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Abstract—In cybersecurity, Network Intrusion Detection Sys-
tems (NIDS) are essential for identifying and preventing ma-
licious activity within computer networks. Machine learning
algorithms have been widely applied to NIDS due to their
ability to identify complex patterns and anomalies in network
traffic. Improvements in the performance of an IDS can be
measured by increasing the Matthew Correlation Coefficient
(MCC), the reduction of False Alarm Rates (FARs), and the
maintenance of up-to-date signatures of the latest attacks to
maintain confidentiality, integrity, and availability of services.
Integrating machine learning with feature selection for IDSs can
help eliminate less important features until the optimal subset
of features is achieved, thus improving the NIDS.

In this research, we propose an approach for NIDS using
XGBoost, a popular gradient boosting algorithm, with Recursive
Feature Elimination (RFE) feature selection. We used the NSL-
KDD dataset, a benchmark dataset for evaluating NIDS, for
training and testing. Our empirical results show that XGBoost
with RFE outperforms other popular machine learning algo-
rithms for NIDS on this dataset, achieving the highest MCC for
detecting NSL-KDD dataset attacks of type DoS, Probe, U2R,
and R2L and very high classification time.

Index Terms—network intrusion detection; feature selection;
RFE ; XGBoost; recursive feature elimination; NSL-KDD.

I. INTRODUCTION

With the increasing reliance on technology in our
daily lives, cybersecurity has become a crucial aspect
of ensuring confidentiality, integrity, and availability
of information. Network Intrusion Detection Systems
(NIDS) (an application of anomaly detection [1], which in
machine learning, is the process of finding data patterns
(outcomes, values, or observations) that deviate from the
rest of the other observations or outcomes) are essential
for identifying and preventing attacks within computer
networks. Computer network attacks come in many
forms, including Denial of Service (DoS), Probe, User to
Root (U2R), and Remote to User (R2L). Denial of service
(DoS) is one of the most common attacks on network
resources that make services inaccessible to users [2].
Remote to User (R2L) is another computer attack where
attackers send packets to another computer or server over

a network without permission. User to Root (U2R) is a
third type of attack in which intruders access the network
resources as a normal user, and after several attempts,
they gain access as a potential root user. Probing is a
fourth type of computer attack in which the attackers scan
through network devices to check for weaknesses in the
network topology and then use them in the future for
illegal activities [3]. The most common types of probing
attacks are network scans, portsweep, ipsweep, and satan.
Traditional rule-based NIDS have proven insufficient in
detecting these attacks (DoS, Probe, U2R, and R2L), as
they often rely on known attack patterns, so machine
learning algorithms have been widely applied to NIDS due
to their ability to identify complex patterns and anomalies
in network traffic. In recent years, gradient boosting
algorithms, such as XGBoost [4], have become increasingly
popular in machine learning due to their ability to handle
missing values in datasets, the integration of regularization
techniques, their optimization for parallel and distributed
computing, optimized tree pruning, and a customizable
objective function, thereby making it outperform other
baseline and state-of-the-art machine learning algorithms
[5]. In this paper, we present an approach for NIDS using
XGBoost with Recursive Feature Elimination (RFE) for
feature selection. RFE is a feature selection technique
that recursively eliminates less important features until
the optimal subset of features is achieved. The NSL-KDD
dataset [6] was used for evaluation, and it contains attacks
such as DoS, R2L, U2R, and Probe, a benchmark dataset
for evaluating NIDS. Our goal can be stated as:

Goal: Evaluate the effectiveness of XGBoost with RFE in
detecting network intrusions and compare its performance
to other baseline and state-of-the-art machine learning
algorithms.

Numerous intrusion detection approaches rely on feature
selection, but many lack explicit discussions on complexity
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and time consumption, often rendering them impractical
for real-world applications due to potential inefficiencies.
This prompts our proposal for a rapid, efficient, and
straightforward intrusion detection solution that leverages
Recursive Feature Elimination (RFE) to identify the most
impactful features, ensuring both speed and effectiveness
in real-world scenarios.

