
DICTIONARY LEARNING ON GRAPH DATA WITH WEISFIELER-LEHMAN SUB-TREE
KERNEL AND KSVD

Kaveen Liyanage⋆, Reese Pearsall†, Clemente Izurieta†, Bradley M. Whitaker⋆

⋆Electrical and Computer Engineering
† Gianforte School of Computing

Montana State University
Bozeman, MT, USA

ABSTRACT

Graph representation has gained wide popularity as a data
representation method in many applications. Graph embed-
ding methods convert graphs to a vector representation and
are an important part of a data processing pipeline. In this
paper, we utilize sparse dictionary learning techniques as a
graph embedding solution. Sparse representation has no-
table applications in signal image processing. Inspired by
the Graph2Vec algorithm, we aim to modify the Doc2Vec
model training portion of the Graph2Vec by incorporating
unsupervised dictionary learning. We investigate the viability
of using the sparse dictionary learning technique KSVD for
graph data. We train the dictionary on Weisfeiler-Lehman
graph sub-tree kernel features. Furthermore, we use graph-
based labeled data sets to compare classification results with
several existing graph embedding methods. Findings show
that using the learned sparse coefficients as features for a
supervised machine learning algorithm provides on-par clas-
sification results when compared to other graph embedding
methods.

Index Terms— Sparse representation, Dictionary Learn-
ing, Graph embedding, KSVD

1. INTRODUCTION

Graph data is usually highly dimensional and defined in a
non-euclidean form. Hence, typical processing methods de-
fined on euclidean spaces cannot be used on graph data.
Graph embedding methods convert the graph data into a
vector representation while trying to preserve original graph
properties [1].Graph embedding methods can be classified
as node embedding, edge embedding, hybrid embedding,
and whole graph embedding. In literature, a distinction is
made between graph representation learning and graph em-
bedding [1, 2], where graph representation does not require

This research was conducted with the U.S. Department of Homeland
Security (DHS) Science and Technology Directorate (S&T) under contract
70RSAT22CB0000005. Any opinions contained herein are those of the au-
thors and do not necessarily reflect those of DHS S&T.

the final vector to be low-dimensional. In this paper, we focus
on whole graph embedding, where each entire graph is repre-
sented as a vector [3]. The vector representation can be used
to compare graph similarity for important tasks, including
classification and clustering. The main challenges in whole
graph embedding are how to capture the properties of a whole
graph and how to make a trade-off between expressiveness
and efficiency [1]. Several methods have been proposed for
whole graph embedding, including matrix factorization, deep
learning, edge reconstruction, graph kernel, and generative
models [1, 3].

Graph2Vec is a popular neural network-based architecture
for graph embedding [4]. Some advantages of Graph2Vec are
that the model is trained in an unsupervised manner, the
learned model is task agnostic, the algorithm is data-driven,
and resulting vectors capture structural equivalences. An
overview of the implementation of the Grap2Vec is shown in
Fig. 1, which consists of two procedures. First, a vocabulary
of sub-tree structures is generated using a Weisfeiler-Lehman
(WL) sub-tree kernel and a Doc2Vec model is trained on the
selected vocabulary. Graph2Vec utilizes the non-linear WL
kernel, which is shown to outperform other linear kernels [5].
WL kernel is used to rename the nodes using a hash value that
represents a rooted sub-graph on the given node. These sets
of node names are viewed as a set of words in a document.
The techniques from the Natural language processing (NLP)
domain are borrowed for learning an embedding. Doc2Vec
is based on Word2Vec [6], in which a feed-forward neural
network(NN) “SkipGram” model with negative sampling is
used to learn a representation of word sequences [7]. Using
the SkipGram model, the nodes with similar neighborhoods
are embedded closer together [8]. The Graph2Vec is imple-
mented in the “KarateClub” python package [9]1.

