Assessing Security Risks of Software Supply
Chains Using Software Bill of Materials

Eric O’Donoghue
Gianforte School of Computing
Montana State University
Bozeman, USA
ericodonoghue @montana.edu

Abstract—The software supply chain is composed of a growing
number of components including binaries, libraries, tools, and
microservices necessary to meet the requirements of modern
software. Products assembled by software vendors are usually
comprised of open-source and commercial components. Software
supply chain attacks are one of the largest growing categories of
cybersecurity threats and the large number of dependencies of a
vendor’s product makes it possible for a single vulnerability to
propagate to many vendor products. Additionally, the software
supply chain offers a large attack surface that allows vulner-
abilities in upstream transitive dependencies to affect the core
software. Software Bill Of Materials (SBOM) is an emerging
technology that can be used in tandem with analysis tools to
detect and mitigate security vulnerabilities in software supply
chains. In this research, we use open-source tools Trivy and Grype
to assess the security of 1,151 SBOMs mined from third-party
software repositories of various domains and sizes. We explore the
distribution of software vulnerabilities across SBOMs and look
for the most vulnerable software components. We conclude that
this research demonstrates the threat of security via software
supply chain vulnerabilities as well as the viability of using
SBOMs to help assess security in the software supply chain.

Index Terms—Software Supply Chain Security, Software Bill
of Materials, Mining Software Repositories, Third Party Code

I. INTRODUCTION

Security attacks continue to increase in frequency, sophisti-
cation, and severity of breaches. With the rise of cybersecurity
threats in recent years, improving defense mechanisms across
all vulnerable surfaces is essential. A particularly vulnerable
and important software surface facing a large increase in
cybersecurity attacks is the software supply chain. According
to Sonatype’s 2021 report, there was a 650% year-over-year
increase in software supply chain attacks, up from 430% in
2020 [[1]. With more software providers integrating third-party
code into their software supply chains a large cybersecurity
attack surface has emerged. This is in large part due to the
dependencies that make up the final software product. The final
software package can then contain bugs and vulnerabilities
collected along the supply chain, leaving the core software
vulnerable. Further, this problem is compounded by the poten-
tially many third-party projects that rely on transitive depen-
dencies from additional projects. These upstream dependencies
propagate down the supply chain further increasing the attack

Ann Marie Reinhold
Gianforte School of Computing
Montana State University
Bozeman, USA
annmarie.reinhold @montana.edu

Clemente Izurieta
Gianforte School of Computing
Montana State University
Pacific Northwest National Laboratory
Idaho National Laboratory
Bozeman, USA
clemente.izurieta@montana.edu

surface [15]]. Herein, we present a novel approach to assess the
current state of security risks inherent in project supply chains.
We develop an approach grounded in foundational quality
assurance techniques that aggregate outputs from Software
Bill Of Materials (SBOM) technology to inform practitioners
regarding potential cybersecurity risks.

SBOMs provide an inventory of all software components
used in a particular application or system and are an emerging
technology that is quickly evolving into a fundamental cor-
nerstone of software supply chain security. The United States
government issued Executive Order (EO) 14028: Improving
the Nation’s Cybersecurity, where the SBOM is specifically
recognized as a critical component. The consequences of the
EO require strict adherence by software providers who wish to
engage in business with the US federal government, to deliver
SBOMs compliant with standards developed by NTIA [2].

As SBOM technology evolves, numerous complementary
static analysis tools (open-source and proprietary) have been
developed [7] [8]] [9] [10] to help assess their quality. Static
analysis tools are external resources that help asses a target
product by parsing its source code, byte code, or compiled
source code. Results of static analysis tools are typically
reported using various metrics, counts or by finding relevant
data [3] that could impact the target. Using dedicated static
analysis tools on SBOMs to assess the security risks of
software supply chains has emerged as a viable approach for
detecting potential security vulnerabilities [4] [5] [6].

In recent years several studies have analyzed software
supply chain security risks. These studies focus on open-source
development environments and package managers [11] [12].
Although these papers and others reveal a better understanding
of software supply chain attacks through third-party packages
and libraries, they often only address one type of development
ecosystem, such as Java. This makes it difficult to generalize
findings for software supply chain attacks and the state of
software supply chain security. Thus, there exists a need to
assess the state of software supply chain security with a
broader view. Additionally, due to the young age of SBOM
technology, studies assessing software supply chain security
utilizing SBOMs are lacking.