Main Contributions: The main contributions of this
research include:

• An intrusion detection framework that uses a two-layer
ensemble learning (combining RFE with XGBoost) to
improve current intrusion detection solutions.

• An expansion of the dataset’s feature set by incor-
porating over 78 new features in the NSL-KDD for
the purpose of testing and evaluating the proposed
framework.

• Improvements to the overall speed of detection.
• Evidence of model performance improvements

through statistical tests.
• Improvements to detection capabilities on selected

attack types when compared to other models and
benchmarks in related work.

This paper presents experimental results, showing that
XGBoost with RFE outperforms other popular machine
learning algorithms for NIDS on the NSL-KDD dataset,
achieving the highest MCC for detecting NSL-KDD dataset
attacks of type DoS, Probe, U2R, and R2L. This approach
also achieved high precision, recall, ROC AUC, F1-score
values, and low False Alarm Rate (FAR), indicating its
effectiveness in detecting network intrusions. Overall, our
empirical results demonstrate the potential of XGBoost with
RFE for NIDS and provide valuable insights for future
research in this field.

The rest of this paper is organized as follows. Section II
discusses related work. Section III presents our proposed
approach, including phases such as data set description,
preprocessing, feature selection, and classification model.
The experimental results are presented in Section IV, and
Section V concludes the paper describing possible future
work.

II. RELATED WORK

Several studies have explored the application of data min-
ing, statistics and machine learning algorithms for network
intrusion detection, including gradient boosting algorithms
like XGBoost and feature selection techniques like RFE.

Alkasassbeh and Almseidin [3] used three machine learn-
ing methods (J48, MLP and Bayes Network classifiers) on
the KDD dataset [7] for detecting and classifying attacks
such as DoS, R2L, U2R, and Probe, with the J48 classifier
achieving the highest accuracy.

In [8], Farnaaz and Jabbar proposed a detection intrusion
system using a random forest with feature subset selection
method called symmetrical uncertainty. Experimental re-
sults were conducted on the NSL-KDD dataset [6]. Empir-

ical results show that the proposed model achieved a low
FAR and high recall.

Recently feature selection has been applied to combine
machine learning techniques for intrusion detection. A
study by Meftah et al. [9] applied RFE and random forests as
feature selection methods to the UNSW-NB15 dataset [10],
then apply machine learning techniques such as Logistic
Regression, Gradient Boost Machine, and Support Vector
Machines. Similarly other papers such as; Elmasey et al.
[11], Network Harmad et al. [12],Sharma et al. [13], Kunhare
et al. [14], Mohammed et al. [15], Saheed et al. [16],Souza
et al. [17], Zhang et al. [18], Wang et al. [19], Aljawarneh et
al. [20] and Louk et al. [21] both applied feature selection
methods together with machine learning techniques for
network intrusion detection systems. These papers compare
machine learning algorithms with feature selection without
the use of statistical methods for choosing their final model
and time-consuming issues in their work. To overcome
these drawbacks in the models listed in the related works,
one can look at the statistical significance tests to compare
the performance of machine-learning models and quantify
the likelihood of the samples of performance scores being
observed, given the assumption that they were drawn from
the same distribution and classification time of each ma-
chine learning model. There are also other limitations in
the related works; for example, lack of good preprocessing
of the NSL-KDD dataset for the categorical features such as
protocol_type (3 types), service (70 types), flag (11 types),
and label (23 types), a lack of evaluation techniques for
these machine learning techniques due to the high level of
imbalances in the class labels.

Overall, these studies demonstrate the effectiveness of
machine learning and feature selection for network intru-
sion detection. Our study builds on these papers to extend
the work of Farnaaz et al. [8], Souza et al. [17], Louk et
al. [21] on intrusion detection and the above-mentioned
limitations by applying XGBoost with RFE to the NSL-
KDD dataset and achieving a high MCC. By combining
XGBoost with RFE, additional evaluation techniques for
class imbalances, classification time of each attack, and
statistical inference, we could identify the essential features
of our model and achieve high performance in detecting
network intrusions.