Some disadvantages of Graph2Vec are the nonlinearity of
the learned embedding and the generated sub-tree structures.
Due to the nonlinearity, it is difficult to identify which sub-
tree structures are contributing to the similarities and differ-
ences among graphs. Hence, we propose a linear representa-

1https://karateclub.readthedocs.io/en/latest/

Fig. 1. Graph2Vec pipeline overview

Fig. 2. Proposed WL+KSVD pipeline overview

tion model to replace the Doc2Vec NN architecture. Further,
the SkipGram model is capable of embedding only a single
node, rather than node combinations. In addition, the Skip-
Gram model considers the neighborhood of the nodes, which
depends on an arbitrary node numbering scheme that may not
generalize between graphs in a given application.

Sparse representation is a technique used to learn a dic-
tionary that lies in the original feature domain and calculate
a representation using a linear combination of a few dictio-
nary elements (atoms) [10]. The main advantages of using
sparse representation are linearity and sparsity: the learned
embedding consists of linear combinations of sub-tree struc-
tures; sparse representations allow using low-order classifica-
tion models due to the low VC dimension [11]. Sparse rep-
resentation was introduced in the signal and image process-
ing domains and recently it has been utilized in graph-related
processes. Several methods have been proposed to represent
graph signals on a fixed graph topology with sparse represen-
tations with theoretical guarantees [12]. Recent work by Mat-
suo et al. [13] develops a method to represent different net-
work topologies with sparse representation. However, their
work is still limited by requiring graphs to be undirected and
requiring all topologies to have the same number of nodes.

Fig. 3. Evaluation Workflow

To address the shortcomings in sparse vector-based graph
representations, we introduce a framework to incorporate WL
sub-tree kernel with sparse representation methods specifi-
cally aimed at machine learning classification tasks. Our
framework allows sparse representation to be applied to
graphs with different topologies and different numbers of
nodes. In addition, the input graphs can be directed and
can incorporate node features. An overview of the proposed
WL+KSVD pipeline is shown in Fig. 2. The proposed
method has the flexibility to swap different dictionary learn-
ing and graph kernel methods in the framework. The method
is tested against several similar graph embedding methods
with benchmark datasets. Finally, the python implementation
of the framework and the experiments are currently available
on Github2.

2. METHODOLOGY

An overview of the workflow of the proposed method is
shown in Fig. 3, where the training set is further divided in
half into embedding training and classifier training to avoid
overfitting.

2.1. Graph Notation and Definition

Let a graph be defined as G = (V,E) which can be directed
or undirected with unweighted edges, where node vi ∈ V
and edge ei,j ∈ E connects vi and vj . Let the dataset be
a set of M graphs with different topology and nodes G =
[G1, G2, . . . , GM]. Following the Graph2Vec algorithm, ff

2https://github.com/BMW-lab-MSU/WL-KSVD.git

node labels are not provided the nodes will be initialized with
the degree of the node as its label. The degree of a node is
a count of the number of edges the node receives and sends.
We use the “NetworkX” python package as the graph data
structure 3.

2.2. Weisfeiler-Lehman sub-tree kernel

WL sub-tree relabelling process (described in [5]4) is used to
relabel the nodes with a unique hash value for the rooted sub-
tree structure. Note that the sub-tree structure learned is de-
terministic, so the same sub-tree structure in different graphs
will have the same hash value. For each Gi ∈ G, rooted sub-
trees sghi,j are learned for each vj ∈ Vi, where i is the graph,
j is the node and h is the WL rooted sub-tree depth. Now each
graph is a set of hash words Gi = [sgh1,i, sg

h
2,i, . . . , sg

h
l,i],

where li is the number of nodes in Gi.

