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Abstract—Metamorphic testing is a technique that uses meta-
morphic relations (i.e., necessary properties of the software under
test), to construct new test cases (i.e., follow-up test cases), from
existing test cases (i.e., source test cases). Metamorphic testing
allows for the verification of testing results without the need of test
oracles (a mechanism to detect the correctness of the outcomes
of a program), and it has been widely used in many application
domains to detect real-world faults. Numerous investigations
have been conducted to further improve the effectiveness of
metamorphic testing. Recent studies have emerged suggesting a
new research direction on the generation and selection of source
test cases that are effective in fault detection. Herein, we present
two important findings: i) a mutant reduction strategy that is
applied to increase the testing efficiency of source test cases, and
ii) a test suite minimization technique to help reduce the testing
costs without trading off fault-finding effectiveness. To validate
our results, an empirical study was conducted to demonstrate
the increase in efficiency and fault-finding effectiveness of source
test cases. The results from the experiment provide evidence to
support our claims.

Index Terms—Metamorphic testing, metamorphic relation, test
case generation, test suite minimization, mutation testing

I. INTRODUCTION

Metamorphic Testing (MT) is a technique used to alleviate
the oracle problem of software under test (SUT) [1]. A test
oracle is a mechanism used to detect the correctness of the
outcomes of a program [2]. In most cases of software behavior,
it is easier to predict relationships between the elements of
the output of a program, than to characterize the precise
output given some input. For example, consider a program
that computes the average of a list of real numbers. It is
hard to correctly predict the observed output when the input
has infinite possibilities. Thus, using this approach, we cannot
validate whether the returned average is correct. However, we
can permute the list of real numbers used in the input, and
check to see if the returned output matches the output from
the original test. If the outputs do not match, then there is a
potential ’bug’ (fault) in the program. This type of property
is called a metamorphic relation (MR), a necessary property
of the SUT that specifies a relationship between multiple test
inputs and their outputs [3]. Thus, from existing test cases (i.e.,
source test cases) MRs are used to generate new test cases

(i.e., follow-up test cases). The set of source and follow-up
test cases are then executed on the SUT and the outputs are
checked according to the corresponding MRs. The SUT can
be considered faulty if an MR is violated.

MT has been successful in finding bugs in systems across
various domains and has been successfully applied to detect-
ing previously unknown faults in different domains such as
web services, computer graphics, simulation and modeling,
embedded systems etc. [4]. To date, work done on improving
the fault detection effectiveness of MT has mainly focused
on developing quality MRs [4]. However, developing such
MRs is a labor-intensive task that requires the involvement of
domain experts. Another, avenue to improve the fault detection
effectiveness of MT, which has not, to our knowledge, been
explored thus far, is to systematically generate the source test
cases. In fact, most of the previous studies in MT have used
randomly generated test cases or existing test cases as source
test cases when conducting MT [5]–[8], [12]. Our previous
work showed that the effectiveness of MT can be improved
by systematically generating the source test cases based on
some coverage criteria such as line, branch, and weak mutation
(WM) [9]. But, it is sub-optimal to use a combination of all
the coverage-based techniques to test numerical programs. A
problem arises because test cases generated based on separate
coverage criteria can be redundant, which means that there can
be test case overlaps with the same code coverage as well as
the same mutant killing rate making this approach inefficient.

In our research, we selected numerical programs as our
target SUT since this domain has been relatively unexplored
in the MT research [4]. The goal of this research is to select
efficient and effective coverage-based test suites. To achieve
this goal, we have divided our approach into two parts. First,
we perform mutation analysis using a reduced set of mutants.
Mutation analysis is necessary since we will apply it as our
performance measurement metric to measure the fault-finding
effectiveness of our test suites. This approach reduces the
time and budget of the entire testing process. Second, we
select the best coverage-based test suites among line, branch,
and WM based on their cost-effectiveness and fault-finding
effectiveness. In this way, we find the set of test suites with
better efficiency and similar fault-finding effectiveness.



II. BACKGROUND

MT is a testing technique that aims to alleviate the oracle
problem. However, the effectiveness of MT not only depends
on the quality of MRs but also on source test cases. In
this section, we discuss MT and source test case generation
techniques. Specifically, we discuss line, branch, and WM
coverage.

