail and renormalizing or by filtering the height
field and computing thetexelsdirectly from Equations3-6. Itiswell
known that thisfiltering step tendsto average out the bumpsat large

minifications, leading to artifacts at silhouette edges. Proper filter-
ing of bump maps requires computing the reflected radiance over all
bumps contributing to a single pixel, an option that is not practical
for hardware systems. It should also be noted that, after mipmap in-
terpolation, the texture will not be normalized, so we must normal-
izeit prior to lighting.

For the illumination calculation to proceed properly, we trans-
form the light and halfangle vectorsinto tangent spaceviaa3 x 3
matrix whosecolumnsare T, B, and N. For instance, the light vec-
tor, L, istransformed by

MgzL(f ? T))

Now the diffuse term in the illumination model can be computed
from the perturbed normal vector from thetexture map and thetrans-
formed light: N7, - Lys. The same consideration holds for the
other termsin the illumination model.

The transformations of the light and halfangle vectors should be
performed at every pixel; however, if the change of the local tan-
gent space across a polygon is small, a good approximation can be
obtained by transforming the vectors only at the polygon vertices.
They are then interpolated and normalized in the polygon interiors.
Thisisfrequently agood assumption becausetangent space changes
rapidly in areas of high surface curvature, and an application will
need to tessellate the surfacesmore finely in thoseregionsto reduce
geometric faceting.

This transformation is, in spirit, the same as one proposed by
Kuijk and Blaketo reduce the hardware required for Phong shading
[11]. Rather than specifying atangent and binormal explicitly, they
rotate the reference frames at polygon vertices to orient all normal
vectorsin the same direction (such as (0,0, 1)). In this space, they
no longer interpolate the normal vector (an approximation akin to
ours that tangent space changes slowly). If the bump map is iden-
tically zero, we too can avoid an interpolation and normalization,
and we will have aresult similar to their approximation. It should
be noted that the highlight in this caseis slightly different than that
obtained by the Phong circuit of Figure 1, yet it is still phenomeno-
logically reasonable.

The rasterization hardware required for our bump mapping algo-
rithm is shown in Figure 3; by adding a multiplexer to the Phong
shading hardware of Figure 1, both the original Phong shading and
bump mapping can be supported. Absent in the implementation
of Figure 2, this algorithm requires transforming the light and hal-
fangle vectors into tangent space at each vertex, storing a three-
component texture map instead of a two-component map, and hav-
ing aseparatemap for each surface. However, it requiresonly amul-
tiplexer beyond Phong shading, avoidstheinterpolation of (P, xIN')
and (N x P,), the perturbation of the normal vector at each pixel,
and the extended range and precision needed for arithmetic on un-
bounded vectors. Effectively, we havetraded per-pixel calculations
cast in hardware for per-vertex calculations donein the general ge-
ometry processor. If the applicationislimited by therasterization, it
will run at the same speed with bump mapping aswith Phong shad-

ing.

normalize

N |interp '—o
Lis ||nterp '—‘ normalize
interp '—' normalize ’_‘

Figure 3. One implementation of our bump mapping algorithm.

illumination

HTS

Figure 4.The pinwheel height field is used as a bump map for the
tesselated, bicubic surface.

2.1 Object-Space Normal Map

If the texture map is a function of the surface parameterization, an-
other implementation is possible: the lighting model can be com-
puted in object space rather than tangent space. Then, the texture
storesthe perturbed normal vectorsin object space, and thelight and
halfangle vectors are transformed into object space at the polygon
vertices and interpolated. Thus, the matrix transformation applied
tothelight and halfanglevectorsis shared by all vertices, rather than
one transformation for each vertex. Thisimplementation keepsthe
rasterization hardware of Figure 3, significantly reduces the over-
head in the geometry processor, and can coexist with the first for-
mulation.

2.2 Removing the surface dependence

The primary drawback of our method is the surface dependence of
the texture map. The dependence of the bumps on surface scale is
shared with the traditional formulation of bump mapping. Yetin ad-
dition, our texture map isafunction of the surface, sotheheight field
can not be shared among surfaces with different parameterizations.
Thisis particularly problematic when texture memory is restricted,
asin a game system, or during design when a bump map is placed
on anew surfaceinteractively.

All of the surface dependenciescan be eliminated under the as-
sumption that, locally, the parameterization is the same as a square
patch (similar to, yet more restrictive than, the assumption Blinn
makes in removing the scale dependence[3]). Then, P, and P,
are orthogonal (P, - P, = T - P, = 0) and equal in magnitude
(P.| = |P.]). Toremove the bump dependence on surface scale,

Figure 4. Bump mapping using the hardware implementation
shown in Figure 2.

Figure 6.Bump mapping with the hardware in Figure 3, and the
texture map from Eqgns 3-6.

we simply choose |P, | = |P,| = &, where k is aconstant giving
arelative height of the bumps. This, along with the orthogonality
condition, reduce Equations 3-6 to

N7s = (a,bc)/Va2+b2+c2 8)
a = _kfu (9)
b = —kf, (10)
c = k° (11)

Thetexture map becomesa function only of the height field and not
of the surface geometry, so it can be precomputed and used on any
surface.

The square patch assumption holds for several important sur-
faces, such as spheres, tori, surfaces of revolution, and flat rectan-
gles. In addition, the property is highly desirable for general sur-
facesbecausethe further P, and P, are from orthogonal and equal
in magnitude, the greater the warp in the texture map when applied
to asurface. Thiswarping istypically undesirable, and its elimina-
tion has been the subject of research [12]. If the surface is already
reasonably parameterized or can be reparameterized, the approxi-
mation in Equations 8-11 is good.

3 EXAMPLES

Figures5-7 compare software simul ations of the variousbump map-
ping implementations. All of theimages, including the height field,
havearesolution of 512x512 pixels. The height field, Figure 4, was

Figure 7.Bump mapping with the hardware in Figure 3, and the
texture map from Eqgns 8-11.

chosen as a pinwheel to highlight filtering and implementation ar-
tifacts, and the surface, Figure 4, was chosen as a highly stretched
bicubic patch subdivided into 8x8x2 triangles to ensurethat P, and
P, deviate appreciably from orthogonal. Thetexture mapswerefil-
tered with trilinear mipmapping.

Figure 5 showsthe image computed from the implementation of
bump mapping from Figure 2. The partial derivatives, f, and f,,in
this texture map and the others were computed with the derivative
of a Gaussian covering seven by seven samples.