2.3. Vocabulary Creation

Using the Doc2Vec implementation in Gensim python pack-
age 5 a raw vocabulary is created using the unique set of sub-
tree hash words sg across all the training graphs [7]. If the
raw vocabulary is too large it can be trimmed according to a
trim rule. In this work, we trim the vocabulary by selecting
the K highest frequency sub-tree hash words. Other possible
trimming rules are the highest likelihood, highest prior, etc.
Each graph Gi is then represented as the occurrences Yi of
the vocabulary elements, where Yi = [yi,1, . . . , yi,K] and yi,j
is the number of occurrences of vocabulary word j in graph
i. Now the dataset can be represented as a collection of fixed-
length vectors: Y = [Y1, Y 2, . . . , YM] ∈ RK×M .

2.4. Sparse Representation

Let Y = [Y1, Y2, . . . , YM] ∈ RK×M be a set of M input sig-
nals with fixed length K. Sparse representation attempts to
represent the input signal as a linear combination of elements
di ∈ RK in a dictionary D = [d1, d2, . . . , dN] ∈ RK×N

while limiting the number of atoms used to T (sparsity). The
sparse coefficient vector α = [α1, α2, . . . αM] ∈ RN×M will
be the sparse representation with |αi|0 ≤ T , where |.|0 opera-
tor counts the number of non-zero elements in the vector. The
general form of the sparse representation can be formulated
as:

argmin
D,α

||Y −Dα||22 + ||α||0. (1)

This optimization problem is NP-hard, but an approximate so-
lution can be provided using an iterative algorithm named K-
means Singular Value Decomposition (KSVD) [14] 6. First, a

3https://networkx.org/
4https://github.com/benedekrozemberczki/

karateclub/blob/master/karateclub/utils/
treefeatures.py

5https://radimrehurek.com/gensim/
6https://github.com/nel215/ksvd

dictionary D is fixed and sparse vectors α are optimized using
Orthogonal Matching Pursuit (OMP) [15]. Second, α is fixed
and the dictionary D is updated with a generalized K-means
algorithm. After many iterations, each graph is represented
as a fixed-length sparse vector. In addition, using the trained
dictionary, new graphs can be represented as sparse vectors.
It should be noted that the KSVD is known to have conver-
gence issues and newer methods have better performance and
convergence [16]. Since this paper is mainly focused on the
framework for using sparse coding for graph embedding. a
simpler well-known method (KSVD) was chosen to demon-
strate its viability.

3. EXPERIMENT

Several publicly available benchmark dataset were chosen
to compare the embedding performance, namely MUTAG
(MU), PTC, PROTEINS (PROT), NCI1, NCI109 [17]7. The
datasets were divided as 9 : 1 for training and testing with ran-
dom shuffling. Several graph embedding methods in Karate-
Club library are compared: Graph2Vec [4], GL2vec [18],
and SF [19]. The considered embedding dimensions are
N = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]. Default
settings for each embedding method are used to avoid bias
in training. In the proposed WL+KSVD method, the max
size of learned vocabulary is chosen as K <= 10000 and
the sparsity is chosen roughly as 10% of the dimensions,
T = ceil(N/10).

Several classification methods from the scikit-learn python
package are used to evaluate the performances of the embed-
ding methods [20]8. The classifiers were used with default
settings and without hyperparameter tuning for each method
to avoid bias in training and for easy comparison. The clas-
sifiers and settings use the sci-kit learn example for easy
recreation with 5 fold cross validation9.

4. RESULTS

Figure 4 shows the two-dimensional (N=2) embedding of the
MUTAG dataset with different graph embedding methods.
(Note that using N = 2 dimensions does not result in optimal
embeddings; this number is only chosen for demonstration
and the complete set of results is available in Github repo.)
The figure also shows several classifier methods evaluated on
the embedded data. It can be seen that the sparse coding limits
the data to a sparse domain in the final vector space.

Table 1 shows mean accuracy of the linear SVM cluster-
ing variation as a function of embedding dimension for each
embedding method. It can be observed that the proposed
method performs on par with Graph2Vec and GL2vec. SF

7https://chrsmrrs.github.io/datasets/docs/home/
8https://scikit-learn.org/
9https://scikit-learn.org/stable/auto_examples/

classification/plot_classifier_comparison.html

Fig. 4. Classification decision boundaries for MUTAG dataset with 2-dimensional embedding for four embedding algorithms
(Graph2Vec, GL2V, SF, and WL+KSVD). Sparse structure is clearly seen in the WL+KSVD embedding (bottom row).

