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ABSTRACT

The Internet of Things (IoT) applications require flexible and high-performance
data channels, but many IoT networks can only support single-use case applications,
which limits their performance and flexibility for real-time and streaming applications.
LoRa offers a flexible physical network layer but lacks the resource management
needed in its link layer protocols to support real-time flows. My initial contribution,
the Beartooth Relay Protocol (BRP), expands the performance envelope of LoRa,
making it suitable for a wide range of IoT applications, including those requiring
real-time and streaming capabilities, and aims to address the problem. However,
the resource-limited nature of LoRa does not allow BRP to scale to multi-hop mesh
network deployments while maintaining real-time streams. To address the limitations
of BRP in supporting mesh network deployments and real-time streams beyond two
hops, we focus on developing the second-generation Beartooth Radios, MKII, and
the first-generation Beartooth Gateways. We utilize Commercially-available Off the
Shelf Components (COTS) in the radios to provide a cost-effective, power-efficient,
and compact solution for establishing real-time situational awareness. The self-healing
mesh network provided with MKII and Gateways also enhances the reliability of the
overall network, ensuring connectivity even in case of node failures. By incorporating
military information brokers, such as the Tactical Assault Kit (TAK), the Beartooth
Gateway establishes a hybrid network between Beartooth radios, gateways, and other
TAK-capable devices, ensuring compatibility with existing IP networks. Building
upon the premise that voice communications are an integral part of real-time SA,
the last part of my research focuses on assessing audio quality and efficacy of audio
codecs within bandwidth-constrained networks. Delving into voice communications
in resource-constrained networks, my research contrasts the performance of Text-to-
Speech (TTS) models with traditional audio codecs. I demonstrate that TTS models
outperform audio codec compressed voice samples in quality while also effectively
managing scarce resources and available capacity more efficiently. By combining
flexible link layer protocol elements in BRP, Beartooth MKII radios, Gateways,
and insights on integrating TTS systems for voice communication, my research
demonstrates a versatile and flexible solution that provides real-time application
streams and critical situational awareness capabilities in bandwidth-constrained
networks and mission-critical applications.
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INTRODUCTION

Motivation and Overview

The need for reliable and performant communication is essential in today’s

world. However, many regions lack the necessary infrastructure due to factors such

as difficult terrain, remote locations, or low population densities. These factors often

make it economically unviable for network service providers to establish connectivity

infrastructure, resulting in a digital divide between connected and under-connected

regions. Even in areas with connectivity solutions, mission-critical applications may

face interruptions or failures because of natural disasters or man-made disruptions,

further highlighting the need for robust communication networks.

In addition to supporting essential services, real-time communication networks

are crucial for disaster response and recovery, and for promoting economic growth

in remote areas. The lack of such connectivity hinders the progress of healthcare,

and other critical services as well as recreational activities, maintaining a cycle of

underdevelopment in disconnected regions [1]. Therefore, addressing the issue of

inadequate real-time communication in bandwidth-constrained networks is the main

objective that this dissertation seeks to achieve.

Real-time Data Dissemination Across Multiple Networks

Peer-to-Peer Networks To address these challenges, peer-to-peer networks have

emerged as a viable alternative to planned network deployments. These networks are

self-organizing, decentralized, and require no infrastructure, making them ideal for

use in remote or off-grid regions. By enabling direct communication between devices,
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peer-to-peer networks offer increased resilience to failures and improved scalability

compared to centralized systems. Furthermore, their decentralized nature makes

them less vulnerable to targeted attacks or single points of failure.

Despite their advantages, peer-to-peer networks face certain challenges, such

as limited bandwidth, and lack of standardization. These issues may hinder the

widespread adoption and effectiveness of peer-to-peer networks, necessitating further

research and development. Moreover, existing IoT technologies, mainly designed for

IoT networks such as peer-to-peer sensor networks, may not be suitable for real-time

user traffic as IoT applications are usually less resource-intensive and more delay-

tolerant. This difference highlights the need for new solutions specifically created to

support real-time user traffic in peer-to-peer networks.

Problem Statement Existing solutions within the LoRa MAC Layer domain, a

flexible, low-power, and long-range IoT network solution, attempt to address the chal-

lenges of enabling reliable, real-time communication in infrastructure-less, unplanned,

and bandwidth-constrained networks. However, they exhibit limitations in bandwidth

and only single-hop capability that could impede their effectiveness in mission-critical

applications. The growing need for real-time situational awareness (SA) in a self-

forming, self-healing mesh network, and voice communication in such scenarios further

brings the bandwidth issues into focus. Audio codecs, while efficient in transmitting

voice samples across diverse network conditions, falter when network resources become

scarce. They have to default to lower encoding rates, leading to a compromise in

audio quality and the clarity of the message conveyed. These identified challenges are

part of one overarching problem: The lack of a solution that enables reliable, real-

time communication in infrastructure-less, unplanned, and bandwidth-constrained

networks.
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Research Design

The LoRa MAC Layer has emerged as a popular radio solution for off-grid

communication. This technology is also affordable and easy to develop, making it

accessible to a wide range of users. The LoRa MAC Layer’s flexibility allows it to be

used in various applications, from remote sensing to asset tracking, offering a versatile

solution in unplanned, infrastructure-less networks.

However, the limited bandwidth of LoRa poses certain limitations, necessitating

the development of new solutions like the Beartooth Relay Protocol (BRP). The

BRP doubles the communication distance by utilizing relay nodes, allowing users

to extend the range of their LoRa networks beyond the typical one-hop limit.

The BRP effectively addresses the bandwidth constraints, marking a significant

advancement towards better network solutions and solves the problem that it aims

to solve. Although BRP is a step forward, the goal of enhanced performance and

scalability in off-grid regions invites further improvements. Developing new solutions

specifically designed for these areas will be crucial in enabling reliable and performant

communication.

The growing importance of real-time situational awareness (SA) in mission-

critical applications, particularly for small military units, has been underlined by

recent conflicts. Conventional real-time SA solutions tend to be costly, energy-

intensive, and cumbersome. This highlights the need for the development of more

affordable, energy-efficient, and user-friendly alternatives that work in regions that

lack infrastructure. The second-generation Beartooth Radios MKII, designed using

commercially available off-the-shelf (COTS) components, strives to address these

issues.

An integral component of SA, voice communications, is essential for its efficient

and rich information delivery. However, in bandwidth-constrained scenarios, voice
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transmission becomes a significant challenge. Traditional audio codecs perform well

in a variety of conditions but stumble when faced with limited bandwidth. This often

leads to utilizing low-bandwidth audio codecs that are designed to work in resource-

constrained networks. However, due to their highly lossy compression techniques

and low encoding rates, low-bandwidth audio codecs significantly compromise audio

quality and message clarity in such scenarios. This deficiency is especially pronounced

in mission-critical contexts where accuracy and promptness are paramount. In

search of a solution, recent advancements in neural networks and deep learning have

spotlighted Text-to-Speech (TTS) models. These models, rather than transmitting

comparatively larger encoded voice data, send concise text data, which is subsequently

regenerated as voice on the receiver’s end. This approach holds the potential to

address the bandwidth constraints inherent in voice communications in real-time SA

applications in resource-constrained networks.

Methodology The present dissertation is a comprehensive exploration of Internet

of Things (IoT) technologies. The research is divided into three main parts,

each contributing to a deeper understanding of bandwidth-constrained peer-to-peer

networks’ potential limitations. The first part of the thesis critically evaluates

various IoT technologies, identifying their respective use cases, and highlighting their

shortcomings. This evaluation aims to provide a solid foundation for the development

of new solutions that address the limitations of existing IoT technologies.

Following the critical evaluation of IoT technologies, the study introduces a

novel link layer protocol that enhances connectivity performance and mitigates the

identified shortcomings. This new protocol, specifically designed for off-grid regions,

is expected to improve the network reliability and performance of communication

networks in these areas, measured with Packet Delivery Rate (PDR) and Throughput
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in Kbps respectively.

The next part of the thesis focuses on real-time Situational Awareness (SA)

dissemination through the deployment of radios comprised of Commercial Off-The-

Shelf (COTS) components. This section of the research investigates the integration

of the aforementioned radios with existing mission-critical applications through

gateways. This analysis contributes to the literature by providing valuable insights

into the development and deployment of Peer-to-Peer communication technologies in

complex and high-stakes environments.

Building on the exploration of real-time SA and the challenges inherent in

bandwidth-constrained networks, the last section of the research discusses the domain

of voice communication. Recognizing that voice communications are integral to

real-time SA, the study conducts a comprehensive comparison between Text-to-

Speech (TTS) generated audio and traditional audio codec encoded and decoded

audio. The objective is to understand their respective performances, especially in low-

bandwidth settings. By assessing the clarity, efficiency, and consistency of these audio

communication methods, the research aims to shed light on the potential advantages

of TTS model generated audio and how TTS systems might offer a robust solution

for bandwidth challenges in voice transmissions.

