
Automating Static Code Analysis Through CI/CD
Pipeline Integration

Zachary Wadhams
Gianforte School of Computing

Montana State University
Bozeman, Montana, USA

zacharywadhams@montana.edu

Ann Marie Reinhold
Gianforte School of Computing

Montana State University
Bozeman, Montana, USA

reinhold@montana.edu

Clemente Izurieta
Gianforte School of Computing

Montana State University
Pacific Northwest National Laboratory

Idaho National Laboratory
Bozeman, Montana, USA

clemente.izurieta@montana.edu

Abstract—In the contemporary landscape of software devel-
opment, securing sensitive data is paramount to safeguarding
organizational reputation, preventing financial losses, and pro-
tecting individuals from identity theft. This paper addresses
the pervasive challenge of identifying and rectifying security
vulnerabilities early in the development process, emphasizing
the role of Static Application Security Testing (SAST) tools.
While SAST tools play a crucial role in detecting vulnerabilities,
widespread adoption has been hindered by usability issues,
including high false positive rates and a lack of native pipeline
support. This paper proposes a novel, generalized, and automated
process for aggregating SAST tool outputs and integrating them
into developers’ familiar issue-tracking software. The process
streamlines the identification and communication of security
vulnerabilities during the development lifecycle, facilitating more
efficient remediation efforts. We demonstrate the successful im-
plementation of the proposed process with the SonarQube SAST
tool in a GitLab-based development environment. Developers
were positive about the structured implementation, real-time
feedback, and proactive vulnerability management. However,
despite some challenges such as a potential learning curve and
trade-offs between secure coding and workflow disruption, the
overall positive impact on security awareness and responsiveness
suggests that the proposed process holds promise in enhancing
the security posture of software development practices

Index Terms—Static Analysis, Static Application Security Test-
ing, Software Security, Software Vulnerabilities, Mining Software
Repositories

I. INTRODUCTION

Now, more than ever, software applications must make a
concerted effort to effectively secure the data they store. A
single breach of security can wreak havoc on the reputation
of the organization, trigger massive financial loss, and even
disrupt individuals’ lives through identity theft or other means.
Many instances of security breaches can be traced back to
security vulnerabilities [7]. A security vulnerability is a weak-
ness or flaw in a software application’s source code or design
that can be exploited by malicious actors to compromise the
security of the system or the data it processes. It is vital that
vulnerabilities are identified and corrected as early as possible
in the development process. A key tool that development teams
can use to identify vulnerabilities is Static Application Security
Testing (SAST), or Static Code Analysis.

These tools aim to help ensure the security, reliability,
and compliance of software applications. SAST tools work
by analyzing the source code during the development phase,
enabling early detection of security vulnerabilities. By identi-
fying security flaws at an early stage, developers can address
them promptly and minimize the risk of such vulnerabilities
making their way into the final product.

SAST tools not only focus on security vulnerabilities but
also help improve code quality by identifying design flaws
[1] [2]. By detecting and addressing these issues early in the
development cycle, teams can enhance the overall quality and
maintainability of the codebase. Using these tools, develop-
ment teams can gain insights into common security pitfalls and
improve their understanding of secure coding principles. SAST
tools simultaneously serve as educational resources, helping
to foster a security-conscious culture among developers who
utilize these tools and empowering them to produce code that
is more secure and reliable [5].

A small number of such tools are specifically designed
to be implemented within Continuous Integration/Continuous
Delivery(CI/CD) pipelines on major Git-based repository host-
ing services. CI/CD pipeline integration allows these tools to
run on each new code addition, creating a record (typically
stored within the tool GUI or as a .json file) of which changes
introduced vulnerabilities or design flaws. The near-immediate
feedback given allows for faster remediation of critical vul-
nerabilities while the historical record can be instrumental in
ensuring compliance with a variety of security standards and
best practices [11] [12]. However, the vast majority of tools
have little to no support for automation or pipeline integration.

While manual code reviews and standalone static analyses
are essential for identifying some design flaws and guiding
a project’s direction, the complexity, and size of modern
software applications make it unfeasible to manually review
an entire codebase [9]. This necessity calls for automation,
which is provided by pipeline integration.