Figures 6 and 7 show our implementation based on the hardware
of Figure 3; they differ only in the texture map that is employed.
Figure 6 uses a texture map based on Equations 3-6. Each texel
was computed from the analytic values of P, and P, for the bicu-
bic patch. Thedifference between thisimage and Figure5 is almost
imperceptible, even under animation, as can be seenin the enlarged
insets. The texture map used in Figure 7 is based on Equations 8-
11, where the surface dependence has been removed. Minor differ-
ences can be seenin the rendered image compared to Figures 5 and
6; somearevisibleintheinset. All threeimplementationshavesim-
ilar filtering qualities and appearance during animation.

4 DISCUSSION

We have presented an implementation of bump mapping that, by
transforming the lighting problem into tangent space, avoids any
significant new rasterization hardware beyond Phong shading. To
summarize our algorithm, we

precompute a texture of the perturbed normal in tangent space
transform all shading vectorsinto tangent space per vertex
interpolate and renormalize the shading vectors

fetch and normalize the perturbed normal from the texture

e compute the illumination model with these vectors

Efficiency is gained by moving a portion of the problem to the ver-
tices and away from special purpose bump mapping hardwarein the
rasterizer; the incremental cost of the per-vertex transformations is
amortized over the polygons.

It isimportant to notethat the method of transforming into tangent
space for bump mapping isindependent of the illumination model,
provided the model is a function only of vector operations on the
normal. For instance, the original Phong lighting model, with the
reflection vector and the view vector for the highlight, can be used
instead of the halfangle vector. In this case, the view vector istrans-
formed into tangent space and interpolated rather than the halfan-
gle. Aslong as all necessary shading vectors for the illumination
model are transformed into tangent spaceand interpolated, lighting
is proper.

Our approach is relatively independent of the particular imple-
mentation of Phong shading, however it does require the per-pixel
illumination model to accept vectorsrather than partial illumination
results. We have presented a Phong shading circuit where almost no
new hardwareisrequired, but other implementationsmay need extra
hardware. For example, if the light and halfangle vectors are com-
puted directly in eye space, interpolators must be added to support
our algorithm. The additional cost still will be very small compared
to a straightforward implementation.

Phong shadinglikely will becomeastandard addition to hardware
graphics system because of its general applicability. Our algorithm
extends Phong shading in such an effective manner that it is natural
to support bump mapping even on the lowest cost Phong shading
systems.

5 ACKNOWLEDGEMENTS

Thiswork would not havebeen possiblewithout help, ideas, conver-
sations and encouragement from Pat Hanrahan, Bob Drebin, Kurt
Akeley, Erik Lindholmand Vimal Parikh. Alsothanksto the anony-
mous reviewers who provided good and insightful suggestions.

APPENDIX

Here we derive the perturbed normal vector in tangent space, aref-
erence frame given by tangent, T = P, /|P,|; binorma, B =
(N x T); andnormal, N, vectors. P, isin the plane of the tangent
and binormal, and it can be written:

P, = (T-P,)T+(B-P,)B (12)
Therefore
P,xN = (B-P,)T—(T-P,)B (13)
The normal perturbation (Equation 2) is:
D = —f.(P,xN)-f[P,B (14)

—fu(B-P,)T = (fu|Py| = fu(T -P,))B (15

Substituting the expressionfor D andP, x P, = |P, x P,|N
into Equation 1, normalizing, and taking Trs = (1,0,0), Bys =
(0,1,0),and Npg = (0,0, 1) leads directly to Equations 3-6.

References

[1] AKELEY, K. RealityEngine graphics. In Computer Graphics
(SIGGRAPH '93 Proceedings) (Aug. 1993), J. T. Kajiya, Ed.,
vol. 27, pp. 109-116.

[2] BisHOP, G., AND WEIMER, D. M. Fast Phong shading.
In Computer Graphics (SGGRAPH '86 Proceedings) (Aug.
1986), D. C. Evansand R. J. Athay, Eds., vol. 20, pp. 103—106.

[3] BLINN, J. F. Simulation of wrinkled surfaces. In Computer
Graphics (SSGGRAPH ' 78 Proceedings) (Aug. 1978), vol. 12,
pp. 286—292.

[4] CLAUSSEN, U. Real time phong shading. In Fifth Euro-
graphics Workshop on Graphics Hardware (1989), D. Grims-
dale and A. Kaufman, Eds.

[5] CLAUSSEN, U. Onreducing the phong shading method. Com-
putersand Graphics 14, 1 (1990), 73-81.

[6] CosMAN, M. A., AND GRANGE, R. L. CIG scenerealism:
The world tomorrow. In Proceedingsof I/ITSEC 1996 on CD-
ROM (1996), p. 628.

[7] DEERING, M. F., WINNER, S., SCHEDIWY, B., DUFFY,
C., AND HUNT, N. The triangle processor and normal vec-
tor shader: A VLSI system for high performance graphics.
In Computer Graphics (SGGRAPH '88 Proceedings) (Aug.
1988), J. Dill, Ed., vol. 22, pp. 21-30.

[8] ERNST, I., JACKEL, D., RUSSELER, H., AND WITTIG, O.
Hardware supported bump mapping: A step towards higher
quality real-time rendering. In 10th Eurographics Workshop
on Graphics Hardware (1995), pp. 63-70.

[9] GourauD, H. Computer display of curved surfaces. |EEE
Trans. Computers C-20, 6 (1971), 623-629.

[10] JACKEL, D., AND RUSSELER, H. A real time rendering sys-
tem with normal vector shading. In 9th Eurographics Work-
shop on Graphics Hardware (1994), pp. 48-57.

[11] Kuldk, A. A. M., AND BLAKE, E. H. Faster phong shad-
ing via angular interpolation. Computer GraphicsForum8, 4
(Dec. 1989), 315-324.

[12] MAILLOT, J., YAHIA, H., AND VERROUST, A. Interactive
texture mapping. In Computer Graphics(SIGGRAPH '93 Pro-
ceedings) (Aug. 1993), J. T. Kgjiya, Ed., vol. 27, pp. 27-34.

[13] PHONG, B.-T. lllumination for computer generated pictures.
Communications of the ACM 18, 6 (June 1975), 311-317.