In this study we analyze SBOMs mined from common open-



source repositories and Docker images that cover a wide range
of ecosystems and domains, therefore enabling the analysis of
third-party software supply chain security risks in a broader
context.

II. RELATED WORK

With the growing adoption of third-party code, there has
been heightened interest in examining security risks asso-
ciated with supply chains. Using SBOMs to explore this
attack surface is a new approach that motivates our work.
A search on IEEE Xplore with the string ”Abstract:software
bill of materials AND Abstract:software supply chain AND
Abstract:security”, returns only two results —neither of which
address assessing software supply chain security risks utilizing
SBOMs [[13] [14].

In a study performed by Yan et al. [15], the authors
investigated the attack surface of software supply chains,
where they analyzed 50 open-source Java projects to gain an
understanding of three key aspects. Specifically, the extent to
which dependent components are impacted by vulnerabilities
in supply chains, the extent to which the supplier software
is affected by vulnerabilities and specific locations of vul-
nerabilities in software supply chains. A key finding is that
“the security problem from the residual vulnerabilities in the
open-source software supply chain can have a broad impact
on their dependents, which should be captured attention by
the community™ (sic) [15].

Additional efforts have explored how vulnerability mapping
techniques applied to public data help assess security risks in
the supply chain. Benthall [16] links data from the National
Vulnerability Database (NVD to the widely used open-
source project, OpenSSL. Benthall used NVD data to investi-
gate the security of OpenSSL as well as assess the future risk
of vulnerabilities being introduced. The study demonstrates
that by linking publicly available vulnerability data to a project
that is pervasive across the supply chain, we are able to assess
present and potential future security risks.

Other work has been performed that investigates the security
risks of common open-source software supply chains. A study
by Zahan et al. [11]] that analyzed 1.63 million JavaScript npm
packages, found multiple entry points containing additional
packages that a malicious actor could exploit. In another study
performed by Wang et al. [12]], the authors examined the
risks associated with Java open-source libraries and found
many library-associated risks. These studies help exemplify the
latent dangers associated with third-party providers of software
supply chain packages.

Finally, Haque [17], provides a comprehensive overview of
how SBOMs can be used to help enhance software supply
chain security. This study assesses the effectiveness of actual-
izing SBOM security use cases.

I[II. METHODOLOGY

To assess software supply chain security risks, we define
risk as the number of times a vulnerability occurs across the

Uhttps://nvd.nist.gov/

mined software repositories. Associated with each vulnera-
bility is the corresponding severity of the vulnerability. We
also define how we find the occurrence of vulnerabilities in
the mined SBOMs and how we measure the severity of these
vulnerabilities. To obtain a count of vulnerability occurrences
we selected the static analysis tools Grype (version 0.53.1)
[7] and Trivy (version 0.44.1) [8]. Both of these tools analyze
each component present in a given SBOM and use mapping
techniques to detect potential vulnerabilities present within
the components. Each tool generates a comprehensive report
containing all vulnerability occurrences in the SBOM. Both
tools report vulnerabilities found from the Common Vulnera-
bilities and Exposures (CVEf] and the GitHub Security Ad-
visories (GHSAﬂ We selected these tools through feedback
from industry partners and subject matter experts. Severity is
calculated using the Common Vulnerability Scoring System
(CVSSﬂ We make two key assumptions that have threats
to validity implications. We assume that the selected static
analysis tools report accurate findings and that CVSS scores
are an objective way to measure severity.

Our investigation into mining software repositories for
obtaining SBOMs led us to a collection of SBOMs mined
from common open-source repositories and Docker images by
Interlynk [18]]. In this study, we leverage the SBOMs mined
by Interlynk. This rich dataset spans many different domains
of software including, for example, utility, machine learning,
front-end development, and databases. As the SBOMs are
derived from common open-source repositories and Docker
images, the dependencies within the SBOMs are expected
to be prevalent in software development. Thus, we can gain
an understanding of the security of software dependencies
commonly used in today’s software development landscape.
The dataset is stored in a publicly available database that
houses SBOM metadata as well as a url to an S3 bucket where
the SBOM is stored. The count of third-party dependencies
present in the selected SBOMs ranges from 1 to 4,135 with
an average dependency count of approximately 350.

A. Research Questions

We use SBOM technology to investigate the security risks
associated with software supply chains. We explore two re-
search questions:

RQ1: What is the distribution of vulnerabilities across
the selected SBOMs?