Despite these apparent benefits, many development teams
have not deployed SAST tools. Reasons for this vary but many
agree that there are still widespread usability issues that hinder
their adoption and consistent use. Most of these reasons are
commonly identified as high rates of false positives, unhelpful



warning messages, lack of fix suggestions, and insufficient
native pipeline support [3]. Developers often delegate security-
related concerns to colleagues within their organization or,
in some cases, they may lack access to these reports due to
security configurations [8] [4]. As those possessing the most
profound understanding of the code, developers often overlook
security issues, which can lead to the “out of sight, out of
mind” problem [8] [5].

Instead of merely investigating this issue, we have chosen to
design a solution that involves presenting SAST reports to de-
velopers in a familiar and consistent manner using automated
methods. While many have touched upon this issue, we have
identified no papers that discuss a generalized process appli-
cable to all static analysis tools. By offering a standardized
process that is easy to integrate and demonstrating the tangible
benefits of doing so, we aspire to promote the widespread
adoption and integration of static analysis tools within the
software development community. This, in turn, enhances
software privacy and security across a broad spectrum of
domains and applications.

Our first key contribution is a generalized and automated
process for aggregating SAST tool outputs and integrating
them into developers’ familiar issue-tracking software. This
process streamlines the identification and communication of
security vulnerabilities during the development lifecycle, fa-
cilitating more efficient remediation efforts.

In addition, we provide a detailed examination of a practical
implementation of the proposed process. By illustrating its
application in a real-world scenario, we offer insights into
the feasibility and effectiveness of the process. The practical
implementation serves as a valuable case study, shedding light
on the challenges encountered and the practical considerations
that arise when implementing such a process within software
development teams.

Our work contributes to the security vulnerability manage-
ment field by thoroughly exploring the potential benefits and
drawbacks of the explored process. By addressing advantages
such as improved collaboration between security and develop-
ment teams, which in many cases are separated by technology
and/or organizational constraints, our aids in understanding
the implications and trade-offs associated with adopting our
process.

Importantly, these contributions hold direct relevance to the
Mining Software Repositories (MSR) community. The pro-
posed process aligns with the objectives of MSR by leveraging
data from software repositories, issue-tracking systems, and
security testing tools to better inform software developers of
potential security vulnerabilities and foster proactive measures
for secure software development practices, ergo the ability
to mine software repositories to make information available
to potentially separate engineering groups (i.e., security and
development) in a CI/CD environment is critical. The insights
gained from this research can inform and enhance the broader
understanding of how security practices intersect with the
larger software development ecosystem, thereby contributing
to the ongoing advancements in the MSR field.

This paper is structured as follows: Section II explains the
motivation for our work in the field of static analysis. Section
III discusses related work and its impact on our research. Sec-
tion IV describes our process and its core components in detail.
Section V presents a practical example of an implementation
of our process. Section VI provides a discussion on the greater
consequences of our work. Section VII addresses potential
threats to the validity of our work and our attempts to mitigate
them. Section VIII concludes the paper and outlines our plans
for future work on refining and extending the proposed SAST
tool integration process.

II. MOTIVATION

It is the moral and now legal obligation of organizations to
ensure that any and all software they release is as safe and
secure as possible and respects the privacy of its users. The
EU’s General Data Protection Regulation (GDPR) is just one
example of legislation which requires that organizations ensure
privacy and security are built into their applications by design
[10].

SAST tools excel in this area where other methods, such as
dynamic analysis, fall behind. Dynamic analysis is performed
later in the development process, typically when an application
is executed. Static analysis strictly looks at source code and
can be implemented as soon as the first line of code is written.
This reinforces SAST’s use as a proactive step that can be used
early in the development process when an application’s design
is still flexible, bringing it in line with the core tenet of privacy
and security by design. Although static analysis procures many
benefits, it is often utilized inconsistently.