Fast Volume Rendering Using a Shear-War p Factorization
of the Viewing Transfor mation

Philippe Lacroute

Computer Systems Laboratory
Stanford University

Abstract

Severa existing volume rendering algorithms operate by factoring
theviewing transformationinto a3D shear parallel tothe datadlices,
aprojection to form an intermediate but distorted image, and a 2D
warp to form an undistorted final image. We extend this class of
algorithms in three ways. First, we describe a new object-order
rendering algorithm based on the factorization that is significantly
faster than published algorithms with minimal loss of image qual-
ity. Shear-warp factorizations have the property that rows of vox-
elsinthevolume are aligned with rows of pixelsintheintermediate
image. We use thisfact to construct a scanline-based a gorithm that
traverses the volume and the intermediate image in synchrony, tak-
ing advantage of the spatial coherence present in both. We use spa-
tial data structures based on run-length encoding for both the vol-
ume and the intermediate image. Our implementation running on
an SGI Indigo workstation renders a 256° voxel medical data set
in one second. Our second extension is a shear-warp factorization
for perspective viewing transformations, and we show how our ren-
dering algorithm can support this extension. Third, we introduce
adata structure for encoding spatial coherence in unclassified vol-
umes (i.e. scalar fields with no precomputed opacity). When com-
bined with our shear-warp rendering algorithm thisdata structure al-
lows usto classify and render a256° voxel volumein three seconds.
The method extends to support mixed volumes and geometry and is
paralelizable.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensiona
Graphics and Realism; 1.3.3 [Computer Graphics]: Picture/lmage
Generation—Display Algorithms.

Additional Keywords: Volume rendering, Coherence, Scientific
visualization, Medical imaging.

1 Introduction

Volume rendering isaflexibletechnique for visualizing scalar fields
with widespread applicability in medical imaging and scientific vi-
sualization, but its use has been limited because it is computation-

Author’s Address: Center for Integrated Systems, Stanford University,
Stanford, CA 94305-4070

E-mail: lacroute@weevil.stanford.edu, levoy@cs.stanford.edu

World Wide Web: http://www-graphics.stanford.edu/

Copyright (©1994 by the Association for Computing Machinery, Inc. Per-
mission to make digital or hard copies of part or al of thiswork for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commerical advantage and that new copies bear
this notice and the full citation on the first page. Abstracting with credit is
permitted.

Marc Levoy

Computer Science Department
Stanford University

ally expensive. Interactive rendering rates have been reported using
largeparallel processors[17] [19] and using a gorithmsthat trade of f
image quality for speed [10] [8], but high-quality imagestaketens of
seconds or minutes to generate on current workstations. In this pa-
per we present anew a gorithm which achieves near-interactive ren-
dering rates on aworkstation without significantly sacrificing qual-
ity.

Many researchers have proposed methods that reduce rendering
cost without affecting image quality by exploiting coherence in the
data set. These methods rely on spatial data structures that encode
the presence or absence of high-opacity voxels so that computa-
tion can be omitted in transparent regions of the volume. These
datastructuresare built during apreprocessing step from aclassified
volume: a volume to which an opacity transfer function has been
applied. Such spatial data structures include octrees and pyramids
[13] [22] [8] [3], k-d trees [18] and distance transforms [23]. Al-
though thistype of optimization is data-dependent, researchers have
reported that in typical classified volumes 70-95% of the voxels are
transparent [12] [18].

Algorithmsthat use spatial data structures can be divided into two
categories according to the order in which the data structures aretra-
versed: image-order or object-order. Image-order algorithms oper-
ate by casting rays from each image pixel and processing the voxels
along each ray [9]. This processing order has the disadvantage that
thespatial datastructure must betraversed oncefor every ray, result-
ing in redundant computation (e.g. multiple descents of an octree).
In contrast, object-order algorithms operate by splatting voxelsinto
theimage while streaming through the volume datain storage order
[20] [8]. However, this processing order makesit difficult to imple-
ment early ray termination, an effective optimization in ray-casting
algorithms[12].

Inthis paper we describe anew algorithm which combinesthe ad-
vantages of image-order and object-order agorithms. The method
is based on a factorization of the viewing matrix into a 3D shear
paralel to the dlices of the volume data, a projection to form adis-
torted intermediate image, and a 2D warp to produce the final im-
age. Shear-warp factorizations are not new. They have been used
to smplify data communication patterns in volume rendering a go-
rithmsfor SIMD parallel processors[1] [17] and to simplify thegen-
eration of paths through avolumein a serial image-order algorithm
[22]. The advantage of shear-warp factorizations is that scanlines
of the volume data and scanlines of the intermediate image are al-
ways aigned. In previous efforts this property has been used to de-
velop SIMD volume rendering algorithms. We exploit the property
for adifferent reason: it allowsefficient, synchronized accessto data
structures that separately encode coherence in the volume and the
image.

The factorization also makes efficient, high-quality resampling
possible in an object-order algorithm. In our algorithm the resam-

viewing rays shear

volume

slices project

=)

warp

Figure1: A volumeistransformed to sheared object space for apar-
allel projection by trandating each slice. The projection in sheared
object space issimple and efficient.

pling filter footprint is not view dependent, so the resampling com-
plications of splatting algorithms [20] are avoided. Severa other
algorithms also use multipass resampling [4] [7] [19], but these
methods require three or more resampling steps. Our algorithm re-
quires only two resampling steps for an arbitrary perspective view-
ing transformation, and the second resampling isan inexpensive 2D
warp. The 3D volume istraversed only once.

Our implementation running on an SGI Indigo workstation can
render a 256% voxel medical data set in one second, afactor of at
least five faster than previous algorithms running on comparable
hardware. Other than a dlight loss due to the two-pass resampling,
our algorithm does not trade off quality for speed. Thisisin con-
trast to algorithmsthat subsampl e the data set and can therefore miss
small features[10] [3].

Section 2 of this paper describes the shear-warp factorization and
its important mathematical properties. We also describe a new ex-
tension of the factorization for perspective projections. Section 3
describes three variants of our volume rendering algorithm. The
first algorithm renders classified volumes with a parallel projection
using our new coherence optimizations. The second a gorithm sup-
ports perspective projections. The third algorithm is afast classifi-
cation algorithm for rendering unclassified volumes. Previous a-
gorithms that employ spatial data structures require an expensive
preprocessing step when the opacity transfer function changes. Our
third agorithm uses a classification-independent min-max octree
datastructureto avoid thisstep. Section 4 contains our performance
results and a discussion of image quality. Finaly we conclude and
discuss some extensions to the algorithm in Section 5.