The answer to this question allows practitioners to un-
derstand the distribution of vulnerabilities associated with
components of software that aggregate third-party software.
Special focus is given to high-critical vulnerabilities. We
hypothesize that as the occurrence of a vulnerability increases,
the severity of the vulnerability will decrease. This is because
software developers tend to be more concerned with high-
severity vulnerabilities and will issue fixes faster than for low-
severity vulnerabilities.

Zhttps://cve.mitre.org
3https://github.com/advisories
Ahttps://www.first.org/cvss


https://nvd.nist.gov/
https://cve.mitre.org
https://github.com/advisories
https://www.first.org/cvss

SBOMs
CycloneDX
Trivy 0.39.0

Vulnerability
Dataframes

¢

Interlynk SBOM
Database

Fig. 1: The study design consists of 5 steps. Data extraction
occurs in steps 1 and 2, data processing is performed in steps
3 and 4, and the analysis is carried out in step 5.

TABLE I: Trivy & Grype Findings Total Counts

Severity Level Trivy | Grype
None 2,920 45
Low 45,380 1,594
Medium 170,422 | 20,619
High 83,123 | 17,329
Critical 7,177 3,966
Total 309,022 | 43,553
Unique Number of Vulnerabilities 7,244 4,061

RQ2: What are the most vulnerable software compo-
nents in packages across the selected SBOMs?

The answer to this question provides practitioners with
insights regarding security risks found in common third-party
source code used by software developers. By leveraging a
repository of SBOMs mined from a wide variety of software,
we can analyze a large number of SBOMs that span multiple
domains. The implications for practitioners are important in
that it allows them to understand the sources of vulnerable
third-party code and whether the risks of including a packet
are worth the risks.

B. Data Extraction and Processing

We analyzed the security of 1,151 SBOMs from software
repositories of varying domains and sizes. The design of
this study including data extraction, processing, and analysis
consists of 5 steps and is depicted in Figure |1f .

In step I we extracted and downloaded all SBOMs from
Interlynk’s database through a combination of SQL queries
and HTTP requests. In step 2 we narrow the selection of
SBOMs. We focused on SBOMs created using the generation
tool Trivy (version 0.39.0). Next, in step 3, we ran the selected
static analysis tools, Trivy and Grype, on each SBOM obtained
from the previous step and outputted their results in SARIF
format. In step 4, we extracted the reported vulnerabilities
and built two R dataframes. The first dataframe contains
each vulnerability found across the mined SBOMs, a count
of how many times that vulnerability occurred across the
mined SBOMs, and the CVSS score for each vulnerability.
The second dataframe contains each dependency found across
the mined repositories and the count of unique vulnerabilities

found in the dependency. Finally in step 5 we performed data
analysis focusing on the generation of graphs El

C. Data Analysis

To address RQ1 we built scatter plots using outputs from
Trivy and Grype, shown in Figure 2a] and Figure 2b] respec-
tively.

Each scatter plot helps us understand the distribution of vul-
nerability findings across SBOMs. Every blue dot corresponds
to a single vulnerability. The x-axis is the CVSS score for
each vulnerability and the y-axis represents the total number
of occurrences for a given vulnerability.

To measure the number of occurrences of each vulnerability,
we analyzed the static analysis tool results and built a com-
prehensive list of each unique vulnerability as well as a count
of the number of times that a unique vulnerability occurred.
The scatter plots provide insights regarding the distribution of
vulnerabilities across common third-party code. Additionally,
using these plots, we can highlight the presence of high-critical
vulnerabilities. Table [, provides details regarding specific
counts of low to critical vulnerabilities found by each tool
across the selected SBOMs.

To address RQ2 we built bar graphs with outputs from
Trivy and Grype. The plots, shown in Figure [3 and Figure {4
display the top 25 most vulnerable packages found across the
mined SBOMs. We determined the most vulnerable packages
through a count of vulnerabilities. Counts for each package
were obtained by looking at every vulnerability found by the
static analysis tools. We then extracted the metadata associated
with each vulnerability, which includes the package where the
vulnerability originates from, and used this data to compile a
comprehensive list of the total vulnerabilities present in each
package across the mined SBOMs.