Issues with organizational security configurations can make
the consistent use of SAST difficult for some. Occasionally,
organizations restrict the execution of tools, requiring them to
be behind a firewall and rendering them inaccessible to certain
developers. This becomes a problem when those with access
are senior developers who do not have time to sift through the
reports generated by tools, leading to slow turnaround times on
fixes or even vulnerabilities being missed completely. Thus, a
disconnect exists between the development teams and security
experts or senior developers who are directly responsible for
ensuring code security.

This disconnect demands a better way to bring more aver-
age developers into the sphere of security and subsequently
motivated our team to design a process that does just that.
Leveraging the familiarity of bug and issue-tracking features
within popular repository hosting services, the goal is to in-
crease the visibility of SAST tool outputs, ultimately providing
a consistent and accessible space for identifying, managing,
and resolving design flaws and vulnerabilities within software
repositories.

III. RELATED WORK

Interest in SAST has been steadily growing over the past
two decades, while interest in security and privacy by design
has burgeoned since the publication of the GDPR in 2016 [10].
The combination of SAST tools and the concept of privacy and



security by design, and how one can drive the usage of the
other, inspired our work on the topic.

Johnson et al. [13] carried out interviews to investigate
why static analysis tools were not being used by developers.
During their research, they uncovered many underlying issues
with these tools, such as poor output presentation and slow
feedback. In other work performed by Izurieta et al. [16], the
uncertainty of scoring and error propagation from SAST tools
is also addressed.

Haug et al. [11] showed that when developers are provided
with immediate or near-immediate feedback on code, they are
more likely to consider it.

Xie et al. [4] found that most software security vulnera-
bilities are caused by errors introduced by developers. Their
results led them to discover a striking divide between devel-
opers’ security knowledge and their practices. They concluded
that static analysis tools do play an important role in assisting
developers in producing secure software and overcoming their
apprehension towards security.

Ayewah et al. [3] observed that when developers are present
with security-related messages, they generally make the cor-
rect decisions to address them even with little to no formal
security experience.

Nachtigall et al. [5] conducted a comprehensive study
focused on specific criteria for static analysis tools. They
analyzed 36 criteria across 46 different tools from a user’s
perspective. The study revealed significant shortcomings in
many SAST tools, particularly concerning their integration
into developers’ workflows. It was identified that the locations
where tool outputs are stored is unfamiliar to many developers
and accessing them often requires them to change their habits.
In some cases, these tools have their data stored behind
firewalls that only senior developers or cybersecurity officers
can access. Whether intentional or not, this leaves other
developers in the dark about the potential vulnerabilities they
may introduce, thereby compromising the security culture of
the organization. Many tools also provide these outputs in
unformatted text that doesn’t grab a developer’s attention. As a
result, they found that if a tool disrupts a developer’s workflow
or lacks sufficient visual guidance, many will quickly abandon
it. This underscores a critical and recurring usability challenge.

Our process not only addresses these previously identified
issues but also establishes a way for delivering static analysis
tool outputs to developers in a non-disruptive and visually
appealing format, ultimately ensuring that a broader range of
developers can easily access these reports, thereby enhancing,
rather than impeding, their productivity and workflow.

IV. PROCESS

We implement our process in three steps First, we identify
the SAST tools preferred by the organization and assess the
types of data they provide. Two, we explore the development
environment of the target organization, taking into account
aspects such as issue-tracking software, repositories, pipeline
configuration, and network security configurations. Three, we
implement a controller script that ties the SAST tools and issue

Fig. 1. Process flow diagram.

The boxes represent important concepts or technologies while the
arrows depict the flow of the process. In step 0, some external factor, such
as a nightly timer or a developer-initiated merge request, triggers the build
pipeline. The pipeline then initiates the analysis of each SAST tool in step 1.
Once all static analyses are completed, the build pipeline starts the controller
script in step 2. The controller script reaches out to each SAST tool and
gathers the relevant issue data in step 3. The issue data is then formatted
by the controller script and assembled into payloads in step 4. In step 5,
each payload is sent to the issue tracking software, and individual issues are
created.

tracking together. The sub-sections below provide a detailed
explanation of each of these steps.