III. PROPOSED APPROACH: XGBOOST WITH RFE

The proposed approach to test the effectiveness of
XGBoost with RFE in a network intrusion detection system
has seven steps described herein and shown in Fig. 1.

XGBoost with RFE
Step 1: Read NSL-KDD dataset.
Step 2: Preprocess data.
Step 3: Apply recursive feature elimination.
Step 4: Give XGBoost the select features for training.
Step 5: Find the attack type and classes.
Step 6: Evaluate the model performance using detection



rate, false alarm, Matthews correlation coefficient, F1 score,
the area under the curve of the receiver operating curve,
and precision on the KDDTest dataset.
Step 7: Statistical Evaluation

Training Label

Testing Data

Training Data

Numericalization

Normalization

Feature Selection using
Recursive Feature Elimination

Run XGBoost Classifier

Evaluation of model using DR,
FAR, MCC, ROC, F1 score and

Precision

Preprocessing

Detection and Classification of
attacks

Step 2

Step 3

Step 4

Step 5

Step 6

Step 1

Statistical Evaluation Step 7

Fig. 1. Flow chart of proposed model approach where the rectangles
represent the model’s processes, cylinders represent stored data, the
trapezoid represents the stored training labels (Normal, DoS, Probe, R2L,
and U2L), and the arrows the direction of flow.

A. Dataset Description (step 1)

The NSL-KDD dataset is an improved version of the
KDD99 dataset, in which a large amount of data redun-
dancy has been removed [24]. This dataset has the same
attributes as the KDD99 having 41 features that are labeled
into either normal or one of four attack categories such as
DoS, Probe, U2R, and R2. The NSL-KDD dataset repository
has two files; KDDTrain.txt and KDDTest.txt. Training is
performed on the KDDTrain data, which has 23 attack types,
and testing is performed on KDDTest data with 38 (15
additional) attack types, all grouped into the four attack
categories. Table I shows the attack types, attack categories
(classes), and number of data points per category in the
NSL-KDD train and test datasets. The NSL-KDD dataset has
125973 data points in the training dataset and 22544 in the
testing dataset.

Our proposed approach is also capable of detecting the
15 unknown attacks in the test dataset.

TABLE I
THE ATTACK CATEGORY(CLASS), THE NUMBER OF RECORDS IN THE NSL-KDD

TRAINING AND TESTING DATASETS, AND A SUBSET OF EXAMPLES FOR EACH

ATTACK CATEGORY (ATTACK TYPES)

Attack Class
No. of records

Attack Types
Training Testing

Normal 67, 343 9,711 Normal traffic data

DoS 45,927 7, 460

Worm, Land, Smurf, Udpstorm,
Teardrop, Pod, Mailbomb,

Neptune, Process table,
Apache2, Back

Probe 11, 656 2, 421
Ipsweep, Nmap, Satan

Portsweep, Mscan, Saint

R2L 995 2, 885

WarezClient, Worm,
SnmpGetAttack, WarezMaster,

Imap, SnmpGuess, Named,
MultiHop, Phf, SPy, Sendmail,

Ftp_Write, Xsnoop, Xlock,
Guess_Password

U2R 52 67
Buffer_Overflow, SQLattack,

Rootkit, Perl, Xterm,
LoadModule, Ps, Httptuneel

B. Data Preprocessing (step 2)

The primary goal of data preprocessing is to improve
the quality of the data, making it easier to work with and
enabling more accurate and efficient results for machine
learning algorithms [25].