IV. RESULTS

RQ1: What is the distribution of vulnerabilities across
the selected SBOMs? Raw numbers associated with every
severity level from all mined SBOMs are shown in Table|[} The
dataset consists of 1,151 SBOMs. Trivy reported 309,022 vul-
nerabilities and Grype reported 43,553 vulnerabilities. Further
analysis from Figure [2a]and Figure 2b] reveals that our findings
differ significantly from our hypothesis that as the occurrence
of a vulnerability increases or decreases, the severity will
correspondingly decrease or increase. Both tools report a small
number of vulnerabilities with low CVSS severity scores. The
largest grouping of vulnerabilities occurs in the medium to
high range with 82% of Trivy’s findings and 87% of Grype’s
findings assessed as medium or high. Additionally, Trivy
reported vulnerabilities that occurred far more often which
consisted of mostly medium and high vulnerabilities. Trivy
reported a vulnerability as having 4,259 instances across the
selected SBOMs. This is a large number of instances for a
single vulnerability. These findings demonstrate a need for
additional assessments of software supply chain security.

Shttps://github.com/MSUSEL/msusecl-sbom-security-tool-pipeline:


https://github.com/MSUSEL/msusecl-sbom-security-tool-pipeline

4000 -
3500 A
3000 .
L |
(0]
8 2500
c
E 2000
3 ] [ ]
[l o @ 8 9 L] I
O 1500 | : n
1000
§ o0 8 eho ,"i'
500 4 s
o v
0 “ ji.‘-“_.h“m,
0 2 4 6 8 10
CVSS Score
(a) Trivy Findings
4000 -
3500 A
3000 A
(0]
8 2500
c
£
5 2000 -
(]
[]
O 1500 A
1000
500 1
8
ol = a v FIps M
0 2 4 6 8 10
CVSS Score

(b) Grype Findings

Fig. 2: Distribution of CVSS vulnerability scores from static
analysis tools. Trivy and Grype, labeled respectively. Each blue
dot represents a single vulnerability. The y-axis shows the total
number of occurrences found for a given vulnerability.

The data shown in Table [, and figures [2a] and 2b] show a
significant difference in the results of Trivy and Grype. Trivy
found 7,177 unique vulnerabilities and 309,022 total vulnera-
bilities whereas Grype only found 4,061 unique vulnerabilities
and 43,553 total vulnerabilities. Additionally, Trivy reported
a large group of vulnerabilities that have a high occurrence
across the mined repositories not present in Grype’s findings.
These findings reveal high variability that makes us question
tool accuracy and validity. Specifically, Trivy reported over
seven times as many vulnerabilities as Grype.

RQ2: What are the most vulnerable software compo-
nents in packages across the selected SBOMs? An exami-
nation of results shown in figures [3] and [ reveals that Trivy
found 14 unique packages with vulnerability counts ranging
from 204 to 534 and Grype found 8 unique packages with

vulnerability counts ranging from 53 to 600. This illustrates
that using such packages expands the potential attack surface
in a software product, which falls beyond the direct control
of the software developer. Additionally, these results show
that it is not uncommon for packages to remain vulnerable
across tool versions. This is made evident by observing the
repetition of the same package across different versions in
the top 25 most vulnerable packages reported by both tools.
For example, Grype reported six versions of Jenkins Core
with vulnerability counts ranging from 119-124. Finally, these
findings also reveal the disagreements between Trivy and
Grype. Only two packages across the top 25 reported by each
tool were common and the vulnerability counts vary greatly
between the two plots.

V. DISCUSSION

Our results indicate a significant amount of vulnerabilities in
common third-party code. In this study, Trivy found 309,022
vulnerabilities and Grype found 43,553 across 1,151 SBOMs.
Additionally, both tools reported a large amount of critical
vulnerabilities with Trivy finding 7,244 and Grype finding
3,966. We borrow from the practitioner community to label
vulnerabilities with a high or critical CVSS score and a high
occurrence rate as showstoppers. Results from Trivy show
a significant number of showstopper vulnerabilities in the
selected SBOMs. A review of Figures [2a] and [2b] shows
that Grype’s reported showstopper vulnerabilities are hard
to identify when comparing the two plots. This is due to
Trivy’s large amount of findings, causing it to appear that
Grype reported almost none. However, a close examination of
Figure [2b] reveals that there are many vulnerabilities reported
by Grype with a high CVSS rating that occur hundreds of
times over the selected SBOMs. This displays that while
Grype found significantly less vulnerabilities than Trivy, it
still reported many showstopper vulnerabilities. These findings
suggest the potential latent risks of common third-party code.