A. Tool Identification and Data Assessment

Diverse organizations have unique analytical requirements,
prompting the need for discussions on preferred static analysis
tools. These tools can be categorized into two groups: those
with a Graphical User Interface (GUI) and those with a Com-
mand Line Interface (CLI). Our process focuses on GUI tools.
They typically have the most customizability and often offer an
Application Programming Interface (API). The API simplifies
data retrieval by returning it seamlessly in commonly format-
ted structures such as XML, JSON, or HTML. Our API-driven
process enhances the efficiency of data extraction, making it
easier to integrate the data into our controller script.

In our context, we treat GUI tools without APIs the equiva-
lently to CLI tools. CLI tools are executed exclusively from the
command line and do not provide the additional functionality
and ease of use offered by an API. After completion, these
tools generate a file formatted as either XML or JSON con-
taining the report data. While CLI tools can provide valuable
information, our process does not focus on them.

After identifying which tools the organization desires, we
conducted an investigation of the organization’s familiar de-
velopment environment.



B. Development Environment Exploration

The development environment of the target organization is
taken into account when custom tailoring the implementation
of our process. We considered what software most organiza-
tions use to manage their codebase and found that the vast
majority use one of three Git-based systems; GitHub, GitLab,
and BitBucket. Many development teams either utilize the
built-in repository issue tracking or rely on connected software
adjacent to the repository for issue management [14]. Each of
these services provides a robust API to assist with automating
aspects such as bug and issue tracking. These APIs allow
for calls to be made that create, edit, or resolve issues. An
“issue” or sometimes “ticket” is a digital record used to track
tasks, bugs, and feature requests related to a software project.
They help teams collaborate by providing a place to discuss,
assign, and monitor the progress of these work items. APIs
are ubiquitous in issue tracking, enabling this process to be
applied to any service through the controller script.

The build pipeline of the repository is a predefined and
automated sequence of tasks and actions that transform source
code into a deployable application or software artifact. This
pipeline is where the code is compiled and also the stage at
which SAST tools are executed. The CI/CD pipelines of the
aforementioned repository hosting services are standardized
through the use of a common file type used to choreograph
the execution steps of the pipeline. The controller script is
placed after the SAST tool execution in the pipeline order
to ensure that each analysis is completed before any data is
retrieved.

As previously mentioned in section II (i.e., Motivation),
some organizations may have security configurations that
restrict the execution of tools or the CI/CD pipeline behind a
firewall, rendering them inaccessible to certain developers. Our
process accommodates such security controls while allowing
for developer access, as long as the machines running the tools
and the pipeline can be configured to communicate with each
other and bypass firewall rules. Some organizations may cite
vulnerability data as a potential security concern that should
not be shared widely. However, the developers who would
be fixing security vulnerabilities must already have access to
the project’s source code. This source code access, combined
with the fact that many SAST tools are open source and free to
use, means that anyone with source code access could run an
analysis of their own and obtain these reports if they wished to,
making the reasoning behind this security concern unsound.

After collecting the necessary tools and information about
the development environment, the controller script can take
shape.

C. Controller Script

The controller script serves as the keystone that seamlessly
connects the previously disjoint processes of SAST report
generation and issue management. Any scripting language is
acceptable as long as it is supported by the hosting pipeline.
Its primary role is to orchestrate the flow of data between the
SAST tools and the issue tracking system, ensuring a smooth

and automated transition. This bridge is established through a
series of well-defined steps.

The controller script begins by collecting the SAST re-
port data generated by whatever tools the target organiza-
tion chooses to use (Figure 1, step 3). Through the tool’s
API, raw SAST data is obtained, and the controller script
transforms it into a standardized format that aligns with the
requirements of the issue tracking system (Figure 1, step 4).
At a minimum, the format includes a title that identifies the
issue type and severity, a one-sentence description of the
problem, an identifier indicating the specific line of code and
file where the issue resides, and either a problem description
if provided by the tool or a unique reference number such as
Common Vulnerabilities and Exposures (CVE) or Common
Weakness Enumeration (CWE). This transformation ensures
that data from diverse tools is uniform and can be consistently
integrated into the tracking system. Before sending the data
as an issue to the tracking software, it must be converted to
markdown, ensuring compatibility and consistency with the
tracking system’s formatting and requirements.