1) Numericalization: Numericalization converts non-
numeric data, such as text or categorical variables,
into a numerical format that can be used as input for
machine learning algorithms, statistical analysis, or other
computational methods. Machine learning algorithms and
many statistical methods primarily work with numerical
data, so it is essential to represent non-numeric information
in a format that these algorithms can understand and
process. It is important to note that although the labels
of a category are now represented by numbers, the data
in it of itself remains categorical and the numbers do not
represent ordinal, interval or ratio scales. The NSL-KDD
dataset has 41 features, where each feature represents
an attack type as described in Section III-A and attack
category (class feature). These features are both numeric
(38 features) and categorical (3) features. The categorical
features are protocol_type (3 types), service (70 types),
and flag (11 types) that need to be converted to numeric
features. Label encoding is then used to assign each unique
type in a categorical variable a distinct integer value. After
applying label encoding, one-hot encoding is used in
creating binary (0 or 1) features for each unique type in
a categorical variable. The attack category (class) feature
is also labeled with a numeric type, starting with Normal
labeled as 0, DoS labeled as 1, Probe labeled as 2, R2L
labeled as 3, and U2R labeled as 4. We further converted
the different attack categories to bit form and used 10000
for Normal, 01000 for DoS, 00100 for Probe, 00010 for R2L,
and 00001 for R2L. After numericalization, we are left with



122 features and one categorical class feature.

2) Normalization (step 2): Normalization is a technique
used to scale numerical features in a dataset to a standard
range, typically [0, 1] or [-1, 1]. Normalization aims to bring
different features onto a similar scale, making it easier
for machine learning algorithms to process the data and
reducing the risk of certain features dominating the model
due to their larger numerical values. There are several
methods for normalization, two of the most common
being Min-Max Scaling and Z-score Standardization. In our
proposed approach, the Z-score standardization, which
scales the value of the entire feature, is used. In Z-score
standardization, the average µ of each numerical feature is
calculated and then subtracted from the feature value x.
The subtracted average and feature x are then divided by
the standard deviation σ as shown in the formula:

Xi = x −µ

σ

C. Feature Selection (step 3)

This is a machine learning process that involves selecting
a subset of the most relevant and informative features from
a dataset’s original set of features. The goal of feature se-
lection is to improve machine learning model performance,
interpretability, and generalization of machine learning
models by reducing noise, overfitting, and computational
complexity. There are three main categories of feature
selection techniques; Filter methods, Wrapper methods,
and Embedded methods [26]. After numericalization, the
NSL-KDD has 122 features, which are not all required for
the network intrusion detection system. Essential features
are selected using a wrapper feature selection method
called recursive feature elimination, which considers the
interaction between features and their contribution to the
specific model being used. Using recursive feature elimina-
tion, the most relevant features in the dataset are identified
iteratively, training the classifier model and eliminating the
least important features.

After applying recursive feature elimination, 45 out
of 122 features are selected for each of the four attack
categories. It is important to note that a feature can be
selected in more than one attack category.

D. Extreme Gradient Boosting (XGBoost) (step 4)

Extreme Gradient Boosting [27], or XGBoost, is a scalable,
high-performance implementation of the gradient boosting
algorithm, a popular ensemble learning method. Gradient
boosting combines weak learners, typically decision trees,
iteratively to create a robust model that minimizes pre-
diction error. XGBoost has several advantages, including
speed, parallelization, regularization, handling of missing
data, customizable loss functions, ability to handle im-
balance classes in the data and built-in cross-validation.
The selected features for the different attacks are then

applied to the XGBoost classifier. During this process, the
XGBoost classifier learns to distinguish between normal
traffic and various types of attacks based on the features
extracted from the NSL-KDD train and because of the above
mentioned advantages, XGBoost with RFE can improve the
detection time, MCC and FAR.

E. Detection and Classification (step 5)

Detection and classification of attacks in network
intrusion detection systems involve identifying the attack
categories on the NSL-KDD Test using the trained XGBoost
model.

F. Model Evaluation (step 6)

Once the XGBoost classifier is trained using the NSL-
KDDTrain dataset, it is evaluated using NSL-KDDTest
dataset. The performance of the XGBoost classifier is eval-
uated using detection rate (DR), false alarm rate (FAR),
Matthews correlation coefficient (MCC), F1 score, ROC
AUC, and precision metrics. These performance metrics are
calculated using True Positive (TP), False Negative (FN),
False Positive (FP) and True Negative (TN) as shown in the
confusion matrix [22] in Table II.