A. Metamorphic Testing

Source test cases are used in MT to generate follow-up test
cases using a set of MRs identified for the program under
test (PUT) [10]. MRs are identified based on the properties
of the problem domain, such that said properties uniquely
identify some expected behavior of the problem [11]. For
example, there exist some unique characteristics of weather
systems that help testers to find the correct MRs. We can create
source test cases using techniques like random testing [12],
structural testing [13], or search-based testing [9]. Follow-up
test cases are generated by applying the input transformation
specified by the MRs. After executing the source and follow-
up test cases on the PUT we can check to see if the MR was
violated. The violation of the MR during testing indicates fault
in the PUT. Since MT checks that the relationships between
the inputs and outputs of a test program are maintained under
the conditions of an MR, we can use this technique when the
expected result of a test program is unknown. For example,
in figure 1, a Java method add values is used to illustrate
how source and follow-up test cases work within a PUT. The
add values method aggregates the array elements passed as an
argument. The source test case, t = {3, 43, 1, 54} is randomly
generated and tested on add values. The output of this test
case is 101. In this program, we would expect that when a
constant c is added to every element in the input collection,
the output should increase accordingly. This expected behavior
is used to generate an MR to conduct MT on this PUT. A
constant value 2 is added to each element in the collection
to create a follow-up test case t

′
= {5, 45, 3, 56} that is then

run on the PUT. The output of the follow-up test case is 109.
To satisfy this Addition MR, the follow-up test output should
be greater than the source output. In this MT example, the
Addition MR is satisfied for the given source and follow-up
test cases.

B. Coverage-based Test Case Generation

In this work, we used EvoSuite as the automated test
case generation tool [14]. EvoSuite automatically generates
test cases with coverage criteria e.g. line, branch, and WM
approaches. EvoSuite uses an evolutionary search approach
that simultaneously evolves test suites with respect to an entire
coverage criterion. Below, we briefly describe the systematic
approaches used by EvoSuite to generate coverage-based test
suites.

Line Coverage In Line coverage, to cover each statement
of source code, it is required that each basic code block in
a method is reached (except comments) [15]. In traditional
search-based testing techniques, this reachability would be

expressed by an association of branch distance and approach-
level [17]. The branch distance measures how different a
predicate (i.e., a decision-making point) is from evaluation
to an expected target result. For example, given a predicate,
a == 7 and an execution where the value of a = 5, the
branch distance to the predicate evaluating to true would be
|5 − 7| = 2, whereas execution where the value of a = 6
is closer to being true with a branch distance of |6− 7| = 1.
Branch distance can be estimated by applying a set of standard
rules [17], [18]. The approach level measures the closest
point of a given execution to the target node. If any test suite
executes all the statements of a method, then the approach
level will be 0, which means it will become insignificant.

Branch Coverage Many popular tools have implemented in
practice the idea of branch coverage, even though this practical
approach may not always match the more theoretical interpre-
tation of covering all edges of a program’s control flow [14]–
[16]. Branch coverage is often measured by maximizing the
number of branches of conditional statements that are executed
by a test suite. Thus, to satisfy a unit test suite for each of the
branch statements, there is at least one test case that satisfies
the branch predicate to false and at least one test case that
satisfies the branch predicate to true. In branch coverage, the
fitness function of a test suite is to cover all the branches in a
method. This value is measured by calculating the closeness
with which a test suite covers all the branches of a PUT.

WM When generating test cases from test generation tools,
the preferred practice is to satisfy the constraints or conditions
(i.e. in WM when a test case reaches the mutated statement
of a method) rather than a developer’s preferred boundary
cases [14]. In WM testing, small code modifications are
applied to the PUT. Then, the test generation tools are forced
to generate values that can distinguish between the original
test case and the mutant test case. In mutation testing, a test
case is considered ”killed” when the execution result of the
mutant version is different than the original version of the
PUT. The WM criteria are satisfied when at least one test
case from the unit test suite reaches the infection state of
the mutant. To measure the fitness value of the WM, it is
required to calculate the infection distance with respect to a
set of mutation operators [15].