2 The Shear-Warp Factorization

The arbitrary nature of the transformation from object space to im-
age space complicates efficient, high-quality filtering and projection
in object-order volume rendering algorithms. This problem can be
solved by transforming the volume to an intermediate coordinate
system for which thereisavery simple mapping from the object co-
ordinate system and which allows efficient projection.

We cdl the intermediate coordinate system “sheared object
space’ and defineit asfollows:

Definition 1: By construction, in sheared object spaceall
viewing rays are paralléel to the third coordinate axis.

Figure 1 illustrates the transformation from object space to sheared
object spacefor aparallel projection. Weassume thevolumeissam-
pled on arectilinear grid. Thehorizontal linesin thefigure represent
dlicesof thevolume dataviewed in cross-section. After transforma:
tion the volume data has been sheared parall €l to the set of dicesthat
ismost perpendicular to the viewing direction and the viewing rays
are perpendicular to the slices. For a perspective transformation the
definition implies that each slice must be scaled as well as sheared
as shown schematically in Figure 2.

viewing rays shear and scale
—_——
volume 4 K '
slices —_— project
§ warp
image
plane center of
projection

Figure2: A volumeistransformed to sheared object space for aper-
spective projection by trandating and scaling each slice. The pro-
jection in sheared object spaceis again simple and efficient.

Definition 1 can beformalized asaset of equationsthat transform
obj ect coordinates into sheared object coordinates. These equations
can be written as a factorization of the view transformation matrix
Miew asfollows:

Myiew = P - S - Mwa.rp

P isapermutation matrix which transposes the coordinate systemin
order to makethe z-axistheprincipal viewing axis. S transformsthe
volume into sheared object space, and My..p transforms sheared
obj ect coordinatesinto image coordinates. Cameron and Undrill [1]
and Schrdder and Stoll [17] describe this factorization for the case
of rotation matrices. For ageneral paralel projection S hastheform
of ashear perpendicular to the z-axis:

1 0 0 O

1 0 0

Spar = Se sy 1 0
0 0 0 1

where s, and s,, can be computed from the elements of Myic., . For
perspective projections the transformation to sheared object space
isof theform:

1 0 0 O

0 1 0 0
Spersp = Sy Sy 1 sy

0 0 0 1

This matrix specifies that to transform a particular slice zo of
voxel data from object space to sheared object space the dice
must be translated by (zo0s., z0s;,) and then scaled uniformly by
1/(1 + z0sy,). Thefinal term of the factorization is amatrix which
warps sheared object space into image space:

Mwarp = 571 . P71 - Myiew

A simple volume rendering algorithm based on the shear-warp
factorization operates as follows (see Figure 3):

1. Transform the volume datato sheared object space by trandat-
ing and resampling each dlice according to S. For perspective
transformations, also scaleeach dice. P specifieswhich of the
three possible dlicing directions to use.

2. Compositetheresampled dicestogether in front-to-back order
using the “over” operator [15]. This step projects the volume
into a2D intermediate image in sheared object space.

3. Transform the intermediate image to image space by warping
it according to Mwarp. Thissecond resampling step produces
the correct final image.

intermediate
image scanline

1. shear
resample
voxel \

scanline 3. warp &

resample

T~

2. project
& composite

-

voxel slice

intermediate image

final image

Figure 3: The shear-warp algorithm includesthree conceptual steps:
shear and resampl e the volume dlices, project resampled voxel scan-
lines onto intermediate image scanlines, and warp the intermediate
image into the final image.

The parallel-projection version of thisa gorithm wasfirst described
by Cameron and Undrill [1]. Our new optimizations are described
in the next section.

The projection in sheared object space has several geometric
properties that simplify the compositing step of the algorithm:

Property 1: Scanlines of pixels in the intermediate
image are parallel to scanlines of voxels in the volume
data.

Property 2: All voxels in a given voxel dlice are
scaled by the same factor.

Property 3 (pardlel projections only): Every voxel
dlice hasthe same scal e factor, and thisfactor can be cho-
sen arbitrarily. In particular, we can choose a unity scale
factor so that for a given voxd scanline there is a one-
to-one mapping between voxels and intermediate-image
pixels.

In the next section we make use of these properties.

3 Shear-Warp Algorithms

We have devel oped three volume rendering al gorithms based on the
shear-warp factorization. Thefirst algorithm is optimized for paral-
lel projections and assumes that the opacity transfer function does
not change between renderings, but the viewing and shading param-
eters can be modified. The second a gorithm supports perspective
projections. The third algorithm allows the opacity transfer func-
tion to be modified as well as the viewing and shading parameters,
with amoderate performance penalty.

3.1 Parallel Projection Rendering Algorithm

Property 1 of the previous section states that voxel scanlinesin the
sheared volume are aigned with pixel scanlines in the intermedi-
ate image, which means that the volume and image data structures
can both be traversed in scanline order. Scanline-based coherence
datastructures aretherefore anatural choice. Thefirst datastructure
we useisarun-length encoding of the voxel scanlines which allows
us to take advantage of coherence in the volume by skipping runs
of transparent voxels. The encoded scanlines consist of two types

opaque
pixel

non-opaque
pixel

Figure 4. Offsets stored with opague pixelsin the intermediate im-
age allow occluded voxels to be skipped efficiently.

of runs, transparent and non-transparent, defined by a user-specified
opacity threshold. Next, to take advantage of coherence in the im-
age, we store with each opague intermediate image pixel an offset to
the next non-opaque pixel in the same scanline (Figure 4). Anim-
age pixel is defined to be opague when its opacity exceeds a user-
specified threshold, in which case the corresponding voxels in yet-
to-be-processed dices are occluded. The offsets associated with the
image pixels are used to skip runs of opague pixels without exam-
ining every pixel. The pixel array and the offsets form a run-length
encoding of the intermediate image which is computed on-the-fly
during rendering.

These two data structures and Property 1 lead to a fast scanline-
based rendering a gorithm (Figure5). By marching through thevol-
ume and the image simultaneously in scanline order we reduce ad-
dressing arithmetic. By using the run-length encoding of the voxel
datato skip voxels which are transparent and the run-length encod-
ing of the image to skip voxels which are occluded, we perform
work only for voxels which are both non-transparent and visible.