Although showstopper issues in traditional quality assurance
(QA) environments force teams to halt deployment until fixes
or patches are issued, it is less clear how the handling of
such showstoppers is handled when hidden in packages. The
packages identified in our findings are widely used in software
development with many familiar names such as OpenSSL,
BinUtils, and FFMPEG. The most vulnerable package found
by Grype, ImageMagick, has over 10,000 stars on GitHub
[19]. Another vulnerable package, Tensorflow, has a 37%
market share of the data science and machine learning category
[20]. Our results allow software vendors an opportunity to
assess the security of packages that they may need to include
in their projects. This allows software developers to mitigate
potential security risks that can impact the software supply
chain.

Finally, a key finding from these results is the dispar-
ity in vulnerabilities reported by the selected static analysis
tools, Trivy and Grype. Trivy reported over four times as
many vulnerabilities as Grype, 3,211 more critical severity
vulnerabilities, and over four and half times the number



600

500

400

300

2004

100 4

Vulnerability Count

kernel-headers

v4.18.0-425.10.1.el8_7

kernel-headers

v4.18.0-425.19.2.el8_7

kernel-headers

v2.4.0
v4.18.0-425.3.1.el8

linux-libc-dev
vel8.4.0

kernel-headers

vel8.4.0
v4.18.0-372.19.1.el8 6

vel8.4.0
mysql-server_8.0.26-1.

vel8.4.0
mysql-errmsg_8.0.26-1

-common_8.0.26-1

v4.9.110-3

linux-libc-dev
v4.9.130-2
linux-libc-dev
v3.16.36-1
linux-libc-dev
v4.9.168-1
linux-libc-dev
v3.16.39-1
jackson-databind
v4.9.189-3
mysql_8.0.26-1
tensorflow

linux-libc-dev

mysql

v2.5.0

linux-libc-dev

Package Name
linux-libc-dev
jackson-databind
mysql_8.0.26-1
mysql-common_8.0.26-1
mysql-errmsg_8.0.26-1
mysql-server_8.0.26-1.
kernel-headers
tensorflow
libgpac4
mecab_0.996-1.module
imagemagick
imagemagick-6.q16
imagemagick-common
libmagickcore-6-arch-config

v4.19.269-1
linux-libc-dev
v5.10.162-1

libgpac4
v0.5.2-426-gc5ad4ed
vel8.4.0
imagemagick
v8:6.8.9.9-5
v8:6.8.9.9-5

v8:6.8.9.9-5
libmagickcore-6-arch-config

v8:6.8.9.9-5
imagemagick-common

linux-libc-dev
imagemagick-6.q16

v5.15.0-67.74
mecab_0.996-1.module

Package Name & Version

Fig. 3: Top 25

most vulnerable packages found by Trivy across the mined SBOMs.

600

5

<}

s}
.

400

300 4

Vulnerability Count

=

o

o
L

1
ils
5
s

ffmpeg
binut

v4.1.6-1~debl0ul
v2.5.0

tensorflow
v2.5.1

jackson-databind

mw
i
o
> £
Q

~ 0
=]
=
o O
o
<
ki
~
~
o
>

v2.60.2

v2.60.1
jenkins-core

v2.32.3
jenkins-core

v2.28-5
jenkins-core

imagemagick
v6.9.11.60
imagemagick
v6.9.10.23
imagemagick
v6.8.9.9-5
tensorflow
v2.25
binuti
jenkins-core

v2.27-44 base.el7 9

v2.46.1
jenkins-core

Package Name
imagemagick
ffmpeg
tensorflow
Jjackson-databind
binutils
Jjenkins-core
openss|

-
|
-
-
|
mm libreoffice

binutils
v2.31.1-16

jackson-databind
v2.4.0
jackson-databind
v2.3.3

binutils
v2.30-79.el8

jackson-databind
v2.9.6

v2.46.2
jenkins-core
v2.46.3
openssl|
libreoffice
v2.9.8

v1.0.2k-25.el7_9
v6.1.5-3

jackson-databind

Package Name & Version

Fig. 4: Top 25 most vulnerable packages found by Grype across the mined SBOMs.