III. MUTATION TESTING

Mutation testing has been used to evaluate the fault de-
tection effectiveness of the automated test case generation
approaches [19]. Mutation testing is a fault-based testing
technique that measures the effectiveness of the test cases
of the SUT. Many experiments suggest the usage of mutants
as a proxy to real faults when comparing testing techniques
[20]. Briefly, the testing technique follows these steps: First,
mutants are created by simply seeding faults into a program.
By applying syntactic changes to the original source code,
new faulty versions of the original programs are generated.
Each syntactic change is determined by an operator called
a mutation operator. Test cases are then executed for the
faulty and the original versions of the program and checked to



public static int add_values(int[] a)
{

int sum =0;
for(int i=0;i<a.length;i++){

sum += a[i];
}
return sum;

}

a[4]={3,43,1,54}

a[4]={5,45,3,56}
sum=109

sum=101

Add c=2 to
each element

of a

Source Test Case

Follow-up Test Case

Source Output

Follow-up Output

Fig. 1. Test Source and follow-up inputs on PUT.

see whether they produce different responses. If the response
of the mutant is different from the original program, then
we say that the mutant has been killed, and the test case
is deemed to have the ability to detect faults effectively for
that program. Otherwise, the mutant remains alive. When a
mutant is syntactically different but semantically identical to
the original program, it is referred to as an equivalent mutant.
There are four common equivalent mutant situations: the
mutant cannot be triggered, the mutant is generated from dead
code, the mutant only alters the internal states of a program,
and the mutant only improves the speed of execution of a
program. The percentage of killed mutants to the total number
of non-equivalent mutants provides an adequacy measurement
of the test suite, which is called the mutation score.

IV. TEST SUITE MINIMIZATION APPROACH

As systems evolve, their test suites are modified to accom-
modate new functionality. It is possible that redundant test
cases (i.e., test cases for components that are already covered
by other existing test cases) are introduced as test suites grow.
Test suite minimization techniques address this problem by
seeking to permanently remove redundant test cases in a test
suite. The goal is to create a more efficient test suite, that is,
smaller in size but effective at finding faults. The minimization
process is typically accomplished without the knowledge of
the changes in the new version of the program [21].

Our goal for this research is to select efficient and effective
coverage-based test suites. To achieve this goal, we divided
our approach into two parts. In the first part, we performed
mutation analysis using a reduced set of mutants. Mutation
analysis is necessary because we apply it as our performance
measurement metric to assess the fault-finding effectiveness
of our test suites. This approach saves the time and budget of
the entire testing process. In the second part, we selected the
best test suites among line, branch, and WM coverage based
on their cost and fault-finding effectiveness. This allowed us
to find reduced test suites with better efficiency and similar
effectiveness.

A. Mutants Reduction Approach

Selecting representative subsets from a given set of mutants
is the principal aim of mutant reduction strategies. This
technique reduces the application cost of mutation testing

which leads to reductions in the total cost of software testing.
Recent studies have shown two mutation reduction techniques
that have proven to be highly effective [22]. But to the best of
our knowledge, there are no mutation reduction techniques that
have been applied to evaluate the fault-finding effectiveness of
source test case generation techniques in MT. We claim that
applying mutation reduction techniques to find better test case
generation approaches is cost-effective in terms of time and
budget. Thus, our goal is to find a better mutation reduction
technique for our test case generation approach.

1) Random Sampling Technique: A major portion of the
mutation testing demands is influenced by the generation and
execution of the candidate set of mutants. By considering a
small sample of mutants, a significant cost reduction can be
achieved. Empirical studies have shown that a selection of 10%
of mutants results in a 16% loss in the fault detection ability
of the produced test sets when compared to full mutation
testing [23]. In this study, we followed first-order mutation
testing strategies [24] and selected a random x% portion of
the initial mutants set, where x = 10, 20, 30, 40, 50, and 60.
Our target was to find out which random % of selected mutants
is a better representative of the total mutants set.

2) Operator Based Mutant Selection: Since mutant oper-
ators generate different numbers of mutant programs, Offutt
et al. proposed N − selective mutation theory, where N is
# of mutant operators [25]. In their experiment, they divided
the mutant operators into three general categories based on the
syntactic elements that they modify. The three categories are
Replacement-of-operand operators (i.e., replace each operand
in a program with each other legal operand), Expression
modification operators (i.e., modify expressions by replac-
ing operators and inserting new operators), and Statement
modification operators (i.e., modify entire statements). Their
experiments suggest that Expression modification operators
with a smaller number of mutants than the total mutant set can
be effective and the execution time is also shown to be linear.
In this study, we applied Expression modification operators as
mutants set to do the mutation analysis.