My contributions are in three folds:

1. Link Layer Solution - Beartooth Relay Protocol (BRP): Introduction

of BRP, a flexible novel link layer protocol, designed to enable real-time and

streaming applications in bandwidth-constrained networks. The chapter in-

cludes details on the protocol’s configuration, physical and link layer parameter

tuning, and performance evaluation.
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2. Network Layer Integration - Cost-Effective Real-Time Situational

Awareness: Development of a network layer solution for efficient exchange

of situational awareness data in bandwidth-constrained environments. The

chapter includes creating a cost-effective, secure, bandwidth-efficient transport

layer for Team Awareness Kit (TAK) messages over the XBee platform and a

routing layer for communication between Beartooth Gateways and TAK servers,

facilitating integration with existing IP network infrastructure.

3. Application Layer Analysis - Real-Time Voice Communication in

Bandwidth-Constrained Networks: A comprehensive comparative analysis

of Text-to-Speech (TTS) models with various vocoders versus traditional audio

codecs. The study shows the trade-offs between voice intelligibility, clarity, and

efficient network resource management of both TTS models and audio codecs.

Overview In Chapter 2, the thesis discusses the wireless connectivity problem

and how enabling Device-to-Device connectivity solutions would address the wireless

coverage gap. This analysis aims to provide a better understanding of the challenges

and potential solutions in the context of wireless communication, especially in remote

and off-grid regions.

Chapter 3 tackles the limitations of existing solutions for situational awareness.

The chapter also proposes a solution to couple resource-scarce networks with higher

capacity networks, creating hybrid networks in which situational awareness data

can disseminate seamlessly. This examination offers insights into the potential

improvements in real-time SA data dissemination across various networks.

Chapter 4 investigates the intricacies of voice communication in bandwidth-

constrained networks. Specifically, it evaluates the comparative performance of TTS-

generated audio and traditional audio codec processed audio in such networks. The
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chapter offers a comprehensive analysis to highlight the advantages and potential

limitations of each method, shedding light on the evolving landscape of audio

communication solutions suitable for bandwidth-constrained networks.

Finally, in Chapter 5, after delving into the comparison between TTS and

traditional audio codecs in the previous chapter, the thesis concludes and discusses

future work. This chapter summarizes the key findings of the research, encompassing

both IoT technologies and audio communication advancements. It outlines potential

avenues for further investigation and development, aiming to contribute to the ongoing

evolution of IoT technologies and their role in SA scenarios such as mission-critical

applications.
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BEARTOOTH RELAY PROTOCOL: SUPPORTING REAL-TIME

APPLICATION STREAMS WITH DYNAMICALLY ALLOCATED DATA

RESERVATIONS OVER LORA

Problem Statement

People gravitate to convenient, one-fits-all solutions and expect products to work

well for different applications in various scenarios. The same holds true for wireless

networks. Bluetooth, for example, supports wireless music streaming, file sharing,

and even control of mobile applications via car receivers. As of yet, networks in the

Sub-GHz Industrial, Scientific, and Medical (ISM) band lack the same flexibility and

primarily cater to IoT sensor communications [2–7].

One of the recent and exciting physical layer protocols in the ISM band is Long

Range (LoRa) from Semtech [8]. LoRa’s chirp spread spectrum (CSS) modulation

makes possible long-range transmissions with low power consumption. LoRa’s

physical layer is also quite configurable in terms of bandwidth, transmit power, coding

rate and spreading factor giving LoRa a broad performance envelope in terms of

range and data rate [9]. However, link-layer protocols designed for LoRa do not

fully take advantage of LoRa’s flexibility and cater to specific applications in specific

settings [3, 5, 6, 10–13]. As a result, LoRa remains a niche technology restricted to

sensor networks, rather than broader Internet of Things (IoT) use cases.

To illustrate the above claim, LoRaWAN [14] is a link layer protocol base

on LoRa for long-range, low-power, short-burst sensor communications. However,

the collision avoidance mechanisms of LoRaWAN borrowed from ALOHA [15], lead

to unpredictable message delay and loss. The resulting mean latency of 11 s and

throughput of 28 bit/s make it unsuitable for real-time and reliable applications

such as health monitoring [5, 14]. To provide predictable delay in LoRa networks
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several solutions proposed time-slotted medium access control (MAC) [3,4,10]. These

protocols provide bounds on delay and high packet delivery rates (PDR). Yet,

these protocols are hamstrung by the European Union (EU) regulatory duty cycle

limitations on the ISM band, and so have low throughput and latency in the tens

of seconds that limits their use for streaming applications [16]. A few approaches

aim to sustain streaming data by abandoning PDR as a primary metric and focusing

in improving LoRa throughput instead. Industrial LoRa [6] combines contention

and contention-free transmissions to provide sustained throughput of 28 bit/s. DQ-

LoRa [13] uses distributed queuing to provide throughput of 0.7Kbit/s. Nevertheless,

these protocols still achieve latency of more than 4 s limiting their use in real-time

applications such as vehicular networks [17]. In summary, none of the existing LoRa

MAC protocols support real-time data streams and moreover lack the flexibility to

customize their parameters to meet the requirements of the specific application flows

present in a network deployment

We propose Beartooth Relay Protocol (BRP), a flexible MAC protocol that

supports, among others, real-time and streaming applications over LoRa. We also

present the design of a frequency hopping LoRa radio developed by Beartooth that

works in tandem with the BRP. This chapter offers the following contributions:

1. We describe BRP, a highly configurable gateway protocol supporting real-time

and streaming applications. We control the BRP performance envelope with

a configuration file distributed to nodes in a network deployment to match

application performance requirements.

2. BRP provides latency under 500ms making it suitable for real-time messaging,

such as location updates within the Team Awareness Kit (TAK) tactical

situational awareness application [18].
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3. BRP provides flow throughput just shy of 0.8Kbit/s letting it support

bidirectional, real-time voice flows (a first in LoRa) encoded with Codec 2 [19].

4. We describe the mechanisms behind the Beartooth radio and BRP, specifically

frequency hopping and scheduling of multiple transmission opportunities, that

enable their performance while meeting Federal Communications Commis-

sion (FCC) regulations.

These results demonstrate that BRP has the potential to be adopted into many

IoT applications with different performance profiles that go beyond sensor network

communications.

Related Work

To frame the need for a flexible LoRa protocol that caters to both real-time

and streaming data, we discuss the limitations of existing LoRa protocols in the

commercial and research spaces.

Semtech introduced LoRa chirp spread spectrum (CSS) chip in 2009. LoRa

encodes information with chirps, or transmissions of rising frequencies within the

width of a channel (125 kHz or 250 kHz), where the starting frequency of chirp

indicates a symbol [9]. The slope of a chirp is a function of channel width and the

spreading factor, which defines the duration of each chirp and its resiliency to radio

interference. The wider the channel and the longer the chirp the more resilient is the

transmission to interference as these make it easier for the receiver to determine the

starting frequency of the chirp. The CSS encoding gives LoRa resilience to multipath

effects, fading, and Doppler frequency shifts [20]. However, the main advantage of

LoRa is its range; radios based on Semtech chips support data rates between 0.3 and
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37.5Kbit/s and robust links at distances up to 9 km in urban and over 30 km in rural

scenarios [14, 21].

The LoRa Alliance publishes a carrier sensing multiple access (CSMA) Lo-

RaWAN protocol, which allows devices to communicate via gateways [22]. LoRaWAN

utilizes an ALOHA based approach where end devices transmit contending frames,

which leads to error rates as high as 70% depending on the frame size [10].

Although LoRaWAN utilizes other mechanism to boost performance such as Adaptive

Data Rate (ADR) and Channel Activity Detection (CAD) collision avoidance

protocol design is ill-suited for application streams with Quality of Service (QoS)

requirements [23].

To address the unpredictable latency and unreliable delivery of LoRaWAN a

number of protocols propose time-slotted approaches to medium sharing. Hoang et al.

propose ST/CA – a slotted LoRa protocol with collision avoidance [10]. A gateway

beacon synchronizes nodes to the start of a frame divided into transmission slots. Each

transmission slot contains a number of delay slots. To transmit data a node engages

CAD in a random delay slot and, if is does not detect a competing signal, proceeds

to transmit data for the remaining delay slots and the rest of the transmission slot.

While time synchronization and short delay slots reduce the impact of collisions, nodes

still compete for each transmission opportunity. The evaluation shows maximum per

node throughput of 11.3 bit/s under a PDR of 0.87. Frame duration is 25.7 s leading

to the maximum latency of 25.65 s after a 500ms beacon.

Piyare et al. propose an on-demand time division multiple access (TDMA)

scheme for LoRa [11]. A gateway uses a separate wake-up receiver (WuRX) radio to

wake up nodes and synchronize them to the start of a cycle. A node then chooses a

transmission slot based on its node ID. The scheme assigns node IDs statically during

network configuration, which makes it unable to deal with node churn and leads to
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higher latency for higher ID nodes. The evaluation shows a PDR of 100%, but high

mean latency of over 2 s. The authors do not provide throughput performance.