For voxel runs that are not skipped we use a tightly-coded loop
that performs shading, resampling and compositing. Properties 2
and 3 alow usto simplify the resampling step in thisloop. Sincethe
transformation applied to each dlice of volume data before projec-
tion consistsonly of atranslation (no scaling or rotation), the resam-
pling weights are the same for every voxel in adice (Figure 6). Al-
gorithmswhich do not use the shear-warp factorization must recom-
pute new weightsfor every voxel. Weuse abilinear interpolation fil-
ter and a gather-type convolution (backward projection): two voxel
scanlines are traversed simultaneously to compute asingle interme-
diate image scanline at a time. Scatter-type convolution (forward
projection) isalso possible. We use alookup-table based system for
shading [6]. We also use alookup table to correct voxel opacity for
the current viewing angle since the apparent thickness of a dice of
voxels depends on the viewing angle with respect to the orientation
of thedlice.

The opaque pixel links achieve the same effect as early ray ter-
mination in ray-casting algorithms[12]. However, the effectiveness
of this optimization depends on coherence of the opaque regions of
theimage. Therunsof opaque pixelsaretypically largeso that many
pixels can be skipped at once, minimizing the number of pixelsthat
are examined. The cost of computing the pixel offsetsis low be-
cause a pixel’s offset is updated only when the pixel first becomes

voxel scanline: [[
‘ resample and

composite
intermediate
image
scanline:

skip work ‘ skip ‘Work skip

[] transparent voxel run Il opaque image pixel run

|:| non-transparent voxel run |:| non-opaque image pixel run
Figure 5: Resampling and compositing are performed by streaming
through both the voxels and the intermediate image in scanline or-
der, skipping over voxelswhich aretransparent and pixelswhich are
opaque.

ol o) e,
oA,
ol ole,

Figure 6: Since each dlice of the volume is only trandated, every
voxd in the dice has the same resampling weights.

@ original voxel
o resampled voxel

opague.
After the volume has been composited the intermediate image

must be warped into the final image. Since the 2D image is small
compared to the size of the volume this part of the computation
is relatively inexpensive. We use a general-purpose affine image
warper with abilinear filter.

The rendering algorithm described in this section requires arun-
length encoded volume which must be constructed in a preprocess-
ing step, but the data structure is view-independent so the cost to
compute it can be amortized over many renderings. Three encod-
ings are computed, one for each possible principal viewing direc-
tion, so that transposing the volume is never necessary. During ren-
dering one of the three encodings is chosen depending upon the
value of the permutation matrix P in the shear-warp factorization.
Transparent voxels are not stored, so even with three-fold redun-
dancy the encoded volume is typically much smaller than the orig-
inal volume (see Section 4.1). Fast computation of the run-length
encoded data structureis discussed further at the end of Section 3.3.

In this section we have shown how the shear-warp factorization
allows us to combine optimizations based on object coherence and
image coherence with very low overhead and simple, high-quality
resampling. Inthe next section we extend these advantages to a per-
spective volume rendering algorithm.

3.2 Perspective Projection Rendering Algorithm

Most of the work in volume rendering has focused on parallel pro-
jections. However, perspective projections provide additional cues
for resolving depth ambiguities [14] and are essentia to correctly
compute occlusionsin such applicationsasabeam’seyeview for ra-
diation treatment planning. Perspective projections present a prob-
lem because the viewing rays diverge so it is difficult to sample
the volume uniformly. Two types of solutions have been proposed
for perspective volume rendering using ray-casters: as the distance
along aray increases the ray can be split into multiple rays [14], or
each sample point can sample alarger portion of the volume using
amip-map [11] [16]. The object-order splatting algorithm can also
handle perspective, but the resampling filter footprint must be re-
computed for every voxel [20].

The shear-warp factorization provides asimple and efficient solu-
tion to the sampling problem for perspective projections. Each slice
of the volume is transformed to sheared object space by atranda-
tion and auniform scale, and the dlices are then resampled and com-
posited together. These steps are equivalent to a ray-casting algo-
rithm in which rays are cast to uniformly sample the first slice of
volume data, and as each ray hits subsequent (more distant) slices
alarger portion of the diceis sampled (Figure 2). The key point is
that within each dlice the sampling rateisuniform (Property 2 of the
factorization), so there is no need to implement a complicated mul-
tiratefilter.

The perspective agorithm is nearly identical to the parallel pro-
jection algorithm. The only difference is that each voxel must be
scaled as well as translated during resampling, so more than two
voxel scanlines may betraversed simultaneously to produce agiven
intermediate image scanline and the voxel scanlines may not be tra-
versed at the same rate as the image scanlines. We always choose a
factorization of the viewing transformation in which the slice clos-

est to the viewer is scaled by afactor of one so that no dliceis ever
enlarged. To resample we use a box reconstruction filter and a box
low-passfilter, an appropriate combination for both decimation and
unity scaling. In the case of unity scaling the two filter widths are
identical and their convolution reduces to the bilinear interpolation
filter used in the parallel projection algorithm.

The perspective agorithm is more expensive than the parallel
projection algorithm because extratimeis required to compute re-
sampling weights and because the many-to-one mapping from vox-
elsto pixels complicatesthe flow of control. Nevertheless, thealgo-
rithm is efficient because of the properties of the shear-warp factor-
ization: the volume and the intermediate image are both traversed
scanline by scanline, and resampling is accomplished viatwo sim-
ple resampling steps despite the diverging ray problem.

3.3 Fast Classification Algorithm

The previous two algorithms require a preprocessing step to run-
length encode the volume based on the opacity transfer function.
The preprocessing timeisinsignificant if the user wishesto generate
many images from asingle classified volume, but if the user wishes
to experiment interactively with the transfer function then the pre-
processing step is unacceptably slow. In this section we present a
third variation of the shear-warp a gorithm that evaluates the opac-
ity transfer function during rendering and is only moderately slower
than the previous algorithms.

A run-length encoding of the volume based upon opacity isnot an
appropriate data structure when the opacity transfer function is not
fixed. Instead we apply the algorithms described in Sections 3.1—
3.2 to unencoded voxel scanlines, but with a new method to deter-
minewhich portions of each scanline are non-transparent. Weallow
the opacity transfer function to be any scalar function of a multi-
dimensional scalar domain:

a=f(p4q,..)

For example, the opacity might be a function of the scalar field and
its gradient magnitude [9]:

a = f(d,|Vd])

The function f essentially partitions a multi-dimensiona feature
space into transparent and non-transparent regions, and our goal is
to decide quickly which portions of a given scanline contain voxels
in the non-transparent regions of the feature space.

We solve this problem with the following recursive algorithm
which takes advantage of coherence in both the opacity transfer
function and the volume data:

Step 1: For some block of the volume that contains the current
scanline, find the extrema of the parameters of the opac-
ity transfer function (min(p), max(p), min(q), max(q),...).
These extremabound arectangular region of the feature space.

