
Membership and Participation
in Object Oriented and Procedural Paradigms

Grant Nelson
Gianforte School of Computing

Montana State University
Bozeman, USA

grant.nelson@student.montana.edu

Clemente Izurieta
Gianforte School of Computing

Montana State University
Pacific Northwest National Laboratory

Idaho National Laboratory
Bozeman, USA

clemente.izurieta@montana.edu

Derek Reimanis
Gianforte School of Computing

Montana State University
Bozeman, USA

derekreimanis@montana.edu

Abstract—Analyzing technical debt (TD) periodically with soft-
ware tools is an important activity to help mitigate maintenance
issues and sustain high levels of quality in software. Software
written in Object Oriented languages (OO) have more dedicated
TD analysis tools than software written in Procedural languages
(PL) since many of the analysis techniques describe metrics
that implicitly use a method’s membership to a class in their
calculations. The research described in this paper provides the
conceptual foundation for using a membership matrix (used
in current TD analysis techniques) and a participation matrix
in TD analysis. Our early-stage research work proposes the
participation matrix as a superset of the membership matrix
and defines the mathematical requirements that must be met by
a participation matrix constructed by any procedure. The par-
ticipation matrix is defined as a fuzzy estimate of memberships
and can be used to leverage TD analysis designed for OO to
analyze PL programs. The operational implications of this work
can allow practitioners to significantly benefit from improved TD
tools that are also available in PL software.

Index Terms—software maintenance, technical debt, member-
ship, participation, object oriented, procedural, design recovery

I. INTRODUCTION

High-level programming languages can be classified by
many different paradigms. Two common paradigms are Object
Oriented languages (OO) and Procedural languages (PL). OO
is usually focused on objects or classes which encapsulate data
and methods. These are languages like C++, C#, and Java. PL
is focused on procedures and functions which act on data that
can be grouped into objects or records. These are languages
like C, Pascal, and Go.

Regardless of the paradigm, Technical Debt (TD) will
build up in a program. TD slows down development and
makes future changes more complicated [1]. To help mitigate
(paydown and reduce) TD, developers need to maintain the
software and need to determine which parts of the program
require attention. Many programmatic TD analysis tools have
been created to assist developers with locating, prioritizing,
and mitigating TD.

Unsurprisingly, practitioners prefer automated tools, i.e. that
run on a computer without human interaction, so that devel-
opers can obtain feedback easily as part of the development

cycle. Many companies will use tools such as CodeScene
and SonarQube as part of automated testing such as CI/CD
pipelines or GitHub Actions. This allows Quality Assurance,
Release Management, and other practitioners to periodically
receive code health scores, which may include results from
TD analysis.

Nelson and Izurieta [2] found that analysis tools for PL
have not kept up with OO analysis tools. Nelson and Izurieta
discuss complications that make the analysis of PL not triv-
ial, specifically the difficulty with determining patterns and
heuristics of objects in a PL program. This is caused by the
difficulty to determine which function is associated with an
object. In this paper, we provide the foundation to tackle this
challenge by defining a participation matrix.

Less detailed TD analysis tools for PL mean that companies
and practitioners using PL currently do not have the same
development feedback and support as they do with OO. The
lack of reported TD issues does not mean a lack of TD issues
that need to be mitigated. Providing analysis tools that analyze
PL programs is just as important to practitioners as tools that
analyze OO programs.

For simplicity, we refer to functions, procedures, and meth-
ods, as methods. We also refer to objects, structures, records,
and classes, as classes. The majority of the distinctions are
irrelevant to this research and any salient differences will be
highlighted.

The goal of this paper is to provide the conceptual foun-
dation for an approach to determine the methods that are
associated with their corresponding classes such that exist-
ing TD tools can be adapted to analyze PL programs. The
approach described herein defines a participation matrix and
describes how classes participate in methods performing the
actions associated with said method.