Zorbas et al. propose TS-LoRa – a slotted LoRa protocol that allows nodes

to autonomously compute their slot number [3]. TS-LoRA nodes operate in two

stages, registration and transmission. During registration the gateway assigns a

unique timeslot to a registering node, which the node then uses to transmit data.

The gateway initiates data transmission with a SACK packet that also acknowledges

previous transmissions. The scheme however leaves timeslots unused for nodes that

chose not to transmit in their slot. The evaluation shows maximum per node

throughput of 45.6 bit/s under a PDR of 0.9986.

Singh et al. propose a gateway-coordinated channel hopping scheme [12]. The

protocol uses detailed on-air time calculation for beacon packets to synchronize node

clocks. The gateway announces a schedule of timeslots and channels than nodes

switch to for transmission. The paper evaluates the performance of scheduling and

channel hopping scheme, but not of data transmission.

Leonardi et al. propose Industrial LoRa MAC that provides both contention and

contention-free transmission slots within a frame [6]. Nodes compete for contention

slots using ALOHA, while contention-free slots are scheduled. However, Industrial

LoRa include time in the frame to communicate a schedule and the authors propose

that the schedule should be specified offline, with dynamic scheduling left to future

work. The authors evaluate Industrial LoRa in an OMNeT++ simulation showing

best-case mean latency of 9.67 s and PDR of 0.34 for contention slots and 1.0 for

contention-free slots.

Wu et al. propose DQ-LoRa based on distributed queuing (DQ) [13]. A DQ-

LoRa frame is divided into a small number of contention slots, a data slot, and a

gateway acknowledgement slot. Nodes compete for data slots by transmitting their
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ID in one of the contention slots and the gateway acknowledges non-colliding IDs.

Nodes that do not experience a collision use the data slots in subsequent frames

to transmit, while other nodes continue to compete in contention slots. The work

demonstrates that a small number of contention slots is sufficient to fully utilize data

slots, even with a large number of nodes. The authors evaluate DQ-LoRa analytically

showing best-case delay of around 4 s and throughput of 0.7 Kbit/s, a gain factor of

2.6 over LoRaWAN throughput.

Finally, Leonardi et al. underline the need for bounded end-to-end delay and

higher reliability in IoT applications and introduce RT-LoRa to address delay

and reliability with scheduling for real-time traffic [5]. The RT-LoRa is able to

accommodate contention and contention-free transmissions for periodic and aperiodic

data generation. Their results show RT-LoRa’s packet loss rate and maximum end-

to-end delay under two configurations. When compared to author’s earlier approach

Industrial LoRa, RT-LoRa has significantly higher PDR of 0.97 especially on shorter

distances to the sink and latency of 20.7 s in best case scenario.

In summary, none of the approaches address the needs of latency sensitive

real-time traffic, or streaming data flows. In this chapter, we propose a solution

that applies time-slotted frame scheduling on a frequency hopping LoRa radio. Our

approach not only noticeably reduces LoRa delay and increases throughput, but also

provides the flexibility to configure network parameters to the performance needs of

real-time and streaming applications present in a network deployment.

Beartooth Radio

The Beartooth radio behind the BRP is a custom LoRa shield paired with a

Raspberry Pi 4 controller, as shown in Figure 2.1. The shield includes a SX1276

LoRa chipset, which communicates with the BRP on the controller’s CPU via the Pi’s
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Figure 2.1: Beartooth radio LoRa shield paired with a Raspberry Pi 4.

Serial Peripheral Interface (SPI). The SX1276 chipset modulates a CSS radio signal

in the 900MHz band amplified to 30 dbm at the antenna. The SX1276 provides seven

spreading factors, SF6 to SF12, with SF6 creating the the steepest slope providing

the highest data rate, 37.5Kbit/s, and SF12 creating the flattest slope provides the

greatest robustness and therefore range with 0.26Kbit/s [7]. LoRa also protects bits

in transmission with a configurable error correction rates using Hamming codes and

with a cyclic redundancy check (CRC).

One of our contribution is the frequency-hopping mechanism used by the

Beartooth radio since 2017 [24]. The FCC Title 47 part 15 limits the maximum

transmission duration on a channel, also known as dwell time, to 400ms in the ISM

band [25]. This regulation limits the throughput LoRa devices can achieve on a single

frequency. However, SX1276 chipset supports internally timed frequency hops [20]
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Figure 2.2: BRP cycle, stages, and frames.

and Beartooth radios change frequencies during message transmissions every 0.08 s,

which effectively allows for indefinite transmission durations. Because LoRa supports

50 frequency channels, Beartooth radios use 50 semi-orthogonal hopping sequences.

A relay and its clients agree on a hopping sequence and multiple sequences allow

the coexistence of co-located network deployments. We handle occasional collisions

on sequence timeslots with forward error correction (FEC) embedded in Beartooth

frames. Beartooth radios and their approach to the use of the ISM band has been

approved for operation by the FCC [24].

Beartooth Relay Protocol (BRP)

Protocol Requirements

In designing the BRP we had to consider Beartooth customer requirements,

constraints of the LoRa chipset, and FCC regulations. Beartooth customers want to

build networks that cover hundreds of square miles and support support two types of

applications: situational awareness and team voice communications. The situational

awareness application exchanges short messages that carry text, or GPS location.

These messages are under 20B and should be delivered in under 500ms. The team

voice application sends encoded voice streams that should be delivered to multiple

recipients, again, in under 500ms. We encode voice transmissions with Codec 2 for

a throughput requirement of 700 bit/s [19]. We also explore a scenario to support
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generic sensor network compliant with EU duty cycle limitations in the ISM band,

where duty cycle is restricted to 1% [6]. Messages in this network should achieve a

PDR above 90% as in existing LoRa protocols [3, 5]. This application allows us to

compare BRP performance to other EU-compliant LoRa protocols.

We aim to support these applications within the limits placed by the SX1276

chipset. The SX1276 chipset provides 50 10.9Kbit/s channels at SF7, which forces a

uniquely pithy BRP control signalling within the available bandwidth, as discussed

in Section 2. Further, we determined experimentally that the SX1276 chipset faces

limitations in transmitting back-to-back frames. For example, frames over 30B

transmitted every 150ms result in the chipset becoming unresponsive until we cycle

its power. The chipset, however, can transmit repeatedly frames under 30B at that

interval, or frames larger than 30B are longer intervals. As a result of these hardware

constraints, we configure node data frames under 30B, but may still use larger frames

for relay transmissions, as discussed in Section 2.

Finally, the FCC limits transmit power to 30 dbm [25]. The power limits

restrict the communication range of Beartooth radios to 15.2 km as reported in

our preliminary work [26]. Our transmissions also comply with FCC’ dwell time

regulations, as described in Section 2 where a radio cannot occupy one channel more

than 400ms [25].
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Frames Fields Size (B) Description

RLY ANNC type 1

Relay announces available LES control time slots and the network configuration.confid id 1

ctrl tbl 2

ND REQ type 1

Node requests a number of DE time slots for data transmission.node id 4

de req cnt 1

RLY ACK type 1

Relay broadcasts DE time slot allocations and the number of DE stages.
traffic map 12

traffic map size 1

de cnt 1

ND DATA type 1

Node transmits their data.
dest id 4

data len 1

data 20

RLY TX type 1

Relay rebroadcasts received ND DATA frames in RLY TX.nd data len 1

nd data buffer 78

Table 2.1: List of protocol frames with descriptions.
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Figure 2.3: Link Establishment and Scheduling message sequence.

Protocol Operation

At a high level BRP operates by repeating a transmission cycle of protocol frames

shown in Figure 2.2. We list the details of details of the BRP frames in Table 2.1.

Each cycle contains two types of stages, the Link Establishment & Scheduling (LES)

stage and the Data Exchange (DE) stage. In the LES stage the relay synchronizes the

nodes to the cycle start time and allows them to request transmission opportunities.

In the DE stages nodes send data to the relay, which forwards the data the receivers

via a broadcast. Depending on the amount of data nodes seek to transmit, the

relay may allocate transmission opportunities in consecutive DE stages. While nodes

compete in the LES stage and their request frames may collide, the data transmissions

in the DE stages are collision-free.

Link Establishment Referring to Figure 2.3, to start a cycle a relay broad-

casts the Relay Announce (RLY ANNC) frame (Step 1), which includes configuration

ID (config id) and a LES control timeslot table (ctrl tbl) with available timeslots for
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nodes to establish connections. The config id specifies network parameters, discussed

in Section 2.

A node may listen to frame preambles on different frequencies (in turn) to receive

RLY ANNC frames from different relays in an area. A node will chose the one with the

strongest signal to noise ratio (SNR) and thereafter listen for RLY ANNC frames on

that channel. Nodes use the reception of RLY ANNC to synchronize with a relay by

establishing the start time of a cycle. If a node does not receive RLY ANNC in some

time, then it sequentially listens other channels and accepts announcements from

other relays.

