
An Approach to Testing Banking Software Using
Metamorphic Relations

Karishma Rahman
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

karishma.rahman@student.montana.edu

Clemente Izurieta
Gianforte School of Computing

Montana State University
Bozeman, MT, USA

clemente.izurieta@montana.edu

Abstract—Software systems used for banking are crucial for
daily operations and are considered to be part of critical
infrastructure; however, testing the functions of these highly
reusable systems can be difficult due to the project’s complexity
and the absence of a reliable oracle. In software testing, the
Oracle problem directs to the difficulty of deciding whether
the software’s observed behavior is correct. To address this
issue, we suggest utilizing metamorphic testing (MT), which tests
the banking system’s functionalities based on their properties.
Metamorphic testing is a software testing technique where
multiple inputs are generated for a program, then those inputs
are transformed based on a pre-defined set of rules. The resulting
outputs are then compared to the original outputs to verify
that the program works correctly. Metamorphic relations (MRs)
are a fundamental concept in metamorphic testing. They define
the relationships between the input and output of a system
under test and specify how they should change in response to
input transformations. Through a case study, we introduce new
metamorphic relations to test banking functions and demonstrate
the effectiveness of using these MRs. The study results indicate
that this is a feasible and efficient approach using an alternative
to a test oracle when testing complex E-type (i.e., real-world)
software.

Index Terms—Metamorphic Testing, Oracle Problem, Banking
Software, Mutation Testing

I. INTRODUCTION

Advances in science and technology have led to significant
evolution in the software industry in recent years [1]. With
the increasing demand for E-type software in modern society,
most applications involve complicated scientific calculations
and data processing, necessitating software engineers to ensure
that they meet all the requirements for reliability [2]. E-type
systems refer to real-world systems [3]. One of Lehman’s [2]
Laws states that E-type systems are constantly evolving, and
their complexity is continuously increasing unless something
is purposely done to minimize it. Banking systems are highly
reusable E-type systems and their functionality directly affects
the growth of the commercial banking industry. Therefore,
developing and testing banking software are crucial phases
in the software lifecycle for the growth of the industry, and
efficient validation and verification techniques are necessary
for maintaining the reusability of these banking applications.
Consumer demands for banking software have risen, leading
to more complex projects and further research into various as-
pects of banking software [1]. Software testing is a continuous

process throughout the banking system project lifecycle and is
essential for its progress. The testing of banking systems re-
quires high complexity, security, and accuracy, and customers
expect tools for easy transactions and access to financial orga-
nizations’ services [4]. Banking software has complex designs
and multi-layered workflows and offers various features and
functions, handling sensitive data like customers’ financial
and personal information [5]. Therefore, software testing for
banking applications must be precise, as any lack of test
coverage can lead to data breaches, loss of funds, banking
fraud, and other criminal activities [4].

Testing is a crucial aspect of the development process of
banking software to ensure that the system behaves correctly.
Testing bears more than 50% of the total software development
costs, as it is an expensive, time-consuming, and complex
activity [6]. The process of testing is often prone to human
error. Creating dependable software systems remains an ongo-
ing challenge, and researchers and practitioners continuously
explore more efficient methods to test software [1]. Test cases
are performed on the system under test during the testing
process. A test oracle, either automated or manual, is then
used to determine whether it acted as anticipated [1]. In either
case, the actual output is compared with the expected outcome.

The challenge of Test Oracle arises when testing complex
software. It occurs when it is difficult to determine whether the
program outputs on test cases are correct [7]. Banking software
often has intricate functionality, which can exacerbate the Or-
acle problem in their system. For instance, with an electronic
payment service, there may be situations where the consumer
needs clarification on how much should be charged for a given
input. The challenge becomes even more pronounced when
the payment concerns transfer charges among different bank
accounts or currency exchange applications.