To explain how the participation matrix can be leveraged by
TD tools, we first discuss using a membership matrix in sec-
tions III and IV. Then, in section V we discuss the new idea of
using a participation matrix in place of a membership matrix.
We then provide concluding remarks and a discussion, with
an outline of additional research regarding the participation
matrix in sections VI and VII.

II. RELATED WORK

To maintain and refactor PL programs [3]–[7], abstract
reusable components [5], and to migrate PL programs to OO
[8]–[12], classes with their related methods that had implicitly
been built using the PL paradigm needed to be identified.
The process of identifying classes in a PL paradigm is called
object identification and design recovery (DR). DR in these
related works is performed via clustering methods using a
mix of different metrics. The clusters define how to partition
the program into classes with related data and methods that
function together. In these related works, the identified classes
are used to either assist in manual maintenance, refactoring,
or perform a conversion, i.e. transformation or migration, with
minimal human interaction.

DR is related to participation as both utilize estimations of
methods’ membership to classes abstracted from programs that
do not necessarily and explicitly define membership. Many of
the DR metrics discussed in these related papers are different
ways to determine related methods based on shared data. In
other words, how classes (as groups of data) participate in
methods performing their functions. The difference between
DR and participation comes from how the membership es-
timations are used. DR uses the estimates in clustering and
partitioning to assign each method to the most related class.
Participation does not necessarily assign a method to a single
class but instead allows one or more class candidates to be
related to a method.

In several of these related works, DR requires manual input
of information or practitioner interactions to help guide the
identification and recovery. For participation to be program-
matically performed as part of automated testing, manual
interactions may not be used. However, since the goal of
participation is to be used in TD analysis, there is no need
for manual interactions to perform the analysis, instead inter-
actions are only needed when interpreting and acting on the
analysis results. Any misidentification can either be ignored or
have analysis flags (e.g. code directives) added, as is already
done when existing analysis tools identify issues that the
practitioner feels are false positives.

Belady and Evangelisti [3] defined a basic process for clus-
tering components (i.e., methods and data), into maintainable
sets of components (i.e., classes).

Hutchens and Basili [4] extended Belady and Evangelisti’s
process by adding a “data binding” metric based on how the
data is shared between methods and by using hierarchical
clustering.

Biggerstaff [5] discusses the complications of DR for design
reuse and reverse engineering. Biggerstaff defines a system
where a developer is required to work with the results gen-
erated by analysis in order to interpret and refine useful
information. The analysis system examines the importance
of informal information, such as the names used for classes,
methods, and data as well as developers comments.

Liu and Wilde [6] propose a system similar to Biggerstaff,
however, Liu and Wilde focus more on the programmatic

public class Person {
private String title;

public String Name() {
return this.title;

}
}

Fig. 1. Example Java Membership.

determination aspect by expanding on Hutchens and Basili
and other similar work. Unlike prior research which discuss
their approaches in terms of modules and components, Liu
and Wilde are specifically looking at objects while equating
them to OO classes. Liu and Wilde define two metrics used
for clustering. The first is similar to Hutchens and Basili’s
metric based on shared data between methods and the second
metric defines a binary matrix describing type and method
interactions while taking into account subtypes.

Livadas and Johnson [7] define a third metric based on
receiver parameter types in a method. They define a receiver
as the “type of a parameter that is modified in at least
one execution path” of a method. Livadas and Johnson also
describe a more detailed way of aggregating the candidates
objects together while clustering.

González, Czarnecki, and Pidaparthi [8] propose design
transformations to convert a PL program into an OO program
while keeping the overall design similar to improve the main-
tainability of the transformed program.

Pidaparthi, Zedan, and Luker [9]–[11] extend González,
Czarnecki, and Pidaparthi’s work by adding a resource usage
matrix metric which can be used for both DR and for design
transformation.

Islam, Toma, Selim, Gias, and Khaled [12] define a different
hierarchical clustering technique for partitioning a program
and a design migration from PL to OO.