To connect with a relay, a node chooses a random available LES timeslot from

ctrl tbl (Step 2 in Figure 2.3) in which to send the Node Request (ND REQ) frame

containing the node ID (node id) and how many DE stages (de req cnt) it needs for

its traffic (Step 3). For example, to send a ND REQ in timeslot 2, the node waits for

the time it takes to transmit two ND REQ frames after the reception of RLY ANNC.

Scheduling The relay collects ND REQ’s and adds node id’s into a traffic queue

used to schedule nodes in the DE stages. For simplicity, we implement a simple

sticky scheduler, which gives priority to continuing flows from the previous cycle

up to a limit. Otherwise the relay schedules new requests in the traffic queue

randomly. The stickiness allows nodes to effectively reserve bandwidth for continued

data streams across multiple cycles, while the limit and randomness provide fairness.

The result of the scheduling process is a traffic map (traffic map) containing node id’s

corresponding to DE timeslots of each scheduled node. For example, a traffic map

[215, 328, 328] means that node 235 may transmit data in DE timeslot 0 and node

328 in timeslots 1 and 2, if it sent two ND REQ’s.

Following the scheduling decision, the relay updates its ctrl tbl (Step 4) by



20

setting the bits in the LES timeslots used by ND REQs of the scheduled nodes.

The number of DE stages used by the relay provides a tradeoff between latency

and throughput as discussed in Section 2. The number of DE stages may be fixed at

the relay, though we implement a dynamic approach where the number of DE stages

is the median of the ND REQ de req cnt values to provide a balance between fairness

and performance.

To announce the scheduling decision, the relay forms a Relay Acknowledge-

ment (RLY ACK) frame (Step 5) by including the traffic map and the number of DE

stages (de cnt). A node receiving a RLY ACK (Step 6) checks if its node id is in the

traffic map and if so considers itself connected on the LES timeslot it used to sent

its ND REQ. The node also records its DE timeslot (the position of its node id in the

traffic map) and the number of DE stages.

If two ND REQ’s collide, and a node cannot find its node id in the traffic map,

the node backs off the repeats the LES stage on a random available timeslot in

the RLY ANNC ctrl tbl bitmap. It is important to note that as RLY ANNC advertises

only available control timeslots, nodes trying to connect to a relay will only consider

available timeslots thus, ND REQ can collide with only those of other, unconnected

nodes.

To ensure that nodes do not need to repeat the connection process, entries in the

ctrl tbl on both nodes and the relay include a time to live (TTL) of 5 cycles. When

a node stops receiving RLY ANNC, it decrements the TTL of the connection. Similarly

the relay decrements the TTL of a connection, if it does not receive a ND REQ within

a cycle. Reception of these frames resets the TTL to 5.

Data Exchange Referring to Figure 2.4, after a node, here Node A, receives

RLY ACK (Step 1) it looks up its data time slot(s) shared in traffic map (Step 2). Then,
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Figure 2.4: Data Exchange message sequence.

it forms Node Data (ND DATA) frame and sends it in the assigned timeslot (Step 3).

Another node follows the same pattern and sends its ND DATA in (Step 4). ND DATA

contain destination address (dest id), either node id or group id, the length of the

data payload (data len) and the data payload (data).

The relay collects all ND DATA frames (Step 5), encapsulate them in a buffer (nd data buffer),

and finally broadcast the RLY TX frame (Step 6). Nodes receiving the RLY TX pass onto

the higher layer data if the encapsulated ND DATA are addressed to their node id, or a

group id subscribed to by the application layer (Step 7). Nodes and relay will repeat

the DE stage de cnt number of times (Steps 8-10).

Protocol Configuration

The BRP is quite flexible allowing Beartooth networks to support applications

with different performance requirements. While the number of network parameters is

quite large, we observe that the number of useful combinations is small. As a result,
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we let the relays to specify the set of parameters with a config id, which then allows

a node to look up a specific combination of parameters pre-loaded onto Beartooth

nodes.

The configurable parameters include BRP parameters such as: the number of

LES control timeslots, DE timeslot duration and count, and sleep time before a

RLY ANNC to reduce protocol duty cycle. The configurable parameters also include

LoRa PHY settings such as spreading factor, channel bandwidth, coding rate, and

whether or not the CRC is used.

Evaluation

To demonstrate BRP flexibility of performance, we evaluate its performance

in three network scenarios, while measuring latency, cycle duration, PDR, and

throughput. In all three scenarios, we have gathered hundred data points to plot

the necessary figures.

Setup

We configure the Beartooth radios to use SF 7, coding rate of 4/5, channel

bandwidth of 250KHz, and the use of the CRC. The achievable channel bandwidth in

this configuration is 10.9Kbit/s and represents an attractive tradeoff between channel

capacity and range [26].

Further, we configure three network scenarios as follows. Scenario 1 supports the

exchange of short messages. The application generates 20B messages every second

with the goal of delivering them within 500ms without relying on multiple DE stages.

We vary the number of transmitting nodes between 1 and 3 while using 3 LES

timeslots.
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Scenario 2 supports real-time data streams. The goal of this scenario is to

demonstrate BRP’s ability to accommodate voice streams within 500ms latency. We

encode voice data with Codec 2 at 700 bit/s, which generates 20B messages every

228ms [19]. In the experiment we also vary the transmission interval to find the

maximum flow throughput. We configure the number of DE stages to 3.

Finally, Scenario 3 supports BRP performance under the EU duty cycle

regulations, which restrict nodes to transmit only 1% of the time [6]. The goal of

this scenario is to demonstrate BRP’s ability to meet EU regulations and compare

its performance against other LoRa MAC protocols in terms of PDR and control

overhead. To do so, we restrict the frequency of RLY ANNC messages by adding a sleep

interval to the cycle.

Results

Scenario 1: Short messages Our first experiment includes two devices: a relay

and a sender/receiver. To measure the latency, we include the timestamp in the

data packet and let node addresses the packets to itself. This approach allows us to

measure the time difference between transmission (through the relay) and reception

on the same node, without the need for synchronizing clocks between the sender and

the receiver.

Figure 2.5 shows the CDF of cycle duration (blue solid line) and latency (orange

dashed line) on the y-axis and time (ms) on the x-axis. We measure the latency at the

sender between when the input data appears at the send buffer (from the application)

and when it appears in the receive buffer (from the RLY TX). We measure the cycle

duration between the reception of RLY ANNC and of RLY TX.

We observe that latency ranges from 293ms to 1.47 s with the mean of 478 ms.

This result indicates that on on average the delay of short messages remains under
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Figure 2.5: Two-hop latency and cycle duration.
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500ms. The variation in latency comes from the timing of receiving application-layer

data in relation to the state in the protocol cycle. Data received just prior to the

transmission of ND DATA achieves the lower latency of less than a full cycle, while data

received just after needs to wait for the next cycle for transmission. When a ND REQ

is lost due to collision, the node may need to wait for the start of the next cycle, thus

increasing the measured latency producing the tail in the CDF.

We also see in Figure 2.5 that the cycle duration is fairly stable averaging around

362ms. However, when a node is unable to get a control timeslot in the first cycle,

and the second data packet is queued, relay may schedule two DE stages consecutively

resulting in longer cycle of 553ms, shown as the step in the cycle duration CDF.

We also wanted to investigate how different numbers of LES timeslots in RLY ANNC

effect nodes’ ability to schedule transmission, and so application layer latency. Our

experiment consists of four devices, one relay and three nodes, where one to three

nodes send periodic packets as in the previous experiment. In Figure 2.6 we show

application latency on the y-axis and the number of LES timeslots on the x-axis. The

different series in the plot show the number of active sender nodes.

With one and two active senders, we see an upward linear trend in latency with

increasing number of LES timeslots. This increase is due to a longer cycle duration

needed to accommodate the extra LES timeslots. However, with three sending nodes,

we see latency decrease. This effect is due to the collisions of ND REQ from simultaneous

senders in randomly chosen control timeslots. Increasing the number of available LES

timeslots decreases the probability of such collisions, thus the number of retries in

subsequent cycles, and so message latency.

Thus, BRP cycle duration can be tuned by the number of LES timeslots to

accommodate the number of simultaneous transmitters in the network. We note that

BRP can accommodate a large number of nodes and the LES timeslot tuning applies
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Figure 2.6: Latency versus number of LES timeslots and active senders.
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Figure 2.7: PDR versus Number of Control Timeslots.

merely to the number of simultaneous senders required by the application.

Figure 2.7 shows PDR, obtained in the previous experiment, on the y-axis and

number of LES timeslots on the x-axis. We observe that PDR stays essentially

the same regardless of the number of LES timeslots. This is because, number of

LES timeslots has no effects on DE timeslots and when relay schedules three nodes

within a cycle, nodes use all the available DE timeslots. We also observe that the

PDR decreases slightly with additional simultaneous transmitters. Even though DE
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timeslots are strictly scheduled, a few milliseconds of shift can cause data frames to

overflow into neighboring timeslot causing collisions on a very rare occasions. These

rare collisions are due to the clock drift of the SX1276 chipset.