Step 2: Determineif theregion is transparent, i.e. f evauated for
all parameter pointsin theregion yields only transparent opac-
ities. If so, then discard the scanline since it must be transpar-
ent.

Step 3: Subdivide the scanline and repeat this agorithm recur-
sively. If the size of the current scanline portion is below a
threshold then render it instead of subdividing.

This algorithm relies on two data structures for efficiency (Fig-
ure7). First, Step 1 uses aprecomputed min-max octree[21]. Each
octree node contains the extrema of the parameter values for a sub-
cube of the volume. Second, to implement Step 2 of the algorithm
we need to integrate the function f over the region of the feature
space found in Step 1. If the integra is zero then all voxels must

7 summed
q area table
b7 ma;
Amin
min-max octree Pmin Pmax
(@) (b) (c)

Figure7: A min-max octree (a) isused to determine the range of the
parameters p, q of the opacity transfer function f(p, ¢) in asubcube
of the volume. A summed area table (b) is used to integrate f over
that rangeof p, q. If theintegral iszero (c) then the subcube contains
only transparent voxels.

be transparent.” Thisintegration can be performed in constant time
using a multi-dimensional summed-area table [2] [5]. The voxels
themselves are stored in athird data structure, asimple 3D array.

The overal agorithm for rendering unclassified data sets pro-
ceeds as follows. The min-max octree is computed at the time the
volume is first loaded since the octree is independent of the opac-
ity transfer function and the viewing parameters. Next, just before
rendering begins the opacity transfer function is used to compute
the summed area table. This computation is inexpensive provided
that the domain of the opacity transfer function is not too large.
We then use either the parallel projection or the perspective projec-
tion rendering algorithm to render voxels from an unencoded 3D
voxd array. The array is traversed scanline by scanline. For each
scanline we use the octree and the summed area table to determine
which portions of the scanline are non-transparent. Voxels in the
non-transparent portions are individually classified using a lookup
table and rendered as in the previous agorithms. Opague regions
of theimage are skipped just as before. Note that voxels that are ei-
ther transparent or occluded are never classified, which reduces the
amount of computation.

The octree traversal and summed area table lookups add over-
head to the algorithm which were not present in the previous algo-
rithms. In order to reduce this overhead we save as much computed
data as possible for later reuse: an octree node is tested for trans-
parency using the summed areatable only thefirst timeit isvisited
and theresult is saved for subsequent traversals, and if two adjacent
scanlines intersect the same set of octree nodes then we record this
fact and reuse information instead of making multiple traversals.

This rendering algorithm places two restrictions on the opacity
transfer function: the parameters of the function must be precom-
putable for each voxel so that the octree may be precomputed, and
the total number of possible argument tuples to the function (the
cardinality of the domain) must not be too large since the summed
area table must contain one entry for each possible tuple. Context-
sengitive segmentation (classification based upon the position and
surroundings of avoxel) does not meet these criteriaunless the seg-
mentation is entirely precomputed.

The fast-classification a gorithm presented here al so suffersfrom
a problem common to many object-order algorithms: if the major
viewing axis changes then the volume datamust be accessed against
the stride and performance degrades. Alternatively the 3D array
of voxels can be transposed, resulting in a delay during interactive
viewing. Unlike the agorithms based on arun-length encoded vol-
ume, itistypically not practical to maintain three copies of the unen-
coded volume since it is much larger than arun-length encoding. It
isbetter to useasmall range of viewpointswhile modifying the clas-
sification function, and then to switch to one of the previoustworen-
dering methods for rendering animation sequences. In fact, the oc-

*The user may choose a hon-zero opacity threshold for transparent vox-
€ls, in which case athresholded version of f must beintegrated: let f/ = f
whenever f exceeds the threshold, and f’ = 0 otherwise.

—~ 1500 —
(&)
Q
(%]
£ MM
£ 1000
';, Max: 1330 msec.
-GE) Min: 1039 msec.
T 5004 Avg: 1166 msec.
4
0 | ! | |
0 90 180 270 360

Rotation Angle (Degrees)

Figure 11: Rendering time for aparalléel projection of the head data
set as the viewing angle changes.

tree and the summed-area tabl e can be used to convert the 3D voxel
array into arun-length encoded volume without accessing transpar-
ent voxels, leading to a significant time savings (see the “Switch
Modes’ arrow in Figure 12). Thus the three algorithms fit together
well toyield aninteractivetool for classifying and viewing volumes.

4 Reaults

4.1 Speed and Memory

Our performance results for the three algorithms are summarized
in Table 1. The “Fast Classification” timings are for the algorithm
in Section 3.3 with a paralée projection. The timings were mea-
sured on an SGI Indigo R4000 without hardware graphics accel-
erators. Rendering times include all steps required to render from
anew viewpoint, including computation of the shading lookup ta-
ble, compositing and warping, but the preprocessing step is not in-
cluded. The “Avg.” field in the table is the average time in sec-
onds for rendering 360 frames at one degree angle increments, and
the “Min/Max” times are for the best and worst case angles. The
“Mem.” field gives the size in megabytes of all data structures. For
thefirst two al gorithms the size includes the three run-length encod-
ings of the volume, the image data structures and all lookup tables.
For the third a gorithm the size includes the unencoded volume, the
octree, the summed-area table, the image data structures, and the
lookup tables. The“brain” dataset isan MRI scan of ahuman head
(Figure8) and the“head” datasetisaCT scan of ahuman head (Fig-
ure 9). The “brainsmall” and “headsmall” data sets are decimated
versions of the larger volumes.

The timings are nearly independent of image size because this
factor affects only the final warp which is relatively insignificant.
Rendering time is dependent on viewing angle (Figure 11) because
the effectiveness of the coherence optimizations varies with view-
point and because the size of the intermediate image increases as
the rotation angle approaches 45 degrees, so more compositing op-
erations must be performed. For the agorithms described in Sec-
tions 3.1-3.2 there is no jump in rendering time when the major
viewing axis changes, provided the three run-length encoded copies
of the volumefit into real memory simultaneously. Each copy con-
tains four bytes per non-transparent voxel and one byte per run. For
the 256x256x226 voxel head data set the three run-length encodings
total only 9.8 Mbytes. All of the images were rendered on a work-
station with 64 Mbytes of memory. To test the fast classification al-
gorithm (Section 3.3) on the 256° data sets we used a workstation
with 96 Mbytes of memory.