• Detection Rate (DR): It is the ratio between the total
number of attacks detected by the NIDS to the total
number attacks present in the dataset [8] which can
be calculated using the formula:

DR = T P

T P +F N

• Precision: This measures the fraction of examples
predicted as attacks that turned out to be attacks
which can be calculated using the formula:

Precision = T P

T P +F P

• F1 Score: It is the harmonic mean of the fraction of
examples predicted as attacks that turned out to be
attacks (precision). It can also be described as the
ratio between the total number of attacks detected by
the NIDS to the total number of attacks present in the
dataset (detection rate) which can be calculated using
the formula:

F1 Score = 2∗T P

2∗T P +F N +F P

• False Alarm Rate (FAR): It is the fraction of non
attacks that are misclassified as attacks which can be
calculated using the formula:

F AR = F P

F P +T N

• Matthews correlation coefficient (MCC): It is defined
as the Pearson product-moment correlation coefficient
using the confusion matrix in Table II between the
actual attacks and predicted attacks [23] which can



be calculated using the formula below. MCC ranges
between [−1,+1], where −1 corresponds to the worst
overall system performance and 1 corresponds to
the best overall system performance. A high MCC
score indicates that the binary classifier was able to
correctly predict the majority of the attacks and the
majority of non-attacks.

MCC = T N ∗T P −F N ∗F Pp
(F P +T P )(F N +T P )(T N +F P )(T N +F N )

• Receiver Operating Characteristic (ROC) Curve:
The Receiver Operating Characteristic (ROC) curve
is a graphical representation used to evaluate the
performance of binary classification models in
machine learning. It is created by plotting the ratio
between the total number of attacks detected by
the NIDS to the total number of attacks present in
the dataset (detection rate) against the fraction of
non-attacks that are misclassified as attacks (False
Alarm Rate) at various classification threshold levels.
The area under the curve (AUC) of the ROC quantifies
the overall performance of the classification model.
AUC values range from 0 to 1, with a value of 0.5
representing a random classifier and a value of 1
indicating a perfect classifier. A higher AUC value
suggests a better-performing classification model.

A good NIDS should have high detection rates, preci-
sion, MCC, ROC AUC, F1 score but low FAR.

TABLE II
CONFUSION MATRIX: A CONTINGENCY CONTAINING FOUR METRICS, TRUE

POSITIVE ( TP), TRUE NEGATIVE ( TN), FALSE POSITIVE (FP), AND FALSE

NEGATIVE (FN).

Attack
Predicted Class
Yes No

Actual
class

Yes TP FN
No FP TN

G. Statistical Evaluation (step 7)

We use the two-sample t-test to determine the statistical
significance of our proposed approach. The two-sample t-
test, also known as the independent samples t-test or un-
paired t-test, is a statistical hypothesis test used to compare
the means of two independent groups to determine if there
is a significant difference between them. The test assumes
that the data is normally distributed and the variances
of the two groups are equal (although modifications are
available if this assumption does not hold). To compare the
performance of our proposed approach against the Random
Forest and Decision Tree approaches, we used a two-
sample t-test to test whether there is a significant difference
between the mean performances of DR, FAR, MCC, F1

score, ROC AUC, and precision. The null hypothesis (H0)
for the two-sample t-test states that there is no significant
difference between the mean performances of the two

models. In contrast, the alternative hypothesis (H1) states a
significant difference, unlikely to have occurred by chance,
between the mean performances of the two models.

IV. EXPERIMENTAL RESULTS

All experiments were performed in Python using default
parameters for XGBoost library, Random Forest (Sklearn)
and Decision Trees (Sklearn) using Intel(R) Core(TM) i7-
10510U CPU @ 1.80GHz 2.30GHz processor with 16gb
RAM. Training and testing of XGBoost, Random Forest and
Decision Tree algorithm were performed on 122 features
and the XGBoost model on the 45 selected features from the
NSL-KDD dataset. Ten StratifiedKFold cross-validation was
adopted during the training and testing of the classifiers
to check if the classifiers were not overfitting on both
the training and testing. However, the evaluation of the
proposed approach was done only on the test dataset by
finding the average and standard deviation of the DR, F1

score, ROC AUC, precision, FAR, and MCC metrics. The
performance of our proposed approach is shown in last row
of Table IV. It is evident from Table IV that our proposed
approach have high MCC, precision, ROC AUC, and low
FAR.