Leveraging the issue tracking system’s API the controller
script automates the creation (Figure 1, step 5) of issues or
tickets to report vulnerabilities, weaknesses, or other code-
related concerns identified by the SAST tools. It establishes
near real-time synchronization through the pipeline, updating
the issue tracking system with the latest analysis results
whenever the pipeline runs due to developers committing code.
(Figure 1, step 0)

To prevent the creation of duplicate issues within the
issue tracking software, issues within the SAST tool must be
marked. One straightforward process is to update the status
of all issues that the script has identified and ’moved’ within
the tool. This ensures that upon each new analysis, issues that
have already been seen by the script are ignored and only new
issues are considered (Figure 1, step 3).

In many cases, it may be valuable for the script to include
a quality gate. Quality gates play a crucial role in maintaining
the integrity of the software development process. They func-
tion by continuously monitoring the code changes as they pass
through the CI/CD pipeline. If the gate detects the introduction
of major vulnerabilities or other high-risk issues, it will imme-
diately halt the pipeline’s progress after generating the issues,
alerting developers of a potential problem. This preventive
measure ensures that no changes with severe flaws are allowed
to proceed further into the development or deployment stages.

In practice, a quality gate serves as an additional layer of
defense, reinforcing the security and quality of the software.
It ensures that any code changes are thoroughly examined for
major vulnerabilities before they can proceed, thereby con-
tributing to a more robust and reliable software development
process.

The versatility of the controller script is a fundamental
strength of our process, as it can be tailored to collect diverse
types of issues such as vulnerabilities, bugs, or design issues
while filtering them by potential severity or impact. The script
can be configured to recognize and process different issue



Fig. 2. Implementation of Approach to an Example Organization
(Organization X).

The boxes represent important concepts or technologies while the
arrows depict the flow of the process. The implementation begins with either
a nightly timer or merge request in step 0. The pipeline then initiates the
analysis SonarQube in step 1. Once SonarQube’s analysis is complete, the
build pipeline starts the controller script in step 2. The controller script
reaches out to SonarQube and gathers the relevant issue data in step 3.
The issue data is then formatted by the controller script and assembled into
payloads in step 4. In step 5, each payload is sent to GitLab’s issue tracking
software, and individual issues are created therein.

categories by adjusting the data collection and transformation
steps, thereby accommodating the specific needs and priorities
of the development team. By integrating these functions,
the controller script effectively bridges the gap between the
security-focused static analysis and the broader software de-
velopment process, fostering an efficient and proactive process
to addressing code vulnerabilities and design concerns.

V. USE CASE

To test the practical application of our process we worked
with an organization whose goal was to implement a static
analysis tool to enhance the security of their in-development
application. To protect this organization’s identity, we refer to
them as Organization X.

Figure 2 depicts Organization X’s implementation of our
process, following the same steps outlined in Figure 1.

Being the first static analysis to be used on their repository,
a tool that is simple to configure but still offers customizability
and scales well with a rapidly growing codebase was deemed
necessary. Following our outlined process, Organization X
selected SonarQube as their preferred tool after evaluating its
features and usability.

The development environment of Organization X consisted
of a GitLab repository where code is hosted, the pipeline
is managed, and issues are tracked (Figure 2, steps 0, 5).
A key facet to note is that the repository build pipeline as
well as all execution of external tools were required to be
placed behind a firewall to comply with the organization’s
security requirements. This was a hard requirement that, as
a consequence, restricted who could work with SonarQube
to two senior developers out of more than twenty total de-
velopers. As SonarQube stores outputs within its GUI, this
issue exemplifies the problem discussed in section II (i.e.,

Fig. 3. Example of a Generated Issue

Motivation) where some developers are segregated due to
accessibility of sensitive data. In the absence of a structured
process, only two developers would be able to configure,
maintain, and then be responsible for the potentially very
large number of vulnerabilities and design flaws that could
be uncovered.