Scenario 2: Real-time flows We want to demonstrate BRP can accommodate

data streams without compromising latency by enabling consecutive DE stages. In

this experiment we utilize two devices; one node and one relay, configured to schedule

3, 5 or 7 data exchange stages consecutively.

Figure 2.8 shows latency on the y-axis and the number of consecutive data

exchanges on the x-axis. We observe that the mean latency is 305ms when relay

schedules 3 DE stages back to back. Latency decreases to 283ms when number

of consecutive data exchanges are increased to 5. Finally at 7 DE stages, latency

hits 278ms and shows marginally diminishing returns, because the duration of LES

stage remains undiminished and represents an increasingly large proportion of cycle

duration.

To observe the effects of number of active nodes in scenario 2 we set up another

experiment with four devices – three nodes and one relay. In this experiment we

focus on throughput observed on the relay and average PDR observed on nodes.

Figure 2.9 shows network throughput (blue solid line) in Kbit/s on left y-axis, PDR

(orange dashed line) on the right y-axis and number of active senders on the x-axis.

Experiments starts with 1 active node and the figure shows network throughput (and

flow throughput) at just below 0.8 Kbit/s. When another node is activated we see

a linear upward trend where network throughput reaches just below 1.6 Kbit/s with

almost no drop in PDR, staying at 98%. The 3rd and the last node is activated, we still

see an increase in network throughput reaching 2.25 Kbit/s however, the rate of the

increase is diminished due to PDR getting a hit. As discussed earlier, the drop in PDR



29

Figure 2.8: Latency versus Number of DE stages.
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Figure 2.9: Throughput versus Number of Active Nodes.
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is due to an occasional shift in ND DATA transmissions and an overlap with neighboring

DE timeslot resulting in ND DATA collisions. Even under such collisions, the per flow

throughput remains above 750 bit/s and allows the Beartooth network to deliver not

one, but three simultaneous real-time voice flows encoded with Codec 2 [19].

Figure 2.10 displays network throughput from the previous experiment in Kbit/s

on the y-axis and number of data exchange patterns per cycle on the x-axis. We

observe that as the number of DE stages increases, so does network throughput. This

effect is due to the fact that the single LES stage is amortized by multiple DE stages.

Scenario 3: EU duty cycle Finally, we want characterize the performance of BRP

under EU duty cycle limitation and compare it against the performance of other LoRa

MAC protocols. As mentioned earlier, the EU restricts duty cycle to 1% [6]. Doing

so significantly reduces network throughput and increases latency. In the BRP the

time-on-air (ToA) for relay transmissions at 27%. The relay ToA dominates node

ToA, and so we add a sleep time of before each RLY ANNC frame to bring relay (and

node) ToA under 1% and into EU compliance.

Figure 2.11 shows the relationship between network throughput (blue solid line),

maximum latency (orange dashed line) in seconds, and the number of consecutive DE

stages with the appropriate cycle sleep time for each number of stages. The left y-axis

marks network throughput for three simultaneous transmitters, while the x-axis shows

the number of DE stages. While additional DE stages increase network throughput,

the overall throughput remains constrained by the added sleep time. The right y-axis

shows the maximum latency corresponding to the number of DE stages. We observe

that the maximum latency increases with the number number of DE stages, because

each DE stage requires an increase in sleep time to keep BRP duty cycle under 1%.
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Figure 2.10: Throughput in Kbit/s vs. DE stages.
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Figure 2.11: Analytical results of throughput and maximum latency observed under
varying number of DE within a cycle.
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Comparing BRP to Other LoRa MAC Protocols

In comparing BRP performance to that of other LoRa protocols discussed in

Section 3, we observe that the combination of BRP and the frequency hopping

Beartooth radio significantly outperforms existing approaches in terms of latency

and throughput. The closest competitor to BRP is DQ-LoRa, which throughput gain

of 0.7 Kbit/s, but a latency of around 4 s [13]. BRP delivers similar flow throughput,

but with mean latency under 500ms.

PDR values are comparable across the protocols and do not benefit from

Beartooth radio’s frequency hopping. We observe that BRP PDR of 0.98 is on par

with that of TS-LoRa (0.9986) [3] and RT-LoRa (0.98) [5], and above that of ST/CA

(0.87) [10].

Finally, we compare BRP’s control overhead with the control overhead from

other LoRa protocols. We calculate BRP control overhead ratio by counting the

cycle bytes that represent protocol control (all the fields except data) and dividing it

by total payload data (data). The smaller the ratio, the more efficient the protocol.

In our calculations, we assume BRP has three active senders and three DE stages

scheduled. Referring back to Table 2.1, in the LES stage, the control overhead comes

from a RLY ANNC, 3×ND REQ, and a RLY ACK, or

4 + 3× 6 + 15 = 37B.

In the DE stage, the control overhead comes from 6B in ND DATA and 20B in RLY TX.

With one LES stage for every three DE stages the total control overhead is

37 + 3× (3× 6 + 20) = 151B.
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Total payload data in the DE stage, on the other hand, includes 20B in each of three

ND DATA frames and 60B in the RLY TX. Since there are three DE stages, the total

payload over two hops is

3× (3× 20 + 60) = 360B.

The the BRP control overhead ratio in this scenario is 151/360 or 41.9%. Of course

a different protocol configuration, in terms of ND DATA payload size, or the number of

DE stages would change this ratio.

Using the scenario presented in the paper of Zorbas et al. we calculate the control

overhead of TS-LoRa to 52% [3]. We were unable to compute the control overhead

ratio for the other LoRa protocols listed in Section 3 due to insufficient information in

their papers. Although not a direct comparison, we observe that BRP uses efficient

signalling par with at least one competing LoRa protocol.

Conclusions and Future Work

In this chapter we presented the Beartooth Relay Protocol – a novel MAC

protocol for LoRa. BRP provides the flexibility to meet various application

performance requirements, notably under 500ms latency for short message exchanges.

BRP also supports real-time streams, specifically that of multiple, simultaneous

voice flows, under the same latency bounds. BRP does so by leveraging frequency

hopping mechanisms of the Beartooth radio and by making long-lived transmission

opportunity reservations. We also demonstrate BRP’s performance under EU duty

cycle restrictions that are more stringent than FCC rules. The results indicate BRP’s

suitability to a range of IoT applications beyond sensor data collection.

In the future we plan to extend BRP beyond two-hop paths of relayed
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communications. Extending a single LoRa channel to support multiple hop is

challenging due its limited bandwidth. To circumvent that problem we plan on

equipping Beartooth relay nodes with additional LoRa radios to enable inter-relay

communications. We will link the orthogonal channels used by these radios with data

forwarding through the controller, supported by Address Resolution Protocol (ARP)

and switched forwarding.

Additionally, we are working on extensions to connect BRP-like ad-hoc networks

to the internet through gateways, bridging P2P connectivity with centralized

infrastructure and creating hybrid networks.

The C++ implementation of BRP also allows us to move the protocols from

Raspberry Pi onto the shield board micro controller. We evaluated micro controller

options to enable Beartooth radio operation on standalone hardware.

Finally, Semtech introduced a LoRa Frequency Hopping Spread Spectrum (LR-FHSS)

extension to LoRa in December of 2020 [27]. The LR-FHSS mechanism implements

frequency hopping transmissions at the physical layer without changes to the interface

presented to the link layer. The LR-FHSS mechanism does use an additional 3B in

the header and is able to provide added robustness at a modest impact to latency

and throughput. We expect that the LR-FHSS will allow BRP retain most of its

performance benefits while deployed on a generic LoRa hardware as opposed to a

Beartooth radio. To verify that, we will perform an evaluation of BRP on LR-FHSS

chipsets and compare it against the results presented in this paper.

The combination of BRP running on standalone hardware (without a paired

Raspberry Pi) and a generic radio using the LR-FHSS mechanism will make it easier

and cheaper to deploy BRP a variety IoT deployment scenarios.
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COST-EFFECTIVE SITUATIONAL AWARENESS THROUGH COTS

BEARTOOTH RADIOS AND GATEWAYS

Introduction

As we have seen in recent conflicts, the nature of warfare is evolving. The absence

of encrypted communications generates an operational disadvantage for large military

forces and enables small, highly mobile units to disrupt their advance [28]. On the

other hand, accurate, up-to-date situational awareness (SA), whose definition can

vary depending on the scenario, is crucial. For example, for troops on the battlefield,

SA might refer to immediate access to markers of enemy troop locations, while for

wildfire firefighters, it might entail rapid delivery of polygon-defined areas on the

map to describe wildfire containment. Regardless of the specifics, SA allows these

small units and their command centers to coordinate efforts. Consequently, a low-cost,

scalable SA solution that can be tailored to different use cases becomes an increasingly

important force multiplier that first responders and military commanders need in their

arsenal.