Metamorphic Testing (MT) is a technique that has proven
helpful in certain circumstances to address the challenge of the
oracle problem [8]. The principle behind Metamorphic Testing
(MT) [9] is that it might be easier to analyze the relations
between the results of multiple test executions, which are
referred to as metamorphic relations (MRs), rather than spec-
ifying the input-output behavior of a system [9]. MT employs
MRs to determine system properties, which automatically alter
the initial test input into follow-up test input [9]. If the system



fails to meet the MRs when tested with the initial and follow-
up input, it is inferred that it is defective [11].

A significant amount of study has focused on creating
Metamorphic Testing (MT) methods for specific areas such
as computer graphics, web services, and embedded systems
[13]. Our research aims to apply MT to tackle the test oracle
problem in banking software. We aim to systematically define
metamorphic relations that capture banking function properties
(i.e., characteristics that are compromised when the system
is at risk) and automate testing using these metamorphic
relations.

We examine how MT applies to banking software testing
and convey a case study. This paper delivers the following
contributions:

• An approach to investigate and uncover the essential
points when utilizing MT to test banking software.

• A list of new MRs for banking functions.
• To show the applicability of the proposed MRs, we

conduct a case study on bank software functionalities.
The study indicates the relevance of using MT to test
banking functions. We also employed mutation analysis
to assess the efficiency of the MT approach.

The rest of the paper is organized as follows. Section II
introduces underlying concepts related to MT and mutation
analysis. Section III presents a framework of MT for banking
software and reports on a case study where MT tests major
banking functions. Section IV discusses the results of the case
study. The next Section V discusses the threats to validity of
the experiment. Section VI discusses the related works done in
this area. Lastly, Section VII concludes the paper by pointing
out potential future work.

II. BACKGROUND

This section introduces relevant literature and concepts
related to Banking application testing, MT, and mutation
analysis.

A. Testing Bank Application

The banking industry has changed remarkably due to rapidly
growing and innovative technology. Due to the complicated
features integrated into banking software, it is regarded as one
of the most sophisticated and complex enterprise solutions [4].
The daily transactions carried out through the banking system
require accurate data, high scalability, and reliability. There-
fore, testing this software under various conditions ensures its
efficiency. Moreover, the banking sector requires robust report-
ing mechanisms to record and instantly monitor transactions
and user interactions [5]. Testing is essential to ensure that
banking software functions well and effectively. Functional
testing of banking software is distinct from standard software
testing as these applications handle customers’ financial data
and money, making it necessary to conduct thorough testing
[4]. No critical business scenario should be overlooked during
testing.

B. Metamorphic Testing

Metamorphic testing is a technique that can help solve the
well-known test oracle problem. It is developed by Chen et al.
[9] to check if a program satisfies a set of previously defined
properties known as Metamorphic Relations. It determines
how input changes should affect a program’s output. If the
program fails to meet these expected relations, it could indicate
the presence of faults. To use metamorphic testing, a suitable
set of MRs should be identified, and a set of initial test cases
created. Input changes defined by the MRs are then applied
to develop follow-up test cases. The initial and follow-up test
cases are then executed, and a fault may exist if the output
does not behave according to the predicted MR. Metamorphic
testing helps identify defects in programs without test oracles
because it examines the input and output relationship between
multiple program executions, even when the correct result
of each execution is unknown [13]. For example, the SINE
function y = sin(x) can be tested using MT by using the
property that adding 2π to the input angle does not change the
output (i.e., sin(x) = sin(x+2π)). If this property is violated,
it indicates a failure in the function’s implementation.

C. Mutation Testing

Mutation testing is a typically used practice for evaluating
the efficacy of testing strategies and adequacy of test suites
[14]. This approach involves applying mutation operators
to the tested program, which introduces various faults and
generates a set of mutant variants. A test case is considered
to ”kill” a mutant if it causes the mutant to exhibit behavior
different from the original program [14]. The number of killed
mutants is used to calculate the mutation score (MS), which
measures the thoroughness of a test suite in killing mutants
[14]. The MS is calculated using the following formula:

MS =
Mk

Mt −Me

where the number of killed mutants is denoted as Mk, the
total number of mutants is denoted as Mt, and the number of
equivalent mutants is denoted as Me (i.e., mutants that always
behave the same way). Automatically generated mutants are
thought to be more similar to real-life faults than manually
seeded ones. Therefore, the mutation score effectively indi-
cates the testing technique’s effectiveness. In this study, the
mutation analysis technique is used to assess the efficacy of
our testing method.