Table 1. Linear SVM validation accuracy for various embedding dimensions using the MUTAG dataset
N= 2 4 8 16 32 64 128 256 512 1024 2048
G2V 0.665 0.665 0.654 0.643 0.643 0.675 0.675 0.659 0.664 0.685 0.686
GL2V 0.670 0.676 0.718 0.734 0.750 0.766 0.760 0.733 0.765 0.749 0.766
SF 0.724 0.788 0.824 0.840 0.835 0.835 0.835 0.835 0.835 0.835 0.835
WL+KSVD 0.665 0.665 0.665 0.687 0.756 0.766 0.787 0.756 0.745 0.724 0.713

Table 2. Linear SVM accuracy with N = 1024 embedding
MU PTC PROT NCI1 NCI109

G2V 68.55 55.23 67.30 59.30 56.46
±10.03 ±5.9 ±0.87 ±4.46 ±2.82

GL2V 74.92 52.04 69.09 64.52 62.98
±7.8 ±6.5 ±1.38 ±1.99 ±2.97

SF 83.47 57.59 70.98 61.90 61.96
±4.15 ±9.34 ±1.00 ±3.24 ±2.40

WL+ 72.38 54.36 64.60 64.16 62.93
KSVD ±3.20 ±2.31 ±2.00 ±2.19 ±0.24

methods have higher performance over all the dimensions for
the linear classifier. Table 2 shows the linear SVM mean
test accuracy and standard deviation (std) for the different
datasets with an embedding dimension of 1024. The pro-
posed WL+KSVD method has on-par performance with re-
spect to others with relatively low std. It should be noted that
the hyperparameters were not optimized for any method and
executed with default settings. Hence the actual optimal re-
sults are better. However, this analysis provides a baseline
comparison of the performance of the WL+KSVD method.

5. CONCLUSION

Sparse representation is a powerful tool in several signal-
processing application domains because of its ability to ex-
tract inherent features. We aim to expand sparse representa-

tion tools into graph processing domains. The WL+KSVD
framework is presented as an unsupervised whole graph
embedding method. The input graphs can be directed or dis-
connected and may have node labels. Through benchmark
datasets and several comparable graph embedding methods,
it was shown that the proposed method has on-par or better
performance in classification tasks. While the WL+KSVD
embedding method is non-reversible and some information is
lost in the vocabulary trimming process, this is not an issue
for ML tasks like classification and clustering.

The framework is flexible in that the WL sub-tree ker-
nel and the KSVD can be swapped with other graph kernels
and dictionary learning methods. Discriminatory dictionary
learning methods can be utilized to learn a more separable
representation in a supervised manner. Some of the dictio-
nary learning methods we plan to test are LC-KSVD [21] and
frozen dictionary learning [22]. Further, we plan to use im-
portant graph sub-tree structures using feature ranking met-
rics. Lastly, the linear nature of the proposed method allows
for the importance of sub-tree structures to be evaluated using
dictionary mapping and dictionary utilization [23].

6. REFERENCES

[1] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A compre-
hensive survey of graph embedding: Problems, tech-
niques, and applications,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 30, pp. 1616–1637, sep
2018.

[2] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and
K. Murphy, “Machine learning on graphs: A model and
comprehensive taxonomy,” Journal of Machine Learn-
ing Research, vol. 23, no. 89, pp. 1–64, 2022.

[3] L. Maddalena, I. Manipur, M. Manzo, and M. R. Guar-
racino, “On whole-graph embedding techniques,” in
Trends in Biomathematics: Chaos and Control in Epi-
demics, Ecosystems, and Cells, pp. 115–131, Springer
International Publishing, 2021.