B. Effective Test Suites Selection

In preliminary work, we showed that coverage-based test
cases have better fault detection effectiveness than randomly
generated test cases [26]. However, it is not feasible to use all



of the coverage-based techniques together to test numerical
programs. This is because the process is time-consuming and
test cases are repetitive regarding code coverage. Further, the
fault detection effectiveness of test suites can vary based on
the methods used. Therefore, we need an effective approach
to help select better test suites when approaching SUT.

Mutation testing has been proven to be an effective ap-
proach to assessing the fault detection effectiveness of test
case generation techniques. In our approach, we run mutation
testing on the SUT and applied the test cases generated by the
coverage-based test case generation techniques. After that, we
measured the mutation score for each of the techniques. The
test case generation technique with the highest mutation score
was selected as a source test suite to test SUT.

V. EMPIRICAL EVALUATION

This section describes the design of the empirical evaluation
approach: the research questions we will answer for our
experiments, the description of the subject programs selected
for the evaluation, description of the identified MRs for the
subject programs and the evaluation process of the case study.

A. Research Questions

• Research Question 1 (RQ1): Which Mutant reduction
technique is best suited for detecting faults in MT?

• Research Question 2 (RQ2): Which coverage-based test
suites have better fault-finding effectiveness?

• Research Question 3 (RQ3): Can test suite minimization
techniques reduce the cost of executing a test suite and
what is their effect on the fault detection effectiveness of
a test suite?

B. Subject Programs

We built a code corpus containing 96 methods that take
numerical inputs and produce numerical outputs. We obtained
these functions from the following open-source projects:

• The Colt Project1: A set of open source libraries written
for high-performance scientific and technical computing
in Java.

• Apache Mahout2: A machine learning library written in
Java.

• Apache Commons Mathematics Library3: A library of
lightweight and self-contained mathematics and statistics
components written in Java.

• Matrix.java: This class has methods that perform matrix
operations. We selected 20 methods randomly from the
class and conducted our experiment on them. The de-
scription of these 20 methods is available in this GitHub
repository4.

Functions in the code corpus perform various calculations us-
ing sets of numbers such as calculating statistics (e.g., average,
standard deviation, and kurtosis), calculating distances (e.g.,

1http://acs.lbl.gov/software/colt/
2https://mahout.apache.org/
3http://commons.apache.org/proper/commons-math/
4https://github.com/ps073006/ConfRepo

Manhattan and Tanimoto), and searching/sorting. The total
number of lines of code for these functions varied between 4
and 52, and the number of input parameters for each function
varied between 1 and 4.

C. MR Identification

We selected all six MRs that were used in previous stud-
ies to test methods from the first 3 projects mentioned in
section V-B [26]. Suppose our source test case is X =
{x1, x2, x3, ..., xn} where xi ≥ 0, 0 ≤ i ≤ n. Let source
and follow-up outputs be O(X) and O(Y ) respectively:

• Addition: add a positive constant C to the source test
case yielding the follow-up test case Y = {x1 +C, x2 +
C, x3 + C, ..., xn + C}. Then O(Y ) ≥ O(X).

• Multiplication: multiply the source test case by a positive
constant C yielding the follow-up test case Y = {x1 ∗
C, x2 ∗ C, x3 ∗ C, ..., xn ∗ C}. Then O(Y ) ≥ O(X).

• Shuffle: randomly permute the elements in the source
test case. The follow-up test case can then be Y =
{x3, x1, xn, ..., x2}. Then O(Y ) = O(X).

• Inclusive: include a new element xn+1 ≥ 0 in the
source test case yielding the follow-up test case Y =
{x1, x2, x3, ..., xn, xn+1}. Then O(Y ) ≥ O(X).

• Exclusive: exclude an existing element from the source
test case yielding the follow-up test case Y =
{x1, x2, x3, ..., xn−1}. Then O(Y ) ≤ O(X).

• Inversion: take the inverse of each element of the source
test case. Then the follow-up test case will be Y =
{1/x1, 1/x2, 1/x3, ..., 1/xn}. Then O(Y ) ≤ O(X).