III. METAMORPHIC TESTING FOR BANKING
APPLICATIONS

A. Approach

In developing software systems for business purposes, the
end-users must be confident that the application is performing
as expected. However, testing every possible usage scenario
can be challenging for developers. As a result, it is necessary
to employ a testing technique that allows for the revision of



Specification of 
the functions of 

the Banking 
Applications

Metamorphic 
Relations (MRs)

Initial test 
cases

Follow-up 
test 

cases 

Program Under 
Test

Test 
Executor

Test Evaluator

Input

Input
Output

Random 
test value 
generator

Output

Fig. 1. A diagram that portraits the framework of MT to test a system under test (i.e. Banking Software). This framework uses MRs to generate follow-up
test cases. MT process is used as the test evaluators to check the output. Here, the arrows represent the flows of information.

executed tests. MT offers an appropriate solution for testing
applications without requiring oracles.

Figure 1 illustrates the MT framework for testing banking
application functions. Metamorphic relationships (MRs) are a
critical component of the framework since they determine the
generation of test cases and the evaluation of results. When
used to test banking applications, we first extract metamorphic
property specifications from the function’s description and
identify the MRs. We then use the identified MRs to generate
the follow-up test cases from the initial test cases. A test
executor executes the follow-up test cases on the system under
test. The outputs produced by the program being tested is
compared with the follow-up test cases using a test evaluator
to establish whether the MR has been satisfied or violated. If
any MR is violated, we can say it has detected a fault in the
system.

This section outlines the approach employed that can val-
idate the MT framework’s effectiveness in testing banking
functions. The study focuses on key banking functionalities
and identifies corresponding MRs. The effectiveness of MT is
assessed through mutation analysis. The findings indicate that
MT is capable of detecting approximately 75% of mutants
(i.e., faulty programs), thereby demonstrating its efficacy as a
testing technique.

B. Subject Program
This study focuses on testing the functionality of banking

software by examining three commonly used features: Deposit,

Withdrawal, and Transfer. The Deposit function is relatively
simple and involves adding money to an existing account. On
the other hand, the Withdrawal function is more complex and
consists in withdrawing cash from an existing account. It only
performs the withdraw function if the account has enough
balance. Lastly, the Transfer function transfers money from
the current account to other accounts with a commission fee
associated with the transfer type. These functions are generated
using the guidelines for general banking software [12] and they
are all implemented in Java.

C. Metamorphic Relations

Choosing appropriate MRs is crucial when testing an appli-
cation using MT. There are some guidelines that are available
for determining MRs based on the program’s specifications.
Chen et al. [9] suggested that the MRs affecting the significant
functionalities’ performance are more effective. They also
recommended using MRs that can produce diverse program
executions. Based on these guidelines, we identified a set of
MRs for each function, which are listed in Table I. Each func-
tion has some MRs derived from the function’s specification.
Table I contains the MR names and the relationship between
initial and follow-up test inputs. Here, the initial input is (Ii)
and output is (Oi). The follow-up input is (If ) and output is
(Of ). In Table I, MR1 Addition tests the Deposit function.
This MR says that for the follow-up input, if we add a credit
C, where the credit is greater than 0 to the initial input, i.e.,



TABLE I
METAMORPHIC RELATIONS (MRS) FOR BANKING FUNCTIONS AND THEIR ASSOCIATED DESCRIPTIONS

Metamorphic Relations (MRs) Description
Deposit (Input is the amount to deposit, and the output is the total balance in the account.)

MR1- Addition This MR says that for the follow-up input (If ), if we add a credit (C, where C > 0) to the initial input (Ii), i.e.,
If = Ii + C, the follow-up output (Of ) will increase accordingly from the initial output (Oi), i.e., Of > Oi.