Organization X used our process, implementing the con-
troller as a Python script (Figure 2, step 2). This script
utilized the Requests package to make HTTPS requests to
the SonarQube and GitLab instances. SonarQube has the
capability to uncover three different types of issues in projects:
bugs, vulnerabilities, and code smells. Organization X was
interested only in vulnerabilities and bugs, so these requests
were targeted to endpoints within SonarQube’s Web API
to retrieve data related to those types of issues (Figure 2,
step 3). SonarQube also attaches a severity to each issue
it finds. Organization X decided to consider only bugs and
vulnerabilities with a severity of critical, major, or high in
an effort to triage issues that have a larger potential to cause
problems.

After retrieving the data, the script extracted the essential in-
formation from the JSON objects. Subsequently, a payload was
assembled and sent to GitLab’s issue-tracking software (Figure
2, step 4). Organization X decided on the data that would
be most relevant and useful to their developers, choosing to
include selected information in generated issues. The one-
sentence description of the created GitLab issue comprised the
SonarQube issue type, title, and severity. The body of the issue
is generated with a disclaimer, stating that this issue was auto-
matically created using data from SonarQube. Organization X
considered this necessary to help their developers differentiate
between automatically generated and manually created issues.
The rest of the issue body contained a code snippet that



showed the problem line of code along with the surrounding
10 lines for context, an explanation of why the issue should be
addressed, and a link to the corresponding CWE or CVE for
further reading. Each payload was then sent to GitLab’s API as
a create issue request and would appear alongside developer-
created issues within GitLab’s issue tracking software for
developers to pick up and address (Figure 2, step 5).

As this process was tested, starting with Organization X’s
nightly pipeline runs, they found it to be helpful as it didn’t
disrupt their established pipeline and did not add a significant
amount of runtime. Developers also reacted positively to
the formatting and location of the issues, commenting that
the problems in the code were easily identifiable, and the
additional information provided aided them in engineering
fixes. Figure 3 depicts an example issue that Organization X
generated in GitLab using data from SonarQube.

After testing for a few months and being satisfied with the
results, Organization X decided to develop a secondary con-
troller script designed to run on their merge request pipeline
with every developer code change. The aim of this was to
prevent developers from introducing vulnerabilities and bugs
through the addition of a quality gate. When a developer
attempts to merge their code with the main code branch, the
quality gate checks whether the code changes would introduce
bugs or vulnerabilities. If they do, the changes are rejected,
and the developer is notified to fix the issues before merging
their code. If the changes do not introduce bugs, the merge
proceeds as normal. Organization X chose to reject changes if
they introduce more than one blocker vulnerability or bug or
more than two critical vulnerabilities or bugs.

VI. DISCUSSION

The developer feedback provided us with insights into how
they viewed different aspects of the implementation of SAST
tools into their workflow using our process. For example,
when the quality gate was implemented, a few violations were
noted on the first day of use. The gate functioned as expected,
rejecting the changes. Feedback on the gate from developers
was conflicting; while all understood its necessity, opinions
varied on its rigidity. Some opposed the aggressive process,
suggesting issues be noted for later resolution to allow focused
coding. Others appreciated it, foreseeing time saved in the long
run. This pinpointed the quality gate as a potential challenge
in terms of the developer’s workflow and productivity.

Developers appreciated the structured implementation of the
process, expressing satisfaction with the automation of vulner-
ability and bug identification while positive sentiments were
shared about the seamless integration with GitLab’s API and
the existing pipelines. Perhaps the most commonly identified
upside to the automated generation of issues was the real-
time feedback, which either helped developers immediately
fix the issues or begin planning to address them at a future
date. Developers acknowledged the significant enhancement
in code security through systematic vulnerability identification
and positively recognized the proactive process of the quality
gate in effectively managing vulnerabilities. Over a short

period, numerous previously unknown issues were uncovered.
While some of these turned out to be false positives, others
were genuine and had been lurking within the codebase for
months. Organization X’s developers stated that without the
implementation of static analysis, these issues might have gone
undetected. As developers are exposed to more vulnerabilities,
there is potential for a relief of tension between development
and security teams through increased collaboration.

However, our process was not without complications. A
potential problem developers identified was that due to the
formatting, identifying false positives required more effort.
Developers had to delve deeper into an issue before realizing
that it was a non-issue. This could be argued as a trade off for
having issues formatted in a detailed way. The introduction
of the new process faced initial resistance as it presented a
learning curve to developers who were already comfortable
with existing practices.