Figure 12 gives a breakdown of the time required to render the
brain data set with a parallel projection using the fast classification
algorithm (left branch) and the parallel projection agorithm (right
branch). The time required to warp the intermediate image into the
final image is typically 10-20% of the total rendering time for the

Figure 8: Volume rendering with a par-
alel projection of an MRI scan of a hu-
man brain using the shear-warp ago-
rithm (1.1 sec.).

Figure 9: Volume rendering with a par-
allel projection of aCT scan of ahuman
head oriented at 45 degrees relative to
the axes of the volume (1.2 sec.).

Figure 13: Volume rendering with a par-
allel projection of the human head data
set classified with semitransparent skin
(3.0 sec.).

Figure 16: Volume rendering with a perspective projection of the

engine data set (3.8 sec.).

Figure 14: Volume rendering with a
parallel projection of an engine block
with semitransparent and opague sur-
faces (2.3 sec.).

@

Figure10: Volume rendering of thesame
data set asin Figure 9 using aray-caster
[12] for quality comparison (13.8 sec.).

Figure 15: Volume rendering with a par-
allel projection of aCT scan of a human
abdomen (2.2 sec.). The blood vessels
contain aradio-opague dye.

(b) (©

Figure 17: Comparison of image quality with bilinear and trilinear
filters for a portion of the engine data set. The images have been

enlarged. (a) Bilinear filter with binary classification. (b) Trilinear

sification.

filter with binary classification. (c) Bilinear filter with smooth clas-

Data set Size (voxels) Paralel projection (§3 1) Perspective projection (§3 2) Fast classification (§3.3)
Avg. Min/Max Mem. | Avg. Min/Max Mem. | Avg. Min/Max Mem.
brainsmall | 128x128x109 | 0.4s. | 0.37-0.48s. | 4Mb. | 1.0s. | 0.84-1.13s. | 4Mb. | 0.7s. | 0.61-0.84s. 8 Mb.
headsmall | 128x128x113 | 0.4 0.35-0.43 2 0.9 0.82-1.00 2 0.8 0.72-0.87 8
brain 256x256x167 | 1.1 0.91-1.39 19 3.0 2.44-2.98 19 24 1.91-2.91 46
head 256x256x225 | 1.2 1.04-1.33 13 33 2.99-3.68 13 2.8 2.43-3.23 61

Table 1: Rendering time and memory usage on an SGI Indigo workstation. Times are in seconds and include shading, resampling, projection
and warping. Thefast classification timesinclude rendering with aparallel projection. The“Mem.” field isthetotal size of the data structures

used by each algorithm.
volume
Preprocess Dataset
77 sec.
Switch
volume + Modes run-length
octree 8.5 sec. encoding
2280 msec. 980 msec.
intermediate intermediate
image image
120 msec. 120 msec.
final final
image image

New Classification (§3.3) New Viewpoint (83.1)
Figure 12: Performance resultsfor each stage of rendering the brain
data set with a parallel projection. Theleft side uses the fast classi-
fication algorithm and the right side uses the parallel projection al-
gorithm.

parallel projection agorithm. The* Switch Modes’ arrow showsthe
time required for all three copies of the run-length encoded volume
to be computed from the unencoded volume and the min-max octree
once the user has settled on an opacity transfer function.

Thetimingsabove arefor grayscale renderings. Color renderings
take roughly twice as long for parallel projections and 1.3x longer
for perspective because of the additional resampling required for the
two extracolor channels. Figure 13 isa color rendering of the head
data set classified with semitransparent skin which took 3.0 sec. to
render. Figure 14 is a rendering of a 256x256x110 voxel engine
block, classified with semi-transparent and opaque surfaces; it took
2.3 sec. to render. Figure 15 is arendering of a 256x256x159 CT
scan of a human abdomen, rendered in 2.2 sec. The blood vessels
of the subject contain aradio-opague dye, and the data set was clas-
sified to reveal both the dye and bone surfaces. Figure 16 is a per-
spective color rendering of the engine data set which took 3.8 sec.
to compute.

For comparison purposes we rendered the head data set with a
ray-caster that uses early ray termination and a pyramid to exploit
object coherence [12]. Because of itslower computational overhead
the shear-warp algorithm is more than five times faster for the 128°
data sets and more than ten times faster for the 256° data sets. Our
algorithm running on a workstation is competitive with algorithms
for massively parallel processors ([17], [19] and others), although
the paralel implementations do not rely on coherence optimizations
and therefore their performance results are not data dependent as
ours are.

Our experiments show that the running time of the algorithmsin
Sections 3.1-3.2 is proportiona to the number of voxels which are
resampled and composited. This number is small either if asignif-
icant fraction of the voxels are transparent or if the average voxel

opacity ishigh. Inthelatter case the image quickly becomes opaque
and the remaining voxels are skipped. For the data sets and clas-
sification functions we have tried roughly n? voxels are both non-
transparent and visible, so we observe O(n?) performance as shown
in Table 1: an eight-fold increase in the number of voxels leads to
only afour-fold increase in time for the compositing stage and just
under afour-fold increasein overall rendering time. For our render-
ing of the head data set 5% of the voxels are non-transparent, and for
the brain data set 11% of the voxels are non-transparent. Degraded
performance can be expected if a substantial fraction of the classi-
fied volume has low but non-transparent opacity, but in our experi-
ence such classification functions are less useful.

4.2 Image Quality

Figure 10 isavolume rendering of the same data set asin Figure 9,
but produced by aray-caster using trilinear interpolation [12]. The
two images are virtually identical.

Nevertheless, there are two potential quality problems associated
with the shear-warp algorithm. First, the agorithm involves two
resampling steps: each slice is resampled during compositing, and
theintermediateimage is resampled during the final warp. Multiple
resampling steps can potentially cause blurring and loss of detail.
However even in the high-detail regions of Figure 9 this effect is
not noticesble.

The second potential problem is that the shear-warp algorithm
uses a 2D rather than a 3D reconstruction filter to resample the vol-
umedata. Thebilinear filter used for resamplingisafirst-order filter
inthe plane of avoxd dlice, but itisazero-order (nearest-neighbor)
filter in the direction orthogonal to the dlice. Artifacts are likely to
appear if the opacity or color attributes of the volume contain very
high frequencies (although if the frequencies exceed the Nyquist
rate then perfect reconstruction isimpossible).