of high severity vulnerabilities (i.e. showstoppers). This has
implications in the SBOM tooling space and brings up a
lot of questions regarding the validity and accuracy of these
tools. Through discussions with our industry partners and
subject matter experts, we found that Trivy and Grype are
two of the most widely used SBOM static analysis tools in
the software supply chain security assessment, thus if Grype is
significantly under-reporting vulnerabilities in software supply
chains, software providers utilizing Grype in their supply
chain security assessment could be uninformed regarding large
amounts of vulnerabilities. On the other hand, Trivy could
be over-reporting the number of vulnerabilities in software
supply chains. This could lead software providers using Trivy
to waste effort tracking vulnerabilities that do not exist in their
software supply chain. Additionally, the lack of agreement
between tools is symptomatic of consistency problems in static
analysis tools when reporting results. These problems occur

across vendors and even across different versions of the same

tool [21].
VI. THREATS TO VALIDITY

In order to determine security risks, we selected two popular
open source static analysis tools, Trivy and Grype, that ingest
SBOMs and report vulnerabilities in a software’s supply chain.
The results of this study are reliant on the ability of Trivy and
Grype to report accurate vulnerability findings, therefore the
selected tools introduce multiple threats to validity. We exam-
ine four different types of threats to validity: construct validity,
content validity, internal validity, and external validity; which
are based on the classification scheme of Cook, Campbell and
Day and of Campbell et al. [23]].

In this paper, construct and content validity refer to the
meaningfulness of the measurements produced by Grype
and Trivy to accurately represent the security risk posed by
SBOMs that are used in supply chains. Both tools produce



vulnerability counts that are present in SBOMs, however some
vulnerabilities reported by the tools may not be exploitable.
This can be due to the vulnerability residing in a function that
is not called, or the vulnerability being unreachable. Therefore
the security risk indicated by these tools could include false
positives. To mitigate construct and content validity, we have
also made use of the CVSS score metric associated with
vulnerabilities.

Internal validity refers to cause and effect relationships
between independent and dependent variables [25]]. The inde-
pendent variables in this study include the number of vulnera-
bilities reported by each Grype and Trivy, and the CVSS score.
Our dependent variable is the security risk. There are a number
of problems that threaten internal validity. Trivy and Grype
each use their own internal vulnerability database to perform
vulnerability mapping while scanning SBOMs. Additionally,
Trivy and Grype use different data sources. For example
Trivy stores Photon Security Advisoryﬁ] information in its
vulnerability database while Grype does not. These differences
can cause the tools to miss the same vulnerabilities due to
differences in their respective internal databases. We also make
the assumption that the CVSS score is an accurate measure
of a vulnerability’s severity, however the subjectivity of this
metric allows for human error and uncertainty [24f, which
can cause vulnerabilities to be assigned inaccurate ratings.
Further, not all vulnerabilities are assigned a CVSS score, and
assigning a new score increases uncertainty between cause and
effect of security risks. To mitigate threats to internal validity
we can force both tools to use the same external sources
(i.e., databases). Further, recent studies [21]] find that different
versions of the same static analysis tool often produce different
results when analyzing the same inputs—calling the accuracy
and trustworthiness of static analysis tools into question. Due
to the disparity in findings from Trivy and Grype, it is possible
that we selected versions of Grype and Trivy that contained
bugs thus giving inaccurate results. In order to mitigate this
threat, a systematic analysis of all versions of each static
analysis tool over a large corpus of SBOMs is needed. We
hope to perform such analysis in the future as discussed in
the future work section.

External Validity refers to the ability to generalize results.
Whilst this study attempts to be broad and cover a wide range
of software, we only analyzed 1,151 SBOMs. To mitigate this
threat, a larger dataset would allow us to randomly sample
SBOMs from multiple domains and statistically generalize
conclusions to larger populations.

VII. FUTURE WORK

Potential areas for future work include the validation of
findings found by static analysis tools Trivy and Grype. We
would also like to expand the corpus of available tools to
further explore SBOM static analysis. This is important, espe-
cially to quality assurance engineers and developers, because
we want to ensure accurate scoring when assessing software

Shttps://packages.vmware.com/photon/photon_cve_metadata/

supply chain security risks. Part of this work includes building
SBOMs injected with a predetermined and known set of
vulnerabilities and then comparing the outputs of the static
analysis tools to expected outputs. Additionally, investigat-
ing the accuracy of the selected static analysis tools across
versions is needed due to the possibility of bugs introducing
false positives [21]. Lastly, comparing the findings of SBOM
static analysis tools across a large corpus of SBOMs will help
increase the significance and power of the results.