[4] A. Narayanan, M. Chandramohan, R. Venkatesan,
L. Chen, Y. Liu, and S. Jaiswal, “graph2vec: Learning
distributed representations of graphs.” 13th International
Workshop on Mining and Learning with Graphs (ML-
GWorkshop 2017), 2017.

[5] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen,
K. Mehlhorn, and K. M. Borgwardt, “Weisfeiler-lehman
graph kernels.,” Journal of Machine Learning Research,
vol. 12, no. 9, 2011.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

[7] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in Proceedings of the 31st
International Conference on Machine Learning (E. P.
Xing and T. Jebara, eds.), vol. 32 of Proceedings of
Machine Learning Research, (Bejing, China), pp. 1188–
1196, PMLR, 22–24 Jun 2014.

[8] X. Rong, “word2vec parameter learning explained,”
arXiv preprint arXiv:1411.2738, 2014.

[9] B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate
Club: An API Oriented Open-source Python Frame-
work for Unsupervised Learning on Graphs,” in Pro-
ceedings of the 29th ACM International Conference on
Information and Knowledge Management (CIKM ’20),
p. 3125–3132, ACM, 2020.

[10] M. Elad, Sparse and Redundant Representations.
Springer New York, 2010.

[11] T. Neylon, Sparse Solutions for Linear Prediction Prob-
lems. PhD thesis, New York University, USA, 2006.
AAI3221982.

[12] Y. Yankelevsky and M. Elad, “Finding GEMS: Multi-
scale dictionaries for high-dimensional graph signals,”
IEEE Transactions on Signal Processing, vol. 67,
pp. 1889–1901, apr 2019.

[13] R. Matsuo, R. Nakamura, and H. Ohsaki, “Sparse repre-
sentation of network topology with k-SVD algorithm,”
in 2019 IEEE 43rd Annual Computer Software and Ap-
plications Conference (COMPSAC), IEEE, jul 2019.

[14] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An
algorithm for designing overcomplete dictionaries for
sparse representation,” IEEE Transactions on Signal
Processing, vol. 54, pp. 4311–4322, Nov. 2006.

[15] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogo-
nal matching pursuit: recursive function approximation
with applications to wavelet decomposition,” in Pro-
ceedings of 27th Asilomar Conference on Signals, Sys-
tems and Computers, IEEE Comput. Soc. Press, 1993.

[16] C. Bao, H. Ji, Y. Quan, and Z. Shen, “Dictionary learn-
ing for sparse coding: Algorithms and convergence
analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 38, pp. 1356–1369, jul 2016.

[17] C. Morris, G. Rattan, and P. Mutzel, “Weisfeiler and
leman go sparse: Towards scalable higher-order graph
embeddings,” in Advances in Neural Information Pro-
cessing Systems (H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, eds.), vol. 33, pp. 21824–21840,
Curran Associates, Inc., 2020.

[18] H. Chen and H. Koga, “GL2vec: Graph embedding en-
riched by line graphs with edge features,” in Neural In-
formation Processing, pp. 3–14, Springer International
Publishing, 2019.

[19] N. de Lara and E. Pineau, “A simple baseline
algorithm for graph classification,” arXiv preprint
arXiv:1810.09155, 2018.

[20] L. Buitinck and et. el., “API design for machine learning
software: experiences from the scikit-learn project,” in
ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, pp. 108–122, 2013.

[21] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent k-
SVD: Learning a discriminative dictionary for recogni-
tion,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 35, pp. 2651–2664, nov 2013.

[22] B. T. Carroll, B. M. Whitaker, W. Dayley, and D. V. An-
derson, “Outlier learning via augmented frozen dictio-
naries,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 25, pp. 1207–1215, jun 2017.

[23] K. Liyanage and B. M. Whitaker, “Feature analysis
in satellite image classification using LC-KSVD and
frozen dictionary learning,” in 2022 Intermountain En-
gineering, Technology and Computing (IETC), IEEE,
may 2022.