III. MEMBERSHIP

Membership in OO paradigms is straightforward and is
already being used in analysis of OO programs. A method is
a member of a class if the method is defined in the program
as part of the class. For example, in Fig. 1 the method Name
is a member of the class Person. In OO, if a method is a
member of a class, it is usually written within the definition
of a class and the compiler allows the class or an instance of
the class to be used as a receiver of a method call. It follows
that the method of the class can be referenced as this or
self. Membership does not involve language nuances such as
subtyping, inheritance, generics, templates, lambda functions,
closures, abstract classes, inner or child classes, etc.

Given C as the set of all of the classes in a program and F
as the set of all of the methods in a program, then Bc is the
set of methods which are members of a class c ∈ C, defined
as

Bc = {m | m ∈ F and m is a member of c} (1)

The Bc for any class will not intersect any other class since
a method may only have membership to a single class. The
following will remain true for membership since every method
will have one and only one class to which it is a member:

Ba ∩ Bb = ∅ ∀ a ∈ C, b ∈ C, a ̸= b (2)

⋃
c∈C

Bc = F (3)

A. Membership as a Matrix

All the memberships in a program can be represented by
a matrix, M . The columns of M are all the methods in the
whole program, F , and the rows of M are all the classes, C.

M|C|×|F| =

M1,1 M1,2 · · · M1,|F|
M2,1 M2,2 · · · M2,|F|

...
...

. . .
...

M|C|,1 M|C|,2 · · · M|C|,|F|

 (4)

where

Mc,m =

{
1 if m ∈ Bc

0 otherwise
(5)

Since a method can only have a membership with one class,
the sum of each column should always be one, as stated in (6).
This is another way of representing the requirement shown in
(2). ∑

c∈C
Mc,m = 1 ∀m ∈ F (6)

IV. MEMBERSHIP IN TECHNICAL DEBT ANALYSIS

Membership is used to perform pattern matching in code to
detect TD items, such as code smell detection. One such TD
item is a code smell referred to as God class (GC). A GC,
as defined by Marinescu [13], is an overly complicated class
that takes on too much responsibility and, therefore, becomes
hard to maintain [14]. GCs have also been called God Objects,
Large Class Bloaters, Monster Classes, or Junk Drawers. GCs
are detected by assessing the values of three metrics, Weighted
Method Count (WMC), Tight Class Cohesion (TCC), and
Access to Foreign Data (ATFD). Membership influences all
three metrics.

WMC is the sum of McCabe’s cyclomatic complexity [15]
for all the methods in a class as defined by Chidamber [16].
Using McCabe’s cyclomatic complexity measurement of the
method m, CCm, Chidamber’s WMC for a class c is defined
as:

WMCc =
∑

m∈Bc

CCm (7)

As can be seen by (7), the method membership in classes
influences the result of WMC. To use M , define a vector,
CV , with all the cyclomatic complexity measurements for all

methods. Multiplying M by CV gives a vector containing all
the WMC scores for each class, A∗.

CV|F|×1 =

CC1

CC2

...
CC|F|

 (8)

A∗
|C|×1 = M (CV) =

WMC1

WMC2

...
WMC|C|

 (9)

It can be shown that a single row, A∗
c, from the vector

A∗ for a specific class, c, has the same value as the WMC
calculated using (7) for the same class, WMCc. The set of
all methods in a row of M for the class c with the value of
one, is the Bc by the definition in (5). Therefore when M and
CV are multiplied, only the CC for all the methods in Bc are
multiplied by one and all others are multiplied by zero.

A∗
c =

∑
m∈F

Mc,mCCm =
∑

m∈Bc

CCm = WMCc (10)

Instead of CC, other method metrics can be used similarly
when calculating a class metric as some part of a TD analysis.
For example, to find the total lines of code (LOC) for a class,
create a vector with the LOC of each method. Then when that
vector is multiplied by M , the resulting vector will be the
LOC per class.