MR2- Subtraction This MR says that for the follow-up input (If ), if we subtract a credit (C, where 0 <= C <= Ii) from the
initial input (Ii), i.e., If = Ii − C, the follow-up output (Of ) will increase or remain the same accordingly
from the initial output (Oi), i.e., Of > Oi or Of = Oi.

MR3- Multiplication This MR says that for the follow-up input (If ), if we multiply a credit (C, where C > 0) with the initial input
(Ii), i.e., If = Ii ∗ C, the follow-up output (Of ) will increase or remain same accordingly from the initial
output (Oi), i.e., Of > Oi or Of = Oi.

MR4- Division This MR says that for the follow-up input (If ), if we divide a credit (C, where C > 0) by the initial input (Ii),
i.e., If = Ii/C, the follow-up output (Of ) will increase or remain same accordingly from the initial output
(Oi), i.e., Of > Oi or Of = Oi.

MR5- Negative This MR says that for the follow-up input (If ), if we convert the credit to a negative value (C, where C < 0)
from the initial input (Ii), i.e., If = −(Ii), the follow-up output (Of ) will remain the same as the initial output
and an error message will be displayed (Oi), i.e., Of = Oi.

Withdrawal & Transfer (Input is the amount to withdraw or transfer, and the output is the total balance in the account.)
MR1- Addition This MR says that for the follow-up input (If ), if we add a credit (C, where 0 < C < (total balance− Ii))

to the initial input (Ii), i.e., If = Ii + C, the follow-up output (Of ) will decrease accordingly from the initial
output (Oi), i.e., Of < Oi.

MR2- Subtraction This MR says that for the follow-up input (If ), if we subtract a credit (C, where 0 <= C <= (total balance−
Ii)) from the initial input (Ii), i.e., If = Ii −C, the follow-up output (Of ) will decrease or remain same with
error message accordingly from the initial output (Oi), i.e., Of < Oi or Of = Oi.

MR3- Multiplication This MR says that for the follow-up input (If ), if we multiply a credit (C, where C > 0) with the initial
input (Ii), i.e., If = Ii ∗ C, the follow-up output (Of ) will decrease or remain same with an error message
accordingly from the initial output (Oi), i.e., Of < Oi or Of = Oi.

MR4- Division This MR says that for the follow-up input (If ), if we divide a credit (C, where C > 0) by the initial input (Ii),
i.e., If = Ii/C, the follow-up output (Of ) will decrease or remain same accordingly from the initial output
(Oi), i.e., Of < Oi or Of = Oi.

MR5- Negative This MR says that for the follow-up input (If ), if we convert the credit to a negative value (C, where C < 0)
to the initial input (Ii), i.e., If = −(Ii), the follow-up output (Of ) will remain same to the initial output and
an error message will be displayed (Oi), i.e., Of = Oi.

MR6- Add insufficient fund This MR says that for the follow-up input (If ), if we add a balance greater than the total balance (total balance+
C, where C >= 0) to the initial input (Ii), i.e., If = Ii + total balance+C, the follow-up output (Of ) will
remain same to the initial output and an error message will be displayed (Oi), i.e., Of = Oi.

If = Ii + C, the follow-up output will increase accordingly
from the initial output, i.e., Of > Oi.

D. Test Case Generation

To carry out MT, test cases are created based on the MRs.
Several methods can be used to generate the initial test cases,
such as generating specific test values, random test values,
or iterative test values. Among these methods, random test
value generation is preferred for MT as it is cost-efficient
and unbiased [10]. Hence, this study used random test value
generation to produce the source test cases. Follow-up test
cases are then developed using the MRs described in Table I.

E. Evaluation

In order to assess the efficacy of MT, we utilize mutation
analysis. We create Junit test cases for the functions based on
the MRs. Then we use mutation operators to introduce faults
into the implementation of the functions automatically using
the PIT mutation testing tool [15]. This resulted in 16 mutants.
Usually, equivalent mutants are excluded from experiments.
However, this mutation testing tool does not create equivalent
mutants. Test suites are generated using the MRs outlined in
Table I, which is then used to test the subject programs. We use
the mutation score (MS) metric to measure the effectiveness

of MT. When a mutant is killed, it is considered a detected
fault.