Mission-critical or specifically battlefield SA relies on two integrated technolo-

gies: a connectivity layer that provides raw communication links between agents, and

an information layer that disseminates location-based data and operational directives.

Battlefield radios from Silvus [29], TrellisWare [30], and Persistent Systems [31] can

establish direct as well as multi-hop connectivity among agents. These radios also

integrate with mobile phones running the Android Tactical Assault Kit (ATAK) [32]

to create an SA overlay. Networks built on these radios, however, have several

shortcomings. First, these purpose-built radios are comparably more expensive than

other radios built with commercially-available components, which makes it difficult to

deploy them in large numbers. Unfortunately, the price per unit for these radios is not
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publicly available. However, discussions with users revealed that comparable network

sizes would be 5-10 times more costly than networks built with commercial off-the-

shelf (COTS) radio components. Second, they are power hungry which increases their

weight, limits portability, and increases observability [33]. Finally, third, without an

edge Tactical Assault Kit (TAK) [34] server in the field, SA data dissemination with

SA communication systems that use these radios is geographically limited. SA data

can only be exchanged within the coverage area of the radios, limiting SA to just one

or a few local squads.

One way to reduce SA system costs and form factor is to build it with COTS

components. Research on internet-of-things (IoT) communications has produced

several multihop connectivity solutions [2, 35–37]. These low-cost radios provide

low-bitrate links, which may nevertheless be suitable for SA applications. A key

advantage of these radios is their low cost and spectral efficiency, which leads to low

power requirements and small, lightweight form factors. Despite their benefits, these

low-cost radios must also satisfy certain Quality of Service (QoS), such as low latency,

delivery receipts for SA data, and resilience to network disruptions caused by high

mobility, to be considered for SA systems and mission-critical applications. However,

whether resource-limited IoT radios can meet these demands is unclear.

In this paper, we propose an SA solution based on IoT COTS radios. Specifically,

we design the Beartooth MKII radios based on the XBee radio platform [38]. The

XBee radio platform provides more than ten miles of range in urban areas and sixty

miles in rural areas with a line-of-sight between transceivers. XBee also supports

DigiMesh, a self-forming, self-healing link layer protocol with built-in frequency

hopping and routing among more than a hundred nodes in a Low Power Wide Area

Network (LPWAN) [39]. In addition, XBee radios are highly power-efficient and

draw less than 3mA while in standby mode, and 900mA during data transmission
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at 30 dBm (1W) transmit power [40]. Finally, the XBee platform is inexpensive with

modules easily accessible commercially.

The Beartooth MKII radio couples an XBee radio with a Bluetooth module that

allows it to speak to a mobile phone running ATAK. To address the bitrate limitation

of the XBee platform, we design the Beartooth ATAK Plugin to rearrange the existing

TAK data format known as Cursor-on-Target (CoT) events into a more compact

representation. We compress larger data types such as sensor readings, images, and

bulk data and we split them for transmission over multiple XBee frames. We also use

unicast transmissions to reduce time-on-air for larger CoT events, which route frames

directly to the destination to reduce the number of data and acknowledgment packets

traversing on the network with respect to broadcast frames. While Beartooth MKII

radios exchange our compact frames, the original CoT events still get recreated at the

receiver then published to ATAK, allowing us to share SA in a resource-constrained

COTS network. The resulting MKII form factor, shown in Figure 3.1a, is 4.09 x 1.21

x 0.7 inches and weighs in at 6 oz, including a battery. The Beartooth MKII radios

are as much as 54% lighter than existing tactical radios discussed in Section 3.

Further, we provide shared SA between squads and commanders through the

Beartooth Gateway. The Gateway is a handheld server as seen on Figure 3.1b that

consist of a MKII radio and a translation layer to couple an XBee network to an IP

network over cellular, satellite, or other radio technologies, such as the radios from

Silvus, Trellisware, Persistent Systems, or Harris. IP connectivity allows the sharing

of encrypted SA data among multiple squads as well as command centers running a

TAK server [34].

Figure 3.2 illustrates a possible deployment scenario interconnecting multiple

network technologies and operational areas into a shared TAK SA overlay. In

Figure 3.2 we show two Beartooth networks, A and B, bridged together using
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(b) Beartooth Gateway and its software modules.

Figure 3.1: Bearthooth system design.
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Figure 3.2: An example deployment of Beartooth network with MKII radios and
Gateways, connecting many users spanning across WiFi, cellular (5G/LTE), satellite
connectivity and battlefield radios.

two Gateways. Both Gateways are connected through an IP network such as the

internet with the help of a Virtual Private Network (VPN) denoted as network C.

An additional Gateway within network C serves the TAK information layer to

multiple IP-connected devices through various network interfaces such as WiFi,

cellular (5G/LTE), and satellite connectivity. All three TAK servers within Gateways

are federated, allowing Beartooth SA data to flow into the IP network and SA data

generated at network C to flow into Beartooth Networks A and B. A fourth TAK

server sits in the cloud computing architecture, is also part of the network C, and

is federated to Gateway A and B. Therefore both Beartooth network members and

members of IP network can exchange SA and battlefield intelligence. Furthermore,

commanding officers can observe the whole operation and even send orders through

the TAK server in the cloud using a WinTAK [41] device, creating communication

links that are encrypted between forces in the field and an operation command center.



42

This paper’s main contribution is enabling SA over IoT COTS radios that are

compatible with traditional SA systems through the following supporting technical

contributions.

1. A secure, bandwidth-efficient transport layer for TAK messages over XBee

platform

2. A routing layer for TAK messages among Beartooth Gateways and TAK servers

A Beartooth network composed of MKII radios and Gateways delivers a capable

SA solution to coordinate squads and command centers over large areas of operation.

The low cost and small form factor of the Beartooth radios make it possible to deploy

SA at a large scale and is a powerful force multiplier.

Related Work

To illustrate the need for cheaper, smaller, and more flexibly deployable radios,

we discuss the limitations of existing solutions to create connectivity and situational

awareness. We consider commercially available tactical radios as well as COTS

technologies from the IoT space.

In the commercial space, there are three predominant solutions Streamcaster,

TSM Shadow, and MPU5 radios from Silvus Technologies, TrellisWare Technologies,

and Persistent Systems respectively. All were developed to provide tactical connec-

tivity and SA for first responders and military forces.

Streamcaster product line from Silvus Technologies uses a proprietary radio

module capable of self-forming and self-healing a mesh IP network [29]. Streamcaster

Lite radio has a maximum of 1W transmit power and 20Mbps data rate. The radio

requires 4.8W to 17W power while transmitting at 1W (30 dBm), which is a few
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times more than the Beartooth MKII radio. The Streamcaster Lite weighs in at

10.4 oz and takes up more than twice the physical space of a Beartooth MKII.

Similar to Streamcaster, TrellisWare’s TSM Shadow handheld radio encloses a

proprietary radio module [30]. It has a transmit power of up to 2W with a maximum

data rate of 16Mbps. Although there is no publicly available information about power

consumption, it would be safe to assume TSM Shadow would consume similar power

as Streamcaster Lite. It weighs around 11.3 oz, an ounce more than Streamcaster

Lite however, volume-wise, it sits between the Beartooth MKII and the Streamcaster

Lite.

MPU5, compared to Streamcaster Lite and TSM Shadow, is a more complete

and capable radio system with a full-fledged mobile CPU and Android Operating

System on board [31]. Without the battery module, It weighs around 13 oz. MPU5

has a wide variety of radio modules for many frequency bands with data rates up

to 150Mbps. With varying radio modules for different frequency bands, its transmit

power varies between 4W to 10W, and its power consumption varies between 30W

and 50W.

All three radios have IP network capability and provide sufficient bandwidth to

support hundreds of devices sharing real-time CoT events. However, their physical

footprint and cost are significantly higher than Beartooth MKII radios. While all

three radios do support IP networks and can handle TAK-formatted SA data, thus

ensuring compatibility with the TAK ecosystem out-of-the-box, their functionality is

geographically limited without an edge TAK server in the field. They can exchange

local SA data within their coverage area, but to transmit SA data beyond this local

network, an edge TAK server is required. Given this requirement for an edge server

to extend coverage, it could be more beneficial to opt for physically smaller, easily

concealable, cheaper, and therefore more expendable radios, such as Beartooth radios
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and Gateways.