We identified and developed the following ten MRs for
testing the functions in the Matrix.java class. We have verified
if the MRs satisfies each of the methods from the class and
found out not all these MRs are satisfied by each of these
methods. The entire list of methods and the specific MRs
satisfied by them can be found in this GitHub repository4.
In all cases, we assume that Matrix A comprises only non-
negative numbers.

• Scalar Addition: Let A be the initial input matrix to
a program P , and b be a positive scalar. Let A′ be the
follow-up input matrix where A′ = ∀i, j ∈ b + Ai,j .
Let the output of P for A be O (i.e. P (A) = O)
and P (A′) = O′. Then the expected output relation is∑

i,j O
′ ≥

∑
i,j O.

• Addition With Identity Matrix: Let A be the initial
input matrix to a program P , and I be an identity matrix.
Let A′ be the follow-up input matrix where A′ = ∀i, j ∈
Ii,j + Ai,j . Let P (A) = O and P (A′) = O′. Then the
expected output relation is

∑
i,j O

′ ≥
∑

i,j O.
• Scalar Multiplication: Let A be the initial input matrix

to a program P , and b be a positive scalar. Let A′ be the
follow-up input matrix where A′ = ∀i, j ∈ b.Ai,j . Let
P (A) = O and P (A′) = O′. Then the expected output
relation is

∑
i,j O

′ ≥
∑

i,j O.
• Multiplication With Identity Matrix: Let A be the

initial input matrix to a program P , and I be an identity



matrix. Let A′ be the follow-up input matrix where
A′ = ∀i, j ∈ Ii,j .Ai,j . Let P (A) = O and P (A′) = O′.
Then the expected output relation is

∑
i,j O

′ =
∑

i,j O.
• Transpose: Let A be the initial input matrix to a program

P . Let A′ be the follow-up input matrix where A′ =
∀i, j ∈ AT

i,j = Aj,i. Let P (A) = O and P (A′) = O′.
Then the expected output relation is

∑
i,j O

′ =
∑

i,j O.
• Matrix Addition: Let A be the initial input matrix to a

program P . Let A′ be the follow-up input matrix where
A′ = ∀i, j ∈ Ai,j+Ai,j . Let P (A) = O and P (A′) = O′.
Then the expected output relation is

∑
i,j O

′ ≥
∑

i,j O.
• Matrix Multiplication: Let A be the initial input matrix

to a program P . Let A′ be the follow-up input matrix
where A′ = ∀i, j ∈ Ai,j .Ai,j . Let P (A) = O and
P (A′) = O′. Then the expected output relation is∑

i,j O
′ ≥

∑
i,j O.

• Column Permutation: Let A be the initial input matrix
to a program P with j = 1, 2, 3, .., n columns. Let A′ be
the follow-up input matrix after permuting the column
positions of A. Let P (A) = O and P (A′) = O′. Then
the expected output relation is

∑
i,j O

′ =
∑

i,j O.
• Row Permutation: Let A be the initial input matrix to

a program P with i = 1, 2, 3, .., n rows. Let A′ be the
follow-up input matrix after permuting the row positions
of A. Let P (A) = O and P (A′) = O′. Then the expected
output relation is

∑
i,j O

′ =
∑

i,j O.
• Element Permutation: Let A be the initial input matrix

to a program P with j = 1, 2, 3, .., n columns and
i = 1, 2, 3, .., n rows. Rows and columns have to be same
size. Let A′ be the follow-up input matrix after permuting
Ai,n element with An,j element. Let P (A) = O and
P (A′) = O′. Then the expected output relation is∑

i,j O
′ =

∑
i,j O.

D. Evaluation Approach

In our evaluation, we applied the µJava5, and PIT6 tools to
systematically generate mutants for our subject programs. For
the 96 methods from the five open-source java projects, we
generated a total of 8330 mutated versions using the mutation
tools. Mutant distributions for the five classes are shown in
Table I. We ran mutation testing on the five classes and exclude
the mutants that cause compilation errors, runtime exceptions,
and equivalent mutants. We also manually verified all the MRs
for each subject programs.