ATFD can be calculated using M as well. ATFD is the use
of data either via public fields or accessor methods of another
class by a method and can calculated by creating a similar
metric vector as CV except with the number of foreign data
accessed per method. When multiplied by M the result is the
ATFD per class.

TCC, as defined by Bieman and Kang [17], indicates
how many directly connected methods exist in a class when
compared to the total number of possible connections, where
directly connected methods are methods that access one or
more common instance variables of a class. TCC relies on
knowledge of the membership of methods so that directly
connected methods can be counted. Furthermore, TCC uses
membership to calculate the total number of possible connec-
tions.

Beyond the GC determination, TD analysis includes identi-
fying design patterns and code smells. Some code smells, such
as Feature Envy, leverage similar metrics as ATFD and TCC,
thus also rely on membership. When it comes to design pattern
detection there are many patterns which rely on the methods
within a class as well as the inheritance of other classes and
implementation of interfaces. As an example, when detecting
a pattern such as a Chain of Responsibility, as described in
Design Patterns [18], a detector algorithm may scan for a
method that calls another method with the same signature as
the calling method, in a class stored in an instance variable.
To effectively determine if a class or collection of classes are

class Person {
void Play(Dog d, Toy t) { ... }
void Fetch(Dog d, Toy t) { ... }
void Throw(Dog d, Toy t) { ... }

}
class Dog { }
class Toy { }

Fig. 2. Memberships with Person.

class Person {
void Play(Dog d, Toy t) { ... }

}
class Dog {

void Fetch(Person p, Toy t) { ... }
}
class Toy {

void Throw(Person p, Dog d) { ... }
}

Fig. 3. Refactored Memberships.

used in a Chain of Responsibility pattern, the membership
of methods to classes is needed. For nearly all patterns and
code smells a similar requirement on membership is required.
However, a few patterns, such as Singletons, do not always
rely on membership.

A. Changing Membership

As was shown in (7), the cyclomatic complexities of meth-
ods in a class all contribute towards the WMC for that class.
This section discusses how refactoring a program changes the
membership matrix thereby changing the TD for the program.

To exemplify with a grounded example of a membership
matrix, suppose starting with a program which has three
classes, C = {Person,Dog, Toy} and three methods, F =
{Play, Fetch, Throw}. All three classes are used in all three
methods, meaning that any developer writing this program may
decide to define each method as a member of any class. Each
method will be the member of a class and take the other classes
as parameters.

One possible implementation of this program is to put all
the methods in the Person class as shown in Fig. 2. The
membership for the program would be:

M3×3 =

[
1 1 1
0 0 0
0 0 0

]
(11)

If a developer refactored the program to Fig. 3 without
any changes to the metrics of any method other than the
membership, the the M changes to:

M3×3 =

[
1 0 0
0 1 0
0 0 1

]
(12)

It can be seen that metrics such as the WMC will change
only because of the changes to M . The ATFD and TCC would
also change, suggesting that the labelling of GC’s may also
change.

type Person struct {
title string

}

func (p *Person) Name() string {
if p == nil {

return ‘Unknown‘
}
return p.title

}

Fig. 4. Example Go Struct And Function.

Each time the program is refactored, it is changing from one
possible membership to another. Each possible combination
contributes to the cognitive complexity of each method to
different classes. The overall WMC for the entire program
remains the same since the cognitive complexity of each
method remains the same in this scenario.

For the prior example program there are 27 possible ways to
assign membership. However, programs typically do not have
every method use every class. More realistically, a method
would only use a small subset of all the classes in a program.
A program has many constraints on a method which makes a
possible membership with some subset of classes better than
any other class as described by the related works.

V. DEFINING PARTICIPATION

Prior sections discussed how membership is used in TD
analysis, how to represent membership as a matrix, and the
constraints on memberships. This section discusses how to
extend these concepts to construct a participation matrix, P ,
and how a participation matrix can be used in place of the
membership matrix in TD analysis, thus allowing program-
matic TD analysis designed for OO to be used on PL.