Further statistical analysis is planned for the dataset. We
will use descriptive statistics to better summarize the dataset.
Measures of central tendency, dispersion, and frequency can
reveal interesting characteristics about the distributions of
vulnerabilities across the selected SBOMs and across results
from both tools. To gain deeper insights into the outcomes
generated by Grype and Trivy tools, we will first employ
unconstrained ordination to better understand overall patterns
in the data and follow up with hierarchical cluster analysis.
Cluster analysis groups SBOMs according to the common-
alities of vulnerabilities found in them. By clustering on
SBOM vulnerabilities, we can potentially identify the third-
party code responsible for these similarities. For instance, we
can determine the extent to which commonalities in imported
libraries are driving the groupings in the cluster analysis. This
approach provides valuable additional insights into the security
risks associated with software supply chains, and will directly
assist software practitioners in identifying packages that intro-
duce vulnerabilities. Finally, we plan on performing controlled
experimentation with both tools. The goal is to understand
if variations in tool versions and variations in security risk
scores across different domains are statistically significant.
Depending on the characteristics of the distributions, both
parametric and non-parametric techniques are anticipated.

Another interesting area of exploration is whether elements
of SBOMs, such as generation tools and specifications in-
fluence the ability of SBOM static analysis tools to provide
accurate findings. If such an influence exists, the researchers
should identify the specific aspects that significantly impact
the accuracy of the results.

Finally, investigations that explore software quality mod-
eling techniques and how they can be used to characterize
software supply chain security risks are of utmost interest.
The development of quality models that utilize findings from
SBOM static analysis tools is a potential area of research that
would allow integration into CI/CD environments. Software
quality modeling approaches would allow software providers
to track and monitor the quality of their software supply
chain using the evaluation of SBOM structure (i.e., compliance
to standards) as well as the content of the SBOM. QA
practitioners and users can benefit by setting and maintaining
supply chain security quality goals.

VIII. CONCLUSION

This study provided an initial examination of the security
risks within the software supply chain, by focusing on 1,151


https://packages.vmware.com/photon/photon_cve_metadata/

SBOMs extracted from third-party repositories. These reposi-
tories encompass a diverse range of software, spanning various
domains and project sizes.

We found large amounts of vulnerabilities present within
the software supply chains of the analyzed projects. Ad-
ditionally, security risks can vary drastically depending on
the static analysis tool used. The calibration and empirical
validation of current and new SBOM analysis tools continue
to require attention. We can also assert that dependencies
between packages can further contribute to latent security risks
that affect software supply chains. Some packages are much
more vulnerable than others given the number of vulnerability
counts found by the tools. The most vulnerable packages were
found to be very common in software development and these
findings will aid software providers when assessing third-party
software.

This research demonstrates the potential of SBOMs in eval-
uating software supply chain security. However, substantial
work is still required in the SBOM domain before software
providers can completely rely on the results derived from
leveraging SBOM:s.

IX. ACKNOWLEDGEMENTS

This research was conducted with the U.S. Department
of Homeland Security (DHS) Science and Technology Di-
rectorate (S&T) under contract 70RSAT22CB0000005. Any
opinions contained herein are those of the authors and do not
necessarily reflect those of DHS S&T.

REFERENCES

[1] Sonatype, “The 2021 State of the Software Supply Chain Re-
port.” [Online]. Available: https://www.sonatype.com/resources/state-of-
the-software-supply-chain-2021

[2] The White House, Executive Order 14028. (2021, May 12).
“Executive Order on Improving the Nation’s Cybersecurity.” [Online].
Available: https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/

[3] D. M. Rice, “An Extensible, Hierarchical Architecture for Analysis
of Software Quality Assurance,” M.S. thesis, Gianforte School of
Computing, Montana State University, Bozeman, 2020

[4] P. Emanuelsson and U. Nilsson, “A Comparative Study of Industrial
Static Analysis Tools,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 217, pp. 5-21, Jul. 2008, doi: 10.1016/j.entcs.2008.06.039.

[51 N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting Web application vulnerabilities,” in 2006 IEEE Symposium on
Security and Privacy (S&P’06), Berkeley/Oakland, CA: IEEE, 2006, p.
6 pp. — 263. doi: 10.1109/SP.2006.29.

[6] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in Proceedings of the 14th conference
on USENIX Security Symposium - Volume 14 (SSYM’05). USENIX
Association, USA, 18.

[71 Anchore Inc. “anchore/grype.” GitHub.com. [Online].
https://github.com/anchore/grype (Accessed: Sep. 14 2023).