TABLE I
INDIVIDUAL CLASSES FROM FIVE OPEN SOURCE PROJECTS. WE SHOW

COUNTS OF METHODS, MRS AND MUTANTS

Class name # Methods # Mutants # MRs
MethodsCollection2.java 28 1875 6
MethodsFromMahout.java 5 409 6
MethodsFromApacheMath.java 18 2248 6
MethodsFromColt.java 25 2914 6
Matrix.java 20 884 11

5https://github.com/jeffoffutt/muJava
6https://pitest.org/

TABLE II
SAVINGS OBTAINED BY OPERATOR BASED MUTANT REDUCTION

APPROACH

Class name Total
Mutants

Selected
Mutants

Percentage
Saved

MethodsCollection2.java 1875 818 56.37
MethodsFromMahout.java 409 163 60.15
MethodsFromApacheMath.java 2248 723 67.84
MethodsFromColt.java 2914 994 65.89
Total 7446 2698 63.77

VI. RESULTS AND DISCUSSIONS

Below we discuss the results of our experiments and
provide answers to our research questions:

RQ1. Which Mutant reduction technique is best
suited for detecting faults in MT? Figure 2 displays
the average mutation scores (in %) per mutant reduction
strategies for each class from SUT. The columns of Table II
“Total Mutants” and “Selected Mutants” allow us to derive
the mutant reduction percentage shown in the third column.
We excluded Matrix.java class while analyzing the answer of
RQ1 because we utilized the PIT tool to generate mutants for
this class and this tool does not provide the mutant operators’
names. So, we could not distinguish expression modification
operators from the mutants set. The most interesting aspect
of the figure 2 is that the operator-based mutation strategy
always detects more faults than any other strategy and in
the majority of cases this situation is statistically significant
(p-value<0.05) (pairwise T-test results are available here7).
Although testing with total mutants set (7446 mutants) has
a comparatively high mutation score than randomly selected
mutants set, but it is not as high as the operator-based
mutation strategy. Mutation strategies where randomly
selected mutants are generated (ranging from 10% to 60%)
have comparatively low mutation scores.

Table II shows the savings obtained using the operator-
based mutation strategy in terms of the number of mutants.
The column “Percentage Saved” was computed by subtracting
the number of ”Selected Mutants” from the number of ”Total
Mutants” and dividing the difference by the number of ”To-
tal Mutants.” The operator-based mutation strategy sets save
anywhere between 56% to 67% of the total mutants that are
generated across the subject programs. The expression mod-
ification operators (e.g., AORB, AORS, LOR, ROR, AOIU,
COI, LOI) from the µJava tool are used for the operator-based
mutation strategy.
RQ2. Which coverage-based test suites have better fault-

finding effectiveness? Figure 3 shows the average mutation
scores of the coverage-based test suites (Line, Branch, and
WM) generated for the MT to test the five subject programs.
To answer this RQ we combined the mutation scores of MT
(source & follow-up test cases) for each subject programs.

7https://github.com/ps073006/ConfRepo
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Fig. 2. Average Mutation Scores of Mutation Testing Strategies. Mutation Testing was done by the following strategies: Total Mutants Set, Operator based
Set, Random 10%, Random 20%, Random 30%, Random 40%, Random 50%, and Random 60%. The average Mutation Score was calculated by averaging
the mutation scores of all the methods from each of the classes.

The most interesting aspect of the figure is that WM-based
test suites always detect more faults than any other test suites
and in the majority of the subject programs. These results are
statistically significant (p-value<0.05)(pairwise T-test results
are available here8). However, in MethodsfromColt.java class,
the difference in mutation scores is really small between the
branch and WM test suites.
RQ3. Can test suite minimization techniques reduce the

cost of executing a test suite and what is their effect on
the fault detection effectiveness of a test suite? Table III
reports the percentage reduction in test suite size for each of
the five subject classes for the combined test suite of line,
branch, and WM as well as WM coverage criteria separately.
The results show that test suite minimization can significantly
reduce the size of a test suite. The results also show that the
WM coverage criteria yield a larger reduction in test suite size
(53.13–65.43%). Results show that there is little variation in
the reduction in test suite size, which means the performance
of the WM test suites is linear across the subject programs.

Table IV reports the percentage reduction in fault detection
effectiveness and code coverage of the WM coverage criteria.
Minimized test suites of the WM coverage criteria perform
well overall (1.44-14.14%) with fault detection effectiveness
reduction as compared to the combined test suites. Also, the
performance remains the same (0% reduction) for the code

8https://github.com/ps073006/ConfRepo

coverage with the minimized test suites of the WM coverage
criteria as compared to the combined test suites.