The most important difference between OO and PL is that
methods in PL do not have membership with classes. The
classes, typically called structures or records, are collections of
data which a method performs some function on. This lack of
membership is the motivation behind the related DR research.

Go is an example of a modern PL language. Go has
receivers to allow convenient invocation of methods and to
allow implicit subtyping of an interface based on method
names and signatures without the receiver. When invoked, a
method with a receiver only needs to know the receiver type;
meaning that the method may be invoked with a null instance
of the receiver type. A null dereference error will only occur
if a field on a null receiver or null parameter is used. This
distinction is the reason that the Go developers recommend
that the receiver is not named this or self, as shown in
Fig. 4. When a Go class is not constrained to implement an
interface, then the receiver may be interchanged among the
parameters of the method while only affecting how the method
is invoked.

Go and other PLs do not have the same scoping constraints
since a private field in a class has no use if a method can not
access it. With these differences and no true membership of
a method to a class, the utilization of traditional membership

matrices to perform TD estimates is misaligned. Instead, we
propose a fuzzy estimate to determine method membership;
that is, a fuzzy value that provides indication as to the
degree to which a method is a member of a class. We base
these fuzzy estimates on how methods use difference classes,
or alternatively, how classes participate with a method to
accomplish the method’s goal.

A. Participation as a Matrix

As with the definition of M , the columns of P represent
all the methods in the whole program, F , and the rows of P
represent all the classes, C.

P|C|×|F| =

P1,1 P1,2 · · · P1,|F|
P2,1 P2,2 · · · P2,|F|

...
...

. . .
...

P|C|,1 P|C|,2 · · · P|C|,|F|

 (13)

However, instead of only zero or one, as permitted for
Mc,m, Pc,m represents the fuzzy estimate which c participates
in m performing its work. This fuzzy estimate is normalized
to be between zero and one inclusively.

Pc,m ∈ [0, 1] ⊂ R (14)

The same requirement as (6) also applies to P such that
(15) remains true. The sum of any column must always be
equal to one. This is so that the metric of any method is
properly reported. For a metric such as cognitive complexity,
this ensures that the overall WMC for the entire program is
reported the same with P .∑

c∈C
Pc,m = 1 ∀m ∈ F (15)

In a PL program some methods might only use primitives.
For example, suppose we have a method to calculate an
iteration of the Fibonacci sequence which takes only an integer
and returns an integer. There are a few ways to handle these
kinds of methods discussed in the DR research. Either the
package, file, and usage of the method helps determine which
classes participate in method, or pseudo-classes are created for
the primitives and added to C.

It can be seen that for all possible M and P for a program,
that M ⊂ P , since a membership is simply the case where for
any method all participation is contributed to only one class.
This means that the P can be used for OO as well as PL. The
method’s membership to a class in an OO program can signify
a high probability that the class participates in the method’s
purpose, since the developer wrote the method as a member
of the class. However, sometimes developers have constraints,
such as deadlines, therefore the membership is less than ideal.

B. Using Participation

The participation matrix can be used in TD analysis in the
same way that the membership matrix is used. Given the same
CV as defined in (8), we can modify the WMC (9) to use P .

type Person struct { }
type Dog struct { }
type Toy struct { }

func Play(p *Person, d *Dog, t *Toy) { ... }
func Fetch(p *Person, d *Dog, t *Toy) { ... }
func Throw(p *Person, d *Dog, t *Toy) { ... }

Fig. 5. Go Participation Example.

A|C|×1 = P (CV) =

AWMC1

AWMC2

...
AWMC|C|

 (16)

The values calculated for each class, AWMCc, are the
approximated WMCc. The approximated WMCc for a class
is the sum of the percentage of cognitive complexity for
each method that the class participates in. This approximation
may be the same as the original WMC depending on the
probabilities described by the participation matrix. The par-
ticipation matrix can be used when determining TCC, ATFD,
and estimating patterns while analyzing the TD of a program.