IV. RESULTS

In this section, we present the results of our experiment,
where we utilized mutation analysis to assess the efficacy of
our MT framework. We used the PIT mutation tool to generate
the mutators listed in Table II. In Table III, we summarize
the test efficiency of MT mainly by measuring its Mutation
Score (MS) and Test Strength. The following describes the
information listed in Table III.

• Line coverage shows the percentage of lines covered by
the tests.

• Mutation coverage shows how many mutants are killed
from the total mutants.

• The MS measures the percentage of mutants killed out
of all mutants (i.e., excluding the equivalent mutants)
created without test coverage [15].

• Test Strength measures the ratio of mutants killed out of
all mutants with test coverage [15]. The Test Strength
metric does not include mutants that survive due to a
lack of coverage [15]. This metric is considered a better
metric than MS when validating builds. It is also shown
as a percentage.



TABLE II
ACTIVE MUTATORS USED FOR MUTATION ANLYSIS

Active Mutators
BOOLEAN FALSE RETURN
BOOLEAN TRUE RETURN
CONDITIONALS BOUNDARY MUTATOR
EMPTY RETURN VALUES
INCREMENTS MUTATOR
INVERT NEGS MUTATOR
MATH MUTATOR
NEGATE CONDITIONALS MUTATOR
NULL RETURN VALUES
PRIMITIVE RETURN VALS MUTATOR
VOID METHOD CALL MUTATOR

TABLE III
RESULTS OF MUTATION ANALYSIS BASED ON MUTATION SCORE AND TEST STRENGTH

MRs Line Coverage
(%)

Mutation
Coverage (Killed
mutant/Used
mutant)

Mutation Score
(MS) (%)

Test Strength
(Killed
mutant/Used
mutant)

Test Strength (%)

Deposit
MR1 93% 3/6 50% 3/6 50%
MR2 93% 3/6 50% 3/6 50%
MR3 93% 3/6 50% 3/6 50%
MR4 93% 3/6 50% 3/6 50%
MR5 64% 2/6 33% 2/5 40%
All 100% 4/6 67% 4/6 67%

Withdrawal
MR1 82% 4/9 44% 4/9 44%
MR2 82% 4/9 44% 4/9 44%
MR3 82% 4/9 44% 4/9 44%
MR4 82% 4/9 44% 4/9 44%
MR5 53% 2/9 22% 2/5 40%
MR6 71% 3/9 33% 3/8 38%
All 100% 6/9 67% 6/9 67%

Transfer
MR1 82% 4/9 44% 4/9 50%
MR2 82% 4/9 44% 4/9 50%
MR3 82% 4/9 44% 4/9 50%
MR4 82% 4/9 44% 4/9 50%
MR5 53% 2/9 22% 2/5 40%
MR6 71% 3/9 33% 3/8 38%
All 100% 6/9 67% 6/9 67%
Total 100% 12/16 75% 12/16 75%

For each function, the overall performance of MT is shown.
Moreover, the last row of the table presents the overall
performance of MT when we consider the testing results of
all functions and all MRs together.

The effectiveness of each MR can be compared using their
MS and test strength for each function. Among all the MRs,
for the deposit function, MR1, MR2, MR3, and MR4 are more
effective than MR5. For example, MR1, MR2, MR3, and MR4
have an MS of 50% with 93% line coverage, while MR5 has
an MS of 33% with 64% line coverage. When all 5 MRs are
combined, the MS increases to 67% with 100% line coverage.
However, when test strength is used, the effectiveness of MR5
increases to 40%, as mutants that survive due to lack of
coverage are not counted.