To compare the differences of our proposed approach
(XGBoost with RFE) against Random Forest and Decision
Tree, we executed a two-sample t-test (checks for normality
and equal variance assumptions were valid) [28]. Table V
compares XGBoost with RFE) against the Random Forest
and Decision Tree algorithms on various metrics and attack
types with significant values depicted in sky blue. From
Table V, comparing XGBoost with RFE against the Random
Forest, we can see that the p-values of the test for MCC (for
the U2R attack type ) and FAR (for the R2L attack type) are
significant at α = 0.05. Similarly, comparing XGBoost with
RFE against the Decision Tree, we can see that the p-values
of the test for MCC (U2R attack type), FAR (R2L attack type),
ROCAUC (for the U2R attack type), and precision (U2R
attack type) are significant at α = 0.05. Also, from Table V
comparing XGBoost with RFE against the XGBoost, we can
see that the p-value of the test for FAR (R2L attack type)
is significant at α = 0.05. We can statistically confirm that
our proposed approach (XGBoost with RFE) outperforms
Random Forest (on MCC and FAR) and Decision Tree (on
MCC, FAR, ROC AUC, and precision).

The last row of Table III shows the approximate run
time for the intrusion to be classified as DoS, Probe,
R2L, and U2R. From this, it can be identified that the
classification time displayed is linear, which proves our
proposed approach’s scalability. Overall, the proposed ap-
proach has a classification time of 0.009 milliseconds for
Dos, 0.020 milliseconds for Probe, 0.024 milliseconds for
R2L, and 0.655 milliseconds for U2R, which all the models
in the related works fail to mention. It is worth noting
that the run time of Random Forest and Decision Tree
looks better than our proposed approach because there are
inherently parallel algorithms compared to XGBoost, which



is a sequential algorithm, and since all the run times in III
are approximately linear, XGBoost with REF is significantly
excellent at classifying Dos, Probe, R2L, and U2R.

Hence, from the results shown in our experiments, we
can conclude that XGBoost with RFE for NIDS is valuable
in cybersecurity.

A. Discussion of Results

In this paper, we investigated the effectiveness of us-
ing XGBoost with recursive feature elimination (RFE) for
network intrusion detection. Our primary goal was to em-
pirically determine whether combining XGBoost and RFE
could yield better detection rates than other methods while
reducing false positives and negatives. We employed a
comprehensive methodology, analyzing a diverse network
traffic dataset, and evaluated our model using several per-
formance metrics, variability of the performance metrics
(standard deviation), and classification time of the attack
types. Our results indicate that the XGBoost model with
RFE achieved a high level of performance in terms of
precision, DR, F1 score, MCC, and ROC AUC. This per-
formance indicates that the model can accurately detect
network intrusions while maintaining a low false alarms
rate (FAR), classification time and low variability (standard
deviation) for all the performance metrics. Our approach
improved detection capabilities on selected attack types
when compared to other models and benchmarks in related
work. The RFE process identified several key features highly
relevant to network intrusion detection. These features align
with our expectations and prior research [15], [17] and [19],
confirming the importance of specific traffic characteristics
in detecting malicious activities. The combination of XG-
Boost and RFE not only improved the model’s performance
but also improves the detection speed and reduces the
complexity of the model by eliminating redundant and
irrelevant features as compared to related works that focus
on network intrusion detection as shown in Table VI.

The practical implications of our findings are significant
for the field of network intrusion detection. The improved
detection rates and speed offered by our approach can help
security practitioners identify and respond to cyber threats
more effectively. Additionally, reducing false positives and
negatives can minimize the operational overhead of man-
ually investigating false alarms. Furthermore, our approach
demonstrates potential scalability and adaptability for dif-
ferent network environments and evolving cybersecurity
threats.