C. Participation Example

Using the OO program described in Fig. 2, suppose that
the classes, C = {Person,Dog, Toy}, participate with the
methods, F = {Play, Fetch, Throw}, in such a way to
produce the following participation matrix:

P3×3 =

[
0.4 0.0 0.8
0.4 0.4 0.0
0.2 0.6 0.2

]
(17)

In the example program all the methods have a membership
with Person, however P shows that the developer maybe
should have written the memberships differently and the pro-
gram may need to be refactored. The Fetch method probably
should not be a member of Person since Person does not
participate in Fetch. The Throw method probably should not
take Dog as an argument for the same reason.

Using P in TD analysis, such as calculating WMC, will re-
turn the estimation for the metrics weighted by the percentage
of participation. If P shows that all the methods heavily use
Toy, then Toy might be determined to be a GC that needs
to be broken up, regardless of the methods’ membership to
Person.

A similar participation matrix can be constructed from an
equivalent PL program, shown in Fig. 5, if the methods still
use the classes in the same way. A membership matrix can
not be determined since there are no explicit memberships
defined. We can only estimate how the methods relate to the
classes. Therefore, the initial refactoring suggestions using the
disparity between the participation matrix and the membership
matrix can not be determined for a PL program. However, if
the participation matrix is constructed via some DR procedure,
then the existing TD analysis for OO could be run on a PL
program to get an estimation of the same TD metrics.

VI. CONCLUSION

The goal of this research is to provide the conceptual
foundation for an approach to determine a fuzzy estimate
membership of methods in PL programs that can be used
with existing TD analysis calculations. We can accomplish
this goal by defining a participation matrix that follows (15),
and we detail how it can be used in place of membership
for TD analysis. Participation is not specific to any language
paradigm, therefore it can be derived from a program written
in either an OO or a PL paradigm. This assumes that there is
a procedure to construct participation matrices, without using
membership, which provide statistically similar results to using
a membership matrix.

VII. DISCUSSION AND FUTURE WORK

Research still needs to be performed to determine different
procedures for creating participation matrices using the source
code of a program. The procedure will likely leverage several
of the techniques and processes designed for DR as discussed
in section II.

Future research will first focus on creating a participation
matrix for an OO language so that the existing TD analysis
methods can be compared against the same analysis using
participation instead of membership, thus reducing uncertainty
in TD measurements [19]. The procedure for creating a
participation matrix can then be tested on several PL programs.
The results of those studies should resemble empirical test
results for other TD studies on OO languages.

Other research opportunities will arise once a procedure
has been determined for creating participation matrices. One
such research opportunity is determining a participation matrix
for an OO program, and then comparing the class which
participates the most in a method against the method’s given
membership to a class. This could provide an indication of
which methods have been added to a less-than-ideal class.
Another opportunity for research is to look for methods where
the top two or more classes have similar values of participation
as an indication that a method may need to be broken up into
two or more methods.

Another set of opportunities will be to augment a par-
ticipation matrix creation procedure with natural language
processing or other machine learning that could leverage code
comments and design documentation when available, and the
identifiers found in the source code. Doing so could help
provide estimations of memberships closer to the practitioners’
intent. This additional analysis may be able to replicate the
manual information entry parts found in the DR research.

REFERENCES

[1] Clemente Izurieta, Ipek Ozkaya, Carolyn Seaman, and Will Snipes,
“Technical debt: A research roadmap report on the eighth workshop

on managing technical debt (mtd 2016),” ACM SIGSOFT Software
Engineering Notes, 42:28–31, 03 2017. doi: 10.1145/3041765.3041774.

[2] Grant Nelson and Clemente Izurieta, “A gap in the analysis of technical
debt in procedural languages: An experiential report on go,” IEEE
Software, 38(6):71–75, 2021. doi: 10.1109/MS.2021.3103710.