With the withdrawal function and considering all MRs,
MR1, MR2, MR3, and MR4 are more effective, while MR5

and MR6 are less effective. This can be seen in the mutation
score (MS) of each MR, where MR1, MR2, MR3, and MR4
have an MS of 44% with 82% line coverage, while MR5 has
an MS of 22% with 53% line coverage, and MR6 has an
MS of 33% with 71% line coverage. When all six MRs are
considered, the MS increases to 67% with 100% line coverage.
However, when using the test strength metric, it can be seen
that MR5 becomes more effective with a score of 40% and
MR6 with a score of 38% since the mutants that survive due
to lack of coverage are not counted.

Regarding the transfer function and all the generated MRs,
MR1, MR2, MR3, and MR4 are more effective than MR5 and
MR6. Specifically, MR1, MR2, MR3, and MR4 have a higher
MS of 44% with 82% line coverage compared to MR5’s MS of
22% with 53% line coverage. When all 6 MRs are taken into
account, the MS increases to 67% with 100% line coverage.



However, by using test strength, it becomes apparent that the
effectiveness of MR5 increases to 40% and MR6 to 38% since
the mutants that survive due to lack of coverage are not taken
into consideration.

Finally, if all 17 MRs are utilized collectively, they can
eliminate up to 75% of all mutants, and the combined value of
both MS and test strength is greater than that of any individual
MR. This implies that, as long as there are no concerns about
testing expenses, many MRs as possible should be employed
to create test suites.

V. THREATS TO VALIDITY

Possible risks exist when validating the examined MT
framework in this study. Two types of threats are discussed:
external and internal threats [16]. One of the significant
external threats to validation is the ability to generalize the
study results to other cases. The study utilized a demo banking
application with mathematical functions that perform standard
calculations and a relatively small data set. Therefore, the
results may not explicitly confirm that this approach will work
for industrial-sized software.

The PIT mutation testing tool is used to produce mutation
analysis for the experiments. The method utilizes a third-
party tool, which may contain potential faults which could
threaten the proposed method. This type of threat could occur
concerning internal validity.

VI. RELATED WORK

When an oracle is absent, the effectiveness of testing
techniques is limited. The use of metamorphic testing (MT)
in this paper is effective in conducting testing without requir-
ing an oracle. MT has been utilized to address the Oracle
problem in fault-based testing and symbolic execution. Several
studies have examined the oracle problem in various fields.
However, there needs to be research on the functional testing
of banking software using MT. In one case study, Chen et al.
[17] injected a seeded fault into a program that implemented
partial differential equations. They compared the efficacy of
special test cases versus MT in catching defects. While special
test cases missed seeing the fault, MT could identify it by
employing only one metamorphic relation. Aruna and Prasad
[18] suggested multiple MRs for multi-precision arithmetic
software, which is evaluated with four mathematical projects
and mutation testing. The banking functions share similarities
with these mathematical processes. Therefore, we attempted
to assess these functions using MT.

VII. CONCLUSION AND FUTURE WORK

This study confirms that the MT framework is suitable
for evaluating banking functions and that MT is an efficient
and effective testing technique even without an oracle. MT
can test a banking application’s deposit, withdrawal, and
transfer functions without needing oracles, which is a signif-
icant advantage for testing complex banking functions. The
experimental results demonstrate that MT can detect up to
75% of mutants, indicating its high fault detection capability.

For future work, we plan to extend the testing of the banking
software beyond the function level and assess the security
aspects of the banking application using MT. We also aim
to improve the automation capability of MT by predicting
MRs based on program execution flow. This will help the
developers so they don’t have to define the MRs manually.
Additionally, we intend to conduct further empirical studies
to evaluate the effectiveness of MT for banking software with
more complicated functions and deploy the framework to test
various financial and payment applications.

REFERENCES

[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” in IEEE Transactions
on Software Engineering, vol. 41, no. 5, pp. 507-525, 1 May 2015, doi:
10.1109/TSE.2014.2372785.

[2] M. M. Lehman and L. A. Belady. 1985. Program evolution: processes
of software change. Academic Press Professional, Inc., USA.