Minimized test suites with WM can produce significant
reductions in test suite size, resulting in significant savings
in test execution costs. When using WM coverage criteria
as a source test case generation technique for MT, test suite
minimization causes an average reduction in fault detection
effectiveness that is less than 9%. This makes the approach
potentially useful in practice when testing time is limited and
the system is not critical.

TABLE III
COST EFFECTIVENESS OF TEST SUITE MINIMIZATION TECHNIQUE FOR

MT BASED ON TEST SUITE SIZE

Total Test Suite Size

Class Name Combined Weak
Mutation

%
Reduced

MethodsCollection2.java 111 47 57.66
MethodsFromMahout.java 32 15 53.13
MethodsFromApacheMath.java 104 44 57.69
MethodsFromColt.java 81 28 65.43
Matrix.java 37 14 62.16

VII. THREATS TO VALIDITY

We have followed Wohlin et al. guidelines while discussing
the threats to the validity of our empirical study [27].
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Fig. 3. Comparison of Average Mutation Scores of Coverage Based Test Suites, e.g. Line, Branch, and Weak Mutation. The average Mutation Score was
calculated by averaging the mutation scores of all the methods from each of the classes.

TABLE IV
PERCENTAGE REDUCTION ON FAULT DETECTION AND CODE COVERAGE AFTER APPLYING TEST SUITE MINIMIZATION TECHNIQUE IN MT

Code Coverage Fault Detection (Mutation score %)

Class Name Combined WM % Reduced Combined WM % Reduced

MethodsCollection2.java 99.7 99.7 0 64.21 57.49 10.47
MethodsFromMahout.java 99.32 99.32 0 54.28 46.94 13.52
MethodsFromApacheMath.java 98.4 98.4 0 89.41 88.12 1.44
MethodsFromColt.java 99.16 99.16 0 76.25 65.47 14.14
Matrix.java 97.49 97.49 0 53.71 51.67 3.8

Threats to internal validity cause and effects may result
from the way in which the empirical study was carried out. To
increase our confidence in the experimental setup and mitigate
this threat, we ran our experiments 10 times with the same
setup.

Threats to construct validity may occur because of the third-
party tools we have used. The EvoSuite tool was used to gener-
ate source test cases for line, branch, and WM test generation
techniques. Further, we used the µJava and PIT mutation tool
to create mutants for our experiment. To minimize these threats
we verified that the results produced by these tools are correct

by manually inspecting randomly selected outputs produced
by each tool.

Threats to external validity were minimized by using the
96 methods from 5 different open-source project classes.
This provides high confidence that the generalization of our
results to other open-source software is appropriate. We only
used the EvoSuite tool to generate test cases for our major
experiment. But we also used the JCUTE 9 tool to generate
branch coverage-based test suites for our initial case study and

9https://github.com/osl/jcute



also observed similar results [16].

VIII. CONCLUSION

This paper presented an empirical study on the effects of test
suite minimization on MT. Also, we present a hybrid approach
to the reduced mutants set finding and the reduction in fault-
finding effectiveness problems on numerical programs. The
study used open source java projects which have been applied
in previous studies, and test suites created using a systematic
state-of-the-art approach. The mutated version of the code can
be comparable with real-world faults.

The study showed that an operator-based mutant reduction
technique can significantly reduce the mutant set size for
mutation testing. This technique also keeps the mutation score
comparable to the original mutant set. Practically this approach
helps to reduce the total testing costs. However, we still need
to perform industrial case studies to continue to scale the
solutions presented in this work. Industrial case studies are
still required to increase the power of these results.

The results also revealed that using minimized test suites
with WM coverage criteria for MT provides a trade-off be-
tween the reduction in execution cost (53.13–65.43%) and
the reduction in fault finding effectiveness (1.44–14.14%) that
might be suitable in certain contexts in non-critical systems,
where testing time and resources are limited.

Surprisingly, to date, there are no case studies that report
on the impact of test suite minimization on fault detection
effectiveness for MT. But, there were few case studies reported
on test case prioritization for MT. This empirical study is the
elemental step in this direction. Our future goal is to apply
our proposed approach on real fault based programs such as
Defects4J 10.
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