We are interested in bringing cost-effective COTS devices to SA systems by

adopting radio modules developed for a wide variety of IoT applications. The IoT

solution space commonly utilizes solutions like Z-Wave [35], SigFox [36], DASH-7 [2],

LoRa [35], and ZigBee [37], which provide comparatively low-cost and power-efficient

options. Z-Wave and SigFox can support infrequent data transmission at a low data

rate over long distances. However, due to their inability to meet the QoS requirements

of SA and TAK traffic requires such as low latency and resilience to high mobility,

these solutions are disqualified from use in mobile SA systems. DASH-7 and LoRa can

sustain communication links with longer distances and sufficient maximum raw data

rate of 200Kbps and 37.5Kbps respectively for single-hop networks while keeping

power consumption low. However, no official or third-party link layer protocol

implements a multi-hop self-forming, self-healing mesh network with performance

SA systems require. For LoRa, in earlier work, we found building a mesh network

challenging due to limited bandwidth, concluding that a second radio module is

needed to extend coverage beyond two hops [42]. Finally, ZigBee’s use in both sub-

GHz and 2.4GHz bands and compatibility with other ZigBee devices enhance its

IoT use case. However, its network deployment is cumbersome, because it requires

extensive planning of different radio roles.

Similar to ZigBee, DigiMesh, available on XBee platform, supports sub-GHz

and 2.4GHz ISM bands, with similar performance metrics like bandwidth, data

rates, latency, and power consumption as discussed by Khalifeh et al. [37]. However,

DigiMesh’s key advantage is its simplified network role structure and its self-forming,

self-healing mesh network which allows the network to be fluid and highly mobile.

Unlike ZigBee, which requires distinct coordinator, router, and end-device roles,

thereby adding complexity to deployment and maintenance, DigiMesh operates with
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a singular network role, easing deployment, maintenance, and network extension.

While DigiMesh and other IoT solutions hold certain advantages, they are not

without drawbacks. The most notable limitations of DigiMesh are its inability

to support data rates at Mbps levels and the lack of support for IP network

connectivity. Despite these shortcomings, we show that core SA data types—such as

text, geolocation, markers, polygonal shapes, and voice—can be effectively supported

with proper on air data management. Furthermore, by using gateways, we can

translate Beartooth SA data into traditional TAK formatted IP SA data, ensuring

compatibility with existing infrastructure. Taking into account both the benefits and

drawbacks, we have chosen the XBee platform and DigiMesh as our link layer protocol

over other IoT COTS solutions.

Beartooth Network

To understand the effectiveness of the Beartooth network, we discuss the software

components that both MKII and Gateway require for effective communication. We

then elaborate on the types of situational awareness data that the MKII radios and

Gateway can serve to the Beartooth Network and the IP-layer network.

Network Elements

The MKIIs are highly mobile and power-efficient handheld radios that forces

in the field use to communicate within a local region. Gateways within Beartooth

networks are edge servers bringing TAK capability to the field and integrating troops

using MKII radios to a larger TAK SA overlay.

MKII To limit the form factor of MKIIs we design them with limited compu-

tational power and place much of the transport layer logic on the connected phone.
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There are a few reasons we opt to use this design decision. First, designing and

building a radio without a powerful processing unit is cheaper and less complex.

Second, having a power-hungry processing unit affects the power consumption and

thus overall battery life of MKII radios. Last but not least, since the mobile phone

does all the required processing, the protocol design is quite flexible and easily

upgradable. If and when we decide to change how we encode data into packets,

we can do so by modifying the phone plugin without the necessity to update the

MKII radio firmware.

One of the key design decision involves efficiently serializing and transporting

data in a resource-limited network. We use Google’s Protocol Buffers (ProtoBuf)

library [43], allowing platform-neutral serialization of any data structure. ProtoBuf

uses schemas, simplifying the encoding of various data fields and types.

We define all Beartooth SA packet within a ProtoBuf schema where we defined

fields such as sourceUid, destinationUid, messageType, textPayload, messageUid and

locPayload. While designing the Beartooth packet schema, we focused on the limited

network resources. CoT data format, being XML-based and designed for IP networks,

is not optimally suited for resource-limited networks due to its inherent verbosity.

Hence, we extract only the necessary data from the CoT event and form it into the

Beartooth packet format, thereby minimizing its footprint. Once we have the proper

packet format, ProtoBuf encodes necessary data into a series of bytes, then passes

those bytes to the Beartooth radio interface.

The Beartooth MKII plugin for ATAK is a lightweight platform that connects

to Beartooth MKII radio using Bluetooth Low Energy (BLE) to send various SA

data such as text, location, markers, shapes, pictures, and voice messages. Together

with the MKII radio, we design the plugin to be a robust and secure communications

platform. As the default option, it auto-shares the user location with the entire
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network and a team leader to monitor the squad members. So that the team leader can

take appropriate actions. In addition to the types mentioned above of SA messages,

the plugin is also capable of sending casualty evacuation (casevac), navigation routes

for walking, flying, and driving, icons for a wide variety of first responder missions,

elevation, range and bearing. Once the plugin is connected to MKII through the

BLE, the plugin configures the radio in the background to user preferences, where

the user can set network channel and encryption settings.

Contrary to other radios, MKII radios coupled with the Beartooth ATAK plugin

do not directly transmit CoT events due to limited network resources. When the user

triggers a SA event, such as a marker on the map in ATAK, the plugin puts necessary

data to a Beartooth SA frame using the ProtoBuf schema, serializes it, and sends

it to the BLE connection. Then, BLE queues the data for the radio in MKII to be

transmitted. End-user devices receiving the Beartooth SA frame pass the data to

the plugin. Using the ATAK API, the plugin only then recreates CoT events at the

receiver device to be shown on the ATAK user interface.

We also implemented a network scanning tool enabling end-users to plan and

monitor their Beartooth network deployment. The tool uses MKII radios to ping all

devices within a local DigiMesh network, visualizing RSSI values, distances, hops, and

overall network health on the Beartooth ATAK plugin. This helps users optimize radio

deployment for stronger communication links and manage the Beartooth network with

ease.

Gateway The Gateway, shown in Figure 3.1b, consists of three individual

modules: Virtual Private Network (VPN), TAK Server, and Gateway Translation

Layer. We use ZeroTier VPN [44] which is lightweight, easy to set up peer-to-peer

VPN solution that provides static IP addresses for TAK servers within the Gateways
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Figure 3.3: Data progression within Gateway and GTL showing various steps and
software modules.

and IP-connected end user devices. Furthermore, we use TAK server version 4.8

optimized for Single Board Computers (SBC). It allows us to bring the TAK server

to the edge of the network and connect multiple local networks through the TAK’s

federation protocol. While the federation protocol’s details fall outside this paper’s

scope, it is important to note that it facilitates the secure exchange of all, or selected,

SA data between authenticated TAK servers through encrypted TLS links. If there

is any connection interruption, it is handled within the TAK.

Gateway Translation Layer

We design Gateway Translation Layer (GTL) which is the novel solution that

links Beartooth MKII devices to the TAK Server and the IP network through an XBee

radio connected to its serial port. GTL enables bi-directional SA data communication,

as illustrated in Figure 3.3. The following sections describe GTL’s processing of

incoming and outgoing data for both directions in detail.
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Data Flow: Beartooth to IP-network We show the data flow from Beartooth

MKII devices to an IP network through a Gateway in Figure 3.3. The GTL, using

the pre-determined Beartooth’s ProtoBuf schema, parses the incoming SA data frame

from the Beartooth network and determines the data and CoT event type. Depending

on the type, the GTL process SA data within the DigiMesh frame as shown in

step 1 and forms a valid CoT event out of one of the pre-configured CoT event

formats representing the original SA data frames. The pre-configured CoT events are

templates that help us generate valid CoT events by pluging in relevant Beartooth

SA data.

After forming a valid CoT event, depending on the CoT event type the GTL can

route fully formed CoT event to the compression engine in step 2 to reduce message

time-on-air. Only medium-sized CoT events such as marker, routes and shapes and

CoT events carrying bulk data such as pictures and compressed data packets go

through the compression engine. In step 3 the GTL looks up for active TLS sockets

based on sender address. If there is an established TLS socket, the GTL recycles

that active TLS socket to submit CoT event to TAK. Otherwise, the GTL creates a

TLS socket from available client certificates generated during the build process and

stored at the Gateway. Having multiple certificates helps us keep latency low and

TLS connections sticky for ongoing transmissions and recently active users. Once

GTL establishes a TLS connection with the TAK server, it submits the generated

CoT event and stores the connection for a brief period. Depending on the type and

destination of the event, TAK Server triggers a set of procedures determining how

CoT events get processed and routed.

Data Flow: IP to Beartooth Network Conversely, as seen on bottom section

of Figure 3.3, when the data path is from the IP network to Beartooth Network,
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SA data is either routed from a TAK Server as seen in Figure 3.3 or it is received

by the bottom TAK server via a device such as an ATAK that is connected to the

this TAK server through a TLS connection. Then TAK relays SA data received

in CoT format to GTL. In step 4 the GTL converts XML-based CoT event into a

JSON object for ease of accessibility. GTL then processes the JSON CoT events by

categorizing them by the event type on step 5. As we discussed, if the CoT event

type is what we classify as medium-sized or bulk data, the SA data goes through

a compression procedure. Similarly, GTL forms the Beartooth SA data frame from

either compressed or uncompressed SA data using Beartooth’s ProtoBuf schema in

step 6. Then the GTL passes the serialized data in bytes onto to the radio module

using the serial port. The radio module then transmits data either by unicasting or

broadcasting depending on the data type.