Auvailable:

[8]

[9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

Aqua Security Software Ltd. “aquasecurity/trivy.” github.com [On-
line]. Available: https://github.com/aquasecurity/trivy (Accessed: Sep.
14, 2023).

New York-Presbyterian.
[Online]. Available:
(Accessed: Sep. 14, 2023).
FOSSA. “Audit-Grade Open Source Dependency Protection.” fossa.com

[Online]. Available: https://fossa.com/ (Accessed: Sep. 14, 2023).
N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and

L. Williams, “What are Weak Links in the npm Supply Chain?,” in
Proceedings of the 44th International Conference on Software Engi-
neering: Software Engineering in Practice, May 2022, pp. 331-340. doi:
10.1145/3510457.3513044.

Y. Wang et al., “An Empirical Study of Usages, Updates and Risks
of Third-Party Libraries in Java Projects,” in 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
Adelaide, Australia: IEEE, Sep. 2020, pp. 35-45. doi: 10.1109/IC-
SME46990.2020.00014.

B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu, “An Empirical Study on
Software Bill of Materials: Where We Stand and the Road Ahead,” in
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE), Melbourne, Australia: IEEE, May 2023, pp. 2630-2642.
doi: 10.1109/ICSE48619.2023.00219.

P. J. Caven, S. R. Gopavaram, and L. J. Camp, “Integrating Human In-
telligence to Bypass Information Asymmetry in Procurement Decision-
Making,” in MILCOM 2022 - 2022 IEEE Military Communications
Conference (MILCOM), Rockville, MD, USA: IEEE, Nov. 2022, pp.
687-692. doi: 10.1109/MILCOMS55135.2022.10017736.

D. Yan, Y. Niu, K. Liu, Z. Liu, Z. Liu and T. F. Bissyandé, "Estimat-
ing the Attack Surface from Residual Vulnerabilities in Open Source
Software Supply Chain,” 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS), Hainan, China, 2021,
pp. 493-502, doi: 10.1109/QRS54544.2021.00060.

S. Benthall, “Assessing software supply chain risk using pub-
lic data,” 2017 IEEE 28th Annual Software Technology Con-
ference (STC), Gaithersburg, MD, USA, 2017, pp. 1-5, doi:
10.1109/STC.2017.8234461.

B. M. R. Haque, “An Analysis of SBOM in the Context of Software
Supply-chain Risk Management,” M.S. thesis, 2023. Accessed: Nov. 23,
2023. [Online]. Available: https://www.duo.uio.no/handle/10852/103847
Interlynk. “SBOM Benchmark — Build Better SBOM.” [Online]. Avail-
able: https://sbombenchmark.dev (Accessed: Nov. 23, 2023).
ImageMagick Studio LLC. “ImageMagick.” GitHub.com. [Online]

“nyph-infosec/daggerboard.” github.com
https://github.com/nyph-infosec/daggerboard

Available: https://github.com/ImageMagick/ImageMagick (Accessed:
Nov. 25, 2023).

6sense. “TensorFlow - Market Share, Competitor Insights in
Data Science And Machine Learning” [Online]. Available:

https://www.6sense.com/tech/data-science-machine-learning/tensorflow-
market-share (Accessed: Nov. 25, 2023).

Reinhold A.M., Weber T., Lemak, C, Reimanis D., Izurieta C., "New
Version, New Answer: Investigating Cybersecurity Static-Analysis Tool
Findings,” IEEE International Conference on Cybersecurity and Re-
silience, CSR 2023, Venice Italy, July 2023.

T. D. Cook, D. T. Campbell, and A. Day. 1979. Quasiexperimentation:
Design & Analysis Issues for Field Settings. Houghton Mifflin, Boston,
MA

D. T. Campbell, J. C. Stanley, and N. L. Gage. 1963. Experimental and
Quasi-experimental Designs for Research. Houghton Mifflin, Boston,
MA.

Izurieta C., Griffith 1., Reimanis D., Luhr R., ”On the Uncertainty
of Technical Debt Measurements,” IEEE ICISA 2013, International
Conference on Information Science and Applications, Pattaya, Thailand,
June 2014. 10.1109/ICISA.2013.6579461

Cahit KAYA., "Internal validity: A must in research designs.”, Educa-
tional Research and Reviews 10, no. 2 (2015): 111-118.



	Introduction
	Related Work
	Methodology
	Research Questions
	Data Extraction and Processing
	Data Analysis

	Results
	Discussion
	Threats to Validity
	Future Work
	Conclusion
	Acknowledgements
	References