Despite these promising results, our study has some
limitations and threats to validity:

1) The dataset does not fully capture the diversity of net-
work traffic patterns and evolving attack techniques.
Future work could benefit from more recent and
diverse datasets to validate our approach. This is a
threat to the external validity of our work.

2) The XGBoost algorithm, while highly effective, may be
prone to overfitting and is often difficult to interpret.
Alternative methods, such as partial dependency plots
(PDPs), SHAP (SHapley Additive explanation), and
LIME (Local Additive Interpretable model-agnostic
explanations), could be investigated to address these
issues.

V. CONCLUSION AND FUTURE WORK

This paper presents XGBoost with RFE to detect four
types of attacks DoS, Probe, U2R, and R2L. We adopted ten
stratified k-fold cross-validations. Our proposed approach
is evaluated using the NSL-KDD dataset. We compared
our proposed method with XGBoost, Random Forest, and
Decision Tree using the following metrics: DR, F1 score,
ROC AUC, precision, FAR, and MCC. Because of the usage of
feature selection, the computational cost decreases, and our
experimental results indicate that our proposed approach
increases the DR, F1 score, ROC AUC, precision, MCC, and
decreases FAR, classification time, variability within all the
performance metrics for all of attacks. We equally compared
our proposed method against Random Forest and Decision
Tree for selected attack types using a two-sample t-test, and
found that our proposed approach (with fewer features) is
promising. Moreover, this model is compared with related
works that focus on network intrusion detection. The com-
parison results in Table VI showed that XGBoost with RFE
has better performance, and less classification time.

For future work, we will experiment with deep learning
approaches like GANs and autoencoders since they are ca-
pable of handling data of higher dimensions and to address
computationally expensive recursive feature elimination.

TABLE III
APPROXIMATE CLASSIFICATION TIME ON NSL-KDD TEST.

Classifier Attack type Time (Seconds)
DoS 170.3

XGBoost
(122 Features)

Probe 109.9

R2L 149.1
U2R 85.3
DoS 57.1

Random Forest
(122 Features)

Probe 36.4

R2L 44.1
U2R 37.4
DoS 8.4

Decision Tree
(122 Features)

Probe 3.8

R2L 6.0
U2R 3.3
DoS 68.1

XGBoost
(45 Features)

Probe 49.6

R2L 68.8
U2R 43.9



TABLE IV
PERFORMANCE MEASURE TOGETHER WITH STANDARD DEVIATION (STD) ON NSL-KDD TEST.

Classifier Attack type DR ± STD F1 Score ± STD ROC AUC ± STD Precision ± STD FAR ± STD MCC ± STD

DoS 0.99745 ± 0.00423 0.99745 ± 0.00294 0.99997 ± 0.00007 0.99812 ± 0.00215 0.00144± 0.00002 0.99609±0.00008
XGBoost

(122 Features)
Probe 0.99463 ± 0.00617 0.99547 ± 0.00481 0.99988± 0.00021 0.99633 ± 0.00426 0.00123± 0.00002 0.99096±0.00002

R2L 0.97792 ± 0.01218 0.97861 ± 0.01006 0.99914 ± 0.00079 0.97938 ± 0.01088 0.00916± 0.00002 0.95723±0.00001

U2R 0.90217± 0.13172 0.92916± 0.09870 0.99931 ± 0.00150 0.96790 ± 0.10148 0.00041±0.00004 0.86540± 0.00004

DoS 0.99705 ± 0.00335 0.99785 ± 0.00206 0.99989 ± 0.00054 0.99866 ± 0.00240 0.00103± 0.00003 0.99621±0.00009
Random Forest
(122 Features)

Probe 0.99365 ± 0.00588 0.99495 ± 0.00441 0.99986± 0.00026 0.99628 ± 0.00419 0.00113± 0.00001 0.98992±0.00002