Supported Data Types

The Gateway supports two-way communication between the Beartooth network

and IP network. Therefore the Gateway support data flows from IP-network to the

Beartooth network, the Beartooth network to IP-network, or the Beartooth network

to the Beartooth network with Gateways in between. The Gateway also supports

various CoT event types and meets the required QoS for the SA through the GTL.

The next couple of paragraphs shows SA data types Beartooth network and the

Gateway supports.

Small-sized packets (up to 256B) are three distinct data types: text, geo-

location, and acknowledgment as seen in Figure 3.4a. Text and acknowledgment

messages are CoT events used for communication and delivery receipt confirmation

within the TAK overlay. Geo-location messages, another type of CoT event, contain

latitude, longitude, and altitude data, enabling end-users to share their location.
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(a) Small-sized Packets: Text and Loca-
tion Data.

(b) Medium-Sized Packets: Markers and
Shapes.

(c) Medium-Sized Packets: Shapes and
Routes.

(d) Bulk Data Packets: Any SA overlay
bulked together in a .zip file.

Figure 3.4: Supported Data Types.

Medium-sized packets (256B to a few KB) are CoT events that are map

overlays and can be represented similarly such as markers, routes, and shapes as

seen in Figure 3.4b and Figure 3.4c. Due to DigiMesh’s 256B frame payload limit,

we transmit larger CoT events in a series of frames. A compression engine deflates

XML-based CoT events to minimize spectrum usage and frame count. The GTL

stores received frames, compiling complete CoT events once all frames are received.

With built-in retransmission protocol, if a frame is lost during transmission, GTL

can request retransmission through a selective acknowledgment mechanism to ensure

reliability and accurate CoT event compilation.

Bulk Data Packets (up to 25KB) are .zip files that include an XML-

based manifest, guiding TAK on the enclosed data type and processing requirements.

The Beartooth network supports various data formats, such as images, map overlays,
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icon sets, and TAK server configurations as seen in Figure 3.4d, given the data does

not exceed 25KB. The transmission strategy mirrors that of medium-sized packets,

using a series of frames for data delivery including the packet loss and retransmission

protocol.

Evaluation

In this section, we evaluate the application layer performance of Beartooth

Network as a whole including GTL. Beartooth devices utilize the DigiMesh protocol

from the XBee platform. As a result, they inherit its performance. A detailed

performance evaluation of DigiMesh is beyond the scope of this paper (see work

by Khalifeh et al. [37] for an overview).

Latency To demonstrate Beartooth MKII radios and Gateways’ capabilities

in the SA use case, we evaluated their performance on supported data types by taking

end-to-end message latency measurements. These measurements encapsulate the

entire SA data life-cycle, from dissemination in the Beartooth Network to processing

by the GTL and TAK server. Our setup included one MKII radio, a phone (Samsung

Galaxy XCover) with the Beartooth ATAK plugin, an IP-connected phone (Samsung

Galaxy XCover) with ATAK, and a Gateway. The latency measurements, reflecting

single-hop latency for each data type, were based on timestamps from transmission

start till SA data received by the IP-connected phone, with each experiment repeated

a hundred times.

Figure 3.5 shows latency in seconds on the y-axis and supported data types on

the x-axis. First, we evaluate small-sized packets such as text and location data. We

observe the latency is 0.73 s on average with variance around 0.02 s. For medium-

sized packets where CoT event types such as markers, routes, and shapes we have

two scenarios. In the first scenario, markers and simple polygonal shapes (e.g. 2-3
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Figure 3.5: Latency with varying situational awareness data types
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vertices), the latency is 2.15 s on average. In the second scenario markers and shapes

have increased detail and complexity (e.g. casevac marker with all the attributes or

polygonal shape with 4+ vertices), the latency reaches upwards of 2.5 s. Finally, for

bulk data, we had a compressed file enclosing an image sized 6KB. We observe that

the latency is around 20.1 s on average. These numbers met the user QoS requirements

of field trial evaluations.

Scalability We evaluated the application layer scalability of our Beartooth

network in several military exercises, where it underwent significant stress, demon-

strated by a large number of active devices and SA data packet transmissions. In one

instance, we used around 100 Beartooth end-user devices, each updating their location

every five seconds and exchanging SA text messages. Both field forces and authorities

evaluating our network solution reported no issues with reliability or performance

throughout the exercise, and we observed no service interruptions. These results

highlight the Beartooth network’s scalability and its ability to maintain functionality

and dependability under high-demand conditions.

Conclusion and Future Work

In this paper we presented a COTS network deployment with Beartooth MKII

radios and Gateways to provide SA to first responders and military forces spanning

multiple Beartooth and IP networks. We believe extending the usage of COTS radios

in the form of Beartooth MKII radios and introducing Gateway to interconnect IP

networks through TAK can provide scalable SA at low-cost, with a compact form

factor. Our experiments show Beartooth devices can support real-time text, location

as well as more complex SA data types such as markers, shapes and bulk data with

tolerable latency and QoS. Users have provided overwhelmingly positive feedback,

with satisfaction regarding the currently supported network size and SA data types.
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With several active war zone deployments and military training, the MKII radios and

Gateways are currently being battle tested.

Our future plans include integrating the Beartooth Plugin with various systems

and ATAK plugins, increasing compatibility by integrating diverse sensor applica-

tions. We aim to enhance Gateway performance via multi-threading and parallel

processing. Developing a web interface is already underway for simplified Gateway

management and WebTAK use, expanding SA capabilities to all web browser-capable

platforms.
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VOICE COMMUNICATION IN BANDWIDTH-CONSTRAINED NETWORKS:

TEXT-TO-SPEECH VS. AUDIO CODECS

Problem Statement

Voice communications over networks are pivotal in many scenarios, largely due

to their inherent efficiency and the rich information they can transmit. Unlike text-

based methods, a voice message conveys both the identity of the user and the content

of the message without the need for recipients to physically engage with their devices,

such as typing or navigating through apps. This direct and easily discernible method

of communication is crucial where quick and unmistakable understanding is vital.

However, maintaining the clarity and reliability of voice communications, especially

in settings with limited bandwidth, introduces a technical challenge that warrants

detailed investigation and improvement.

Traditionally, audio encoding has been the go-to solution for voice communica-

tion needs over networks, serving as the conventional method for transmitting voice,

even amidst various network environments. While audio codecs are optimized for

many scenarios, and may even function in low-bandwidth networks, their dependency

on substantial bandwidth for real-time communication becomes a glaring limitation

in bandwidth-constrained networks, especially when congestion happens in urban

areas or disruption occurs due to terrain-induced effects on RSSI and link quality

degradation in rural wireless networks. The compromise then is often on the audio

quality, delay, and disruption tolerances. These trade-offs not only jeopardize the

clarity and accuracy of the message but also become notably detrimental in scenarios

such as mission-critical applications where the accuracy and prompt delivery of the

information are crucial.

However, the landscape of audio communication is rapidly evolving. The
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advancements in neural networks, deep learning techniques, and the pace of hardware

development are not just pushing the boundaries of what is possible but also enabling

the personalization and faithful recreation of the original audio at the receiver.

The evolution in technology introduces a novel method that capitalizes on Text-

to-Speech (TTS) models to address the challenge of clear voice communication in

resource-constrained networks. Instead of transmitting larger packets of encoded

voice data, the strategy of utilizing TTS models involves sending only text and

basic user information. Once received, the voice can be regenerated at the receiver,

capitalizing on the fact that text data is significantly leaner compared to its encoded

audio counterpart. While traditional audio codecs don’t require excessive bandwidth,

their data packets are considerably larger and demand more bandwidth to transmit

compared to the data needed to regenerate TTS audio. Employing TTS for audio

communication offers an efficient means to manage scarce resources in limited-

bandwidth scenarios, bolstering both the audio quality and information accuracy.

This approach heralds a robust, resource-efficient alternative in the domain of voice

communication over a network under constricted conditions.

The main contribution of this chapter is to provide insight into the comparative

nuances of utilizing Text-to-Speech (TTS) models with varying vocoders versus

traditional audio codecs in low-bandwidth networks. The insight derived provides

a valuable perspective toward improving voice intelligibility, quality, clarity, and

managing valuable network resources.

In this research, through a meticulous comparison of speech audio generated by

neural models, vocoders, and traditional audio codecs using metrics such as Frechet

Distance (FD), Intelligibility Score (IS), Contrastive Language-Voice Pretrained

(CLVP) [45], and Perceptual Evaluation of Speech Quality (PESQ) [46] scores, we aim

to provide comprehensive insights into the multifaceted relationships and impacts that
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various model and vocoder combinations can have on audio and network behavior.

These metrics allow us to delve into the nuanced