The developer feedback we received illuminates important
questions to the MSR community. What is the value of
the trade-off between having secure code and the potential
disruption to a developer’s workflow? How can a balance
between those two important aspects be achieved? It is evident
that while the benefits of the automated generation of issues
are substantial, addressing the initial resistance and facilitating
a seamless adaptation process are key aspects to consider in
the ongoing refinement of the process.

VII. THREATS TO VALIDITY

Our study contributes valuable insights to the fields of
SAST, vulnerability management, and MSR. Here we address
potential threats to the validity in our study. By identifying
and acknowledging these limitations, we aim to provide a
transparent assessment of the scope and generalizability of
our work. This section outlines key threats to the validity of
our study, offering a comprehensive view of the factors that
may impact the reliability and applicability of our results.

First, while we attempted to make our process as generalized
as possible, Organization X may have unique characteristics
that limit the generalizability of findings to other organizations.
To address this, we thoroughly explored their development
environment and compared it to other known development
environments. While hardly exhaustive, we identified no
known out-of-the-ordinary development practices. Second, the
definition and identification of vulnerabilities and bugs may
vary among different SAST and their versions [15]. Since
SonarQube was the sole tool utilized by Organization X, we
lack a practical implementation of other tools to compare our
results. Addressing this limitation is part of our future work,
as detailed in the following section, where we plan to test with
additional tools to confirm the generalizability of our process.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the critical issue of
effectively integrating SAST tools into the software devel-
opment lifecycle. This work’s noteworthiness to the MSR
community cannot be understated due to its direct alignment



with the overarching goals of deriving actionable information
relating to privacy and security. The increasing importance
of securing data and the potential consequences of security
breaches highlight the necessity for proactive measures in
identifying and addressing security vulnerabilities. Our process
focuses on automating the aggregation and integration of
SAST tool outputs into developers’ familiar issue-tracking
software, thereby enhancing the visibility and accessibility of
security-related issues. Our results from the use case suggest
that developers are mostly satisfied with the way these issues
are presented and that the addition of them to their workflow
has not been overly intrusive.

While our results are encouraging, there is still much work
to be done on the our procedure, such as adding additional
functionality and conducting use cases with other tools. For
instance, many SAST tools are CLI-only and lack an API
for data retrieval. In the future, we will address these tools
as well by incorporating them into our process, rather than
solely focusing on large web-based tools. Some of these CLI
tools provide little to no detail on the issues they uncover,
except for a reference to their corresponding CWE or CVE. We
will investigate whether retrieving data from the CWE/CVE
databases to fill out more information in these issues would
be valuable. Additionally, we plan to conduct other use cases
that follow our process with different SAST tools, potentially
incorporating more than one tool at once.

IX. ACKNOWLEDGEMENTS

This research is supported by TechLink (TechLink PIA
FA8650-23-3-9553). The ChatGPT Large Language Model
was used in this paper for spell-checking and grammatical
enhancements.

REFERENCES

[1] N. Jovanovic, C. Kruegel and E. Kirda, ”Pixy: a static analysis tool for
detecting Web application vulnerabilities,” 2006 IEEE Symposium on
Security and Privacy (S&P’06), Berkeley/Oakland, CA, USA, 2006, pp.
6pp.-263, https://doi.org/10.1109/SP.2006.29

[2] V. Benjamin Livshits and Monica S. Lam. 2005. Finding security
vulnerabilities in java applications with static analysis. In Proceedings
of the 14th conference on USENIX Security Symposium - Volume 14
(SSYM’05). USENIX Association, USA, 18.