R2L 0.97310 ± 0.01232 0.97419 ± 0.01065 0.99855 ± 0.00096 0.97532 ± 0.00974 0.01081± 0.00002 0.94841±0.00002

U2R 0.88064± 0.13087 0.90988± 0.09733 0.99943 ± 0.00162 0.95453 ± 0.11931 0.00062±0.00004 0.82417± 0.00002

DoS 0.99705 ± 0.00506 0.99585 ± 0.00368 0.99647 ± 0.00328 0.99466 ± 0.00505 0.00412± 0.00002 0.99266 ± 0.00002
Decision Tree
(122 Features)

Probe 0.99257 ± 0.00617 0.99303± 0.00645 0.99257± 0.00617 0.99349 ± 0.00695 0.00247± 0.00002 0.98606± 0.00003

R2L 0.96970± 0.01318 0.97052 ± 0.01466 0.97325 ± 0.01259 0.97139 ± 0.01720 0.01277± 0.00001 0.94101±0.00003

U2R 0.90979± 0.09227 0.89307± 0.07719 0.90979 ± 0.09227 0.88295 ± 0.11079 0.00185±0.00001 0.78490± 0.00003

DoS 0.99732 ± 0.00398 0.99725 ± 0.00243 0.99997 ± 0.00008 0.99719 ± 0.00279 0.00216± 0.00002 0.99514±0.00002
XGBoost with RFE

(45 Features.)
Probe 0.99443± 0.00594 0.99535± 0.00493 0.99985± 0.00022 0.99628 ± 0.00496 0.00123±0.00003 0.99070±0.00003

R2L 0.97606± 0.00899 0.97670 ± 0.00711 0.99893 ± 0.00130 0.97738 ± 0.00768 0.00009± 0.00007 0.95341±0.00002

U2R 0.89633± 0.12839 0.93216± 0.09260 0.99875 ± 0.00358 0.98095 ± 0.07407 0.00021± 0.00003 0.87232±0.00003

TABLE V
RESULTS OF TWO-SAMPLE T-TEST

COMPARING OUR PROPOSED APPROACH (XGBOOST WITH RFE) AGAINST DECISION TREE, RANDOM FOREST, AND XGBOOST

Comparison Evaluation metric (Attack Type) Test Statistic Hypothesis (α= 0.05) p-value

MCC (U2R) 18.93 Rejected <0.001
XGBoost with RFE vs. Decision Tree

with significant values highlighted in table IV
FAR (R2L) 134.65 Rejected < 0.001

ROC AUC (U2R) 28.42 Rejected < 0.001

Precision (U2R) 2.3 Rejected 0.031941

MCC (U2R) 3.72 Rejected 0.00154
XGBoost with RFE vs. Random Forest

with significant values highlighted in table IV
FAR (R2L) 37.99 Rejected < 0.001

XGBoost with RFE vs. XGBoost
with significant values highlighted in table IV

FAR (R2L) 393.98 Rejected < 0.001

TABLE VI
COMPARISON WITH OTHER NETWORK INTRUSION DETECTION METHODS.

Method Attack type FAR ROC AUC MCC Speed Statistical Test Complexity

DoS Low Not Mentioned High Not Mentioned Not Mentioned Medium

Farnaaz et al. [8] Probe Low Not Mentioned High Not Mentioned Not Mentioned Medium

R2L Low Not Mentioned High Not Mentioned Not Mentioned Medium

U2R Low Not Mentioned High Not Mentioned Not Mentioned Medium

DoS Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

Souza et al. [17] Probe Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

R2L Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

U2R Not Mentioned High Not Mentioned Not Mentioned Not Mentioned Medium

DoS Not Mentioned Not Mentioned High Not Mentioned Included Not Mentioned

Louk et al. [21] Probe Not Mentioned Not Mentioned High Not mentioned Included Not Mentioned

R2L Not Mentioned Not Mentioned High Not Mentioned Included Not Mentioned

U2R Not Mentioned Not Mentioned High Not Mentioned Included Not Mentioned

DoS Very Low High High Very High Included Medium

Proposed Approach Probe Very Low High High Very High Included Medium

R2L Very Low High High Very High Included Medium

U2R Very Low High High Very High Included Medium
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