Figure 17 shows a case where atrilinear interpolation filter out-
performs ahilinear filter. The left-most image is arendering by the
shear-warp algorithm of a portion of the engine data set which has
been classified with extremely sharp rampsto produce high frequen-
ciesin the volume's opacity. The viewing angleis set to 45 degrees
relativeto the slices of the data set—the worst case—and aliasing is
apparent. For comparison, themiddleimageisarendering produced
with aray-caster using trilinear interpol ation and otherwiseidentical
rendering parameters; here there is virtually no aliasing. However,
by using a smoother opacity transfer function these reconstruction
artifacts can be reduced. The right-most image is arendering using
the shear-warp agorithm and a less-extreme opacity transfer func-
tion. Herethealiasing isbarely noticeabl e because the high frequen-
ciesinthe scalar field have effectively been low-pass filtered by the
transfer function. In practice, aslong asthe opacity transfer function
isnot abinary classification the bilinear filter produces good resullts.

5 Conclusion

The shear-warp factorization allows us to implement coherence op-
timizationsfor both the volume dataand theimage with low compu-
tational overhead because both data structures can be traversed si-
multaneously in scanline order. The agorithmisflexible enough to

accommodate awide range of user-defined shading models and can
handle perspective projections. We have a so presented avariant of
the algorithm that does not assume afixed opacity transfer function.
The result is an agorithm which produces high-quality renderings
of a256® volume in roughly one second on a workstation with no
specialized hardware.

We are currently extending our rendering algorithm to support
data sets containing both geometry and volume data. We have
also found that the shear-warp algorithms parallelize naturally for
MIMD shared-memory multiprocessors. We parallelized theresam-
pling and compositing steps by distributing scanlines of the inter-
mediate image to the processors. On a 16 processor SGI Challenge
multiprocessor the 256x256x223 voxel head data set can be ren-
dered at a sustained rate of 10 frames/sec.

Acknowledgements

Wethank Pat Hanrahan, Sandy Napel and North CarolinaMemoria
Hospital for the data sets, and Maneesh Agrawala, Mark Horowitz,
Jason Nieh, Dave Ofelt, and Jaswinder Pal Singh for their help.
This research was supported by Software Publishing Corporation,
ARPA/ONR under contract NO0039-91-C-0138, NSF under con-
tract CCR-9157767 and the sponsoring companies of the Stanford
Center for Integrated Systems.

References

[1] Cameron, G. G. and P. E. Undrill. Rendering volumetric med-
ical image dataon a SIMD-architecture computer. In Proceed-
ings of the Third Eurographics Workshop on Rendering, 135~
145, Bristol, UK, May 1992.

[2] Crow, Franklin C. Summed-area tables for texture map-
ping. Proceedings of SIGGRAPH ’'84. Computer Graphics,
18(3):207-212, July 1984.

[3] Danskin, John and Pat Hanrahan. Fast agorithms for volume
ray tracing. In 1992 Workshop on Volume Visualization, 91—
98, Boston, MA, October 1992.

[4] Drebin, Robert A., Loren Carpenter and Pat Hanrahan. Vol-
ume rendering. Proceedings of SIGGRAPH "88. Computer
Graphics, 22(4):65-74, August 1988.

[5] Glassner, Andrew S. Multidimensional sum tables. In Graph-
ics Gems, 376-381. Academic Press, New York, 1990.

[6] Glassner, Andrew S. Normal coding. In Graphics Gems, 257—
264. Academic Press, New York, 1990.

[7] Hanrahan, Pat. Three-pass affine transforms for volume ren-
dering. Computer Graphics, 24(5):71-77, November 1990.

[8] Laur, David and Pat Hanrahan. Hierarchical splatting: A pro-
gressive refinement algorithm for volume rendering. Proceed-
ings of SIGGRAPH *91. Computer Graphics, 25(4):285-288,
July 1991.

[9] Levoy, Marc. Display of surfaces from volume data. |EEE
Computer Graphics & Applications, 8(3):29-37, May 1988.

[10] Levoy, Marc. Volume rendering by adaptive refinement. The
Visual Computer, 6(1):2—7, February 1990.

[11] Levoy, Marc and Ross Whitaker. Gaze-directed volume ren-
dering. Computer Graphics, 24(2):217-223, March 1990.

[12] Levoy, Marc. Efficient ray tracing of volume data. ACM
Transactions on Graphics, 9(3):245-261, July 1990.

[13] Meagher, Donald J. Efficient synthetic image generation of ar-
bitrary 3-D objects. In Proceeding of the IEEE Conference on
Pattern Recognition and Image Processing, 473-478, 1982.

[14] Novins, Kevin L., Francois X. Sillion, and Donald P. Green-
berg. An efficient method for volume rendering using perspec-

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

tive projection. Computer Graphics, 24(5):95-102, Novem-
ber 1990.

Porter, Thomas and Tom Duff. Compositing digital im-
ages. Proceedings of SIGGRAPH '84. Computer Graphics,
18(3):253-259, July 1984.

Sakas, Georgios and Matthias Gerth. Sampling and anti-
aliasing of discrete 3-D volume density textures. In Proceed-
ingsof Eurographics’ 91, 87-102, Vienna, Austria, September
1991.

Schroder, Peter and Gordon Stoll. Data parallel volume ren-
dering asline drawing. In Proceedings of the 1992 Workshop
on Volume Visualization, 25-32, Boston, October 1992.

Subramanian, K. R. and Donad S. Fussell. Applying space
subdivision techniques to volume rendering. In Proceedings
of isualization ' 90, 150-159, San Francisco, California, Oc-
tober 1990.

Vézina, Guy, Peter A. Fletcher, and Philip K. Robertson. Vol-
ume rendering on the MasPar MP-1. In 1992 Workshop on
Volume Misualization, 3-8, Boston, October 1992.

Westover, Lee. Footprint evauation for volume render-
ing. Proceedings of SIGGRAPH '90. Computer Graphics,
24(4):367-376, August 1990.

Wilhelms, Jane and Allen Van Gelder. Octrees for faster
isosurface generation. Computer Graphics, 24(5):57-62,
November 1990.

Yagel, Roni and Arie Kaufman. Template-based volume
viewing. In Eurographics 92, C-153-167, Cambridge, UK,
September 1992.

Zuiderveld, Karel J., Anton H.J. Koning, and Max A.
Viergever. Acceeration of ray-casting using 3D distance
transforms. In Proceedings of Visualization in Biomedical
Computing 1992, 324-335, Chapel Hill, North Carolina,
October 1992.