[3] Type, P-type, S-type systems. E. (n.d.). Retrieved May 2, 2023, from
https://denrox.com/post/e-type-p-type-s-type-systems.

[4] F. Molu, “Software testing practices in critical financial systems transfor-
mation,” 2013 The International Conference on Technological Advances
in Electrical, Electronics and Computer Engineering (TAEECE), Konya,
Turkey, 2013, pp. 394-399, doi: 10.1109/TAEECE.2013.6557307

[5] X. Xie, Z. Yang, J. Yu and W. Zhang, “Design and implementation of
bank financial business automation testing framework based on QTP,”
2016 5th International Conference on Computer Science and Network
Technology (ICCSNT), Changchun, China, 2016, pp. 143-147, doi:
10.1109/ICCSNT.2016.8070136.

[6] L. Padgham, Z. Zhang, J. Thangarajah and T. Miller, “Model-Based Test
Oracle Generation for Automated Unit Testing of Agent Systems,” in
IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1230-
1244, Sept. 2013, doi: 10.1109/TSE.2013.10.

[7] E. J. Weyuker, “On testing non-testable programs”, Comput. J., vol. 25,
no. 4, pp. 465-470, 1982.

[8] H. Liu, F.-C. Kuo, D. Towey and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?”, IEEE Trans. Softw.
Eng., vol. 40, no. 1, pp. 4-22, Jan. 2014.

[9] T. Y. Chen, S. C. Cheung and S. M. Yiu, “Metamorphic testing: A new
approach for generating next test cases”, 1998.

[10] T.Y. Chen, F.C. Kuo, Y. Liu, A. Tang, “Metamorphic testing and testing
with special values”, Proceedings of SNPD2004, 2004, pp128-134.

[11] T. Y. Chen, F.-C. Kuo, T. H. Tse and Z. Q. Zhou, “Metamorphic testing
and beyond”, Proc. 11th Annu. Int. Workshop Softw. Technol. Eng.
Practice, pp. 94-100, Sep. 2003.

[12] C. A. Gumussoy. 2016. Usability guideline for banking software
design. Comput. Hum. Behav. 62, C (September 2016), 277–285.
https://doi.org/10.1016/j.chb.2016.04.001

[13] S. Segura, G. Fraser, A. B. Sanchez and A. Ruiz-Cortés, “A
Survey on Metamorphic Testing,” in IEEE Transactions on Soft-
ware Engineering, vol. 42, no. 9, pp. 805-824, 1 Sept. 2016, doi:
10.1109/TSE.2016.2532875.

[14] Y. Jia and M. Harman, “An Analysis and Survey of the Development of
Mutation Testing,” in IEEE Transactions on Software Engineering, vol.
37, no. 5, pp. 649-678, Sept.-Oct. 2011, doi: 10.1109/TSE.2010.62.

[15] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. 2016.
“PIT: a practical mutation testing tool for Java (demo)”. In Proceedings
of the 25th International Symposium on Software Testing and Analysis
(ISSTA 2016). Association for Computing Machinery, New York, NY,
USA, 449–452. https://doi.org/10.1145/2931037.2948707

[16] X. Zhou, Y. Jin, H. Zhang, S. Li and X. Huang, “A Map of Threats to Va-
lidity of Systematic Literature Reviews in Software Engineering,” 2016
23rd Asia-Pacific Software Engineering Conference (APSEC), Hamil-
ton, New Zealand, 2016, pp. 153-160, doi: 10.1109/APSEC.2016.031.

[17] T. Y. Chen, J. Feng and T. H. Tse, “Metamorphic testing of programs
on partial differential equations: A case study”, Proc. 26th Int. Comput.
Softw. Appl. Conf. Prolonging Softw. Life: Develop. Redevelop., pp.
327-333, 2002.

[18] C. Aruna and R. S. R. Prasad, “Metamorphic relations to improve the
test accuracy of multi precision arithmetic software applications”, Proc.
Int. Conf. Adv. Comput. Commun. Informat., pp. 2244-2248, Sep. 2014.