[3] Nathaniel Ayewah and William Pugh. 2008. A report on a sur-
vey and study of static analysis users. In Proceedings of the 2008
workshop on Defects in large software systems (DEFECTS ’08).
Association for Computing Machinery, New York, NY, USA, 1–5.
https://doi.org/10.1145/1390817.1390819

[4] J. Xie, H. R. Lipford and B. Chu, ”Why do programmers make security
errors?,” 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Pittsburgh, PA, USA, 2011, pp. 161-164.
https://doi.org/10.1109/VLHCC.2011.6070393

[5] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. 2022. A
large-scale study of usability criteria addressed by static analysis
tools. In Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA 2022). Associ-
ation for Computing Machinery, New York, NY, USA, 532–543.
https://doi.org/10.1145/3533767.3534374

[6] Leysan Nurgalieva, Alisa Frik, and Gavin Doherty. 2023. A Narrative
Review of Factors Affecting the Implementation of Privacy and Security
Practices in Software Development. ACM Comput. Surv. 55, 14s, Article
320 (December 2023), 27 pages. https://doi.org/10.1145/3589951

[7] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford.
2018. Security During Application Development: an Application Secu-
rity Expert Perspective. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). Association
for Computing Machinery, New York, NY, USA, Paper 262, 1–12.
https://doi.org/10.1145/3173574.3173836

[8] Tamara Lopez, Helen Sharp, Arosha Bandara, Thein Tun, Mark Levine,
and Bashar Nuseibeh. 2023. Security Responses in Software Develop-
ment. ACM Trans. Softw. Eng. Methodol. 32, 3, Article 64 (May 2023),
29 pages. https://doi.org/10.1145/3563211

[9] Ogheneovo, E. (2014) On the Relationship between Software Complex-
ity and Maintenance Costs. Journal of Computer and Communications,
2, 1-16. doi: 10.4236/jcc.2014.214001.

[10] European Commission. 2016. Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (Gen-
eral Data Protection Regulation)(Text with EEA relevance). https://eur-
lex.europa.eu/eli/reg/2016/679/oj

[11] Haug, M., da Silva, A.C.F., Wagner, S. (2022). Towards Im-
mediate Feedback for Security Relevant Code in Development
Environments. In: Barzen, J., Leymann, F., Dustdar, S. (eds)
Service-Oriented Computing. SummerSOC 2022. Communications
in Computer and Information Science, vol 1603. Springer, Cham.
https://doi.org/10.48550/arXiv.2207.03225

[12] Anh Nguyen-Duc, Manh Viet Do, Quan Luong Hong, Kiem Nguyen
Khac, Anh Nguyen Quang, On the adoption of static analysis for soft-
ware security assessment–A case study of an open-source e-government
project, Computers & Security, Volume 111, 2021, 102470, ISSN 0167-
4048, https://doi.org/10.1016/j.cose.2021.102470.

[13] B. Johnson, Y. Song, E. Murphy-Hill and R. Bowdidge,
”Why don’t software developers use static analysis tools to
find bugs?,” 2013 35th International Conference on Software
Engineering (ICSE), San Francisco, CA, USA, 2013, pp. 672-681,
https://doi.org/10.1109/ICSE.2013.6606613.

[14] Olga Baysal, Reid Holmes, and Michael W. Godfrey. 2014. No
issue left behind: reducing information overload in issue tracking.
In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE 2014). Asso-
ciation for Computing Machinery, New York, NY, USA, 666–677.
https://doi.org/10.1145/2635868.2635887

[15] A. M. Reinhold, T. Weber, C. Lemak, D. Reimanis and C. Izuri-
eta, ”New Version, New Answer: Investigating Cybersecurity Static-
Analysis Tool Findings,” 2023 IEEE International Conference on Cyber
Security and Resilience (CSR), Venice, Italy, 2023, pp. 28-35, doi:
10.1109/CSR57506.2023.10224930.

[16] Izurieta, Clemente, Griffith, Isaac, Reimanis, Derek, Luhr, Rachael.
(2013). On the Uncertainty of Technical Debt Measurements.
IEEE ICISA 2013 International Conference on Information Sci-
ence and Applications, Pattaya, Thailand, June 24-26, 2013 1-4.
10.1109/ICISA.2013.6579461.

[17] SonarQube. 2023, https://www.sonarqube.org.
[18] GitLab. 2023, https://about.gitlab.com/
[19] Requests. 2023, v2.31.0, https://requests.readthedocs.io/en/latest/
[20] ChatGPT. 2023, https://openai.com/chatgpt