[3] L. A. Belady and C. J. Evangelisti, “System partitioning and its
measure,” Journal of Systems and Software, 2(1):23–29, 1981. ISSN
0164-1212. doi: 10.1016/0164-1212(81)90043-1.

[4] David H. Hutchens and Victor R. Basili, “System structure analysis:
Clustering with data bindings,” IEEE Transactions on Software Engi-
neering, SE-11(8):749–757, 1985. doi: 10.1109/TSE.1985.232524.

[5] Ted J. Biggerstaff, “Design recovery for maintenance and reuse,” Com-
puter, 22(7):36–49, 1989. doi: 10.1109/2.30731.

[6] Sying-Syang Liu and Norman Wilde, “Identifying objects in a con-
ventional procedural language: An example of data design recovery,”
In Proceedings. Conference on Software Maintenance 1990, pages
266–271, 1990. doi: 10.1109/ICSM.1990.131371.

[7] Panos E. Livadas and Theodore Johnson, “A new approach to finding
objects in programs,” J. Softw. Maintenance Res. Pract., 6:249–260,
1994.

[8] Néstor A. González, Chris Czarnecki, and Sagar Padaparthi, “Mi-
grating software from procedural to object-oriented architecture,” In
SMC’98 Conference Proceedings. Cat. No. 98CH36218, volume 5,
pages 4872–4877 vol.5, 1998. doi: 10.1109/IC-SMC.1998.727624.

[9] Sagar Pidaparthi, Hussein Zedan, and Paul A. Luker, “Resource usage
matrix in object identification and design transformation of legacy
procedural software,” 1997.

[10] Sagar Pidaparthi, Hussein Zedan, and Paul Luker, “Conceptual foun-
dations for the design transformation of procedural software to object-
oriented architecture,” 1998.

[11] Sagar Pidaparthi, Paul Luker, and Hussein Zedan, “Reengineering
procedural software to object-oriented software using design trans-
formations and resource usage matrix.” In H. Zedan and A. Cau,
editors, Object-Oriented Technology and Computing Systems Re-
engineering, ch. 13, pages 182–197. Woodhead Publishing, 1999. doi:
10.1533/9781782420613.182.

[12] Mohayeminul R. Islam, Tajkia Rahman Toma, Mohammad Reza Selim,
Alim Ul Gias, and Shah Mostafa Khaled, “Design migration from
procedural to object oriented paradigm by clustering data call graph,” In-
ternational Journal of Information Engineering and Electronic Business,
8:1–13, 2016.

[13] Radu Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” In Proceedings of the 20th IEEE international Conference
on Software Maintenance, pages 350–359, ICSM. IEEE Computer
Society, Washington, DC, 2004.

[14] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Sea-
man, “Investigating the impact of design debt on software quality,”
In Proceedings of the 2nd Workshop on Managing Technical Debt,
volume MTD’10, 978-1-4503-0586-0/11/05, New York, NY, USA, 2011.
Association for Computing Machinery. doi: 10.1145/1985362.1985366.

[15] Thomas J. McCabe, “A complexity measure,” IEEE Transactions
on Software Engineering, SE-2(4):308–320, 1976. doi:
10.1109/TSE.1976.233837.

[16] Shyam R. Chidamber and Chris F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software Engineering,
20(6):476–493, 1994. doi: 10.1109/32.295895.

[17] James M. Bieman and Byung-Kyoo Kang, “Cohesion and reuse in an
object-oriented system,” In SSR ’95, 1995.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
“Design Patterns: Elements of Reusable Object-Oriented Software,”
Pearson/Addison-Wesley, 1995. ISBN 978-0-201-63361-0.

[19] Izurieta C., Griffith I., Reimanis D., and Luhr R., “On The Uncertainty
of Technical Debt Measurements,” IEEE ICISA 2013 International
Conference on Information Science and Applications, Pattaya, Thailand,
June 24-26, 2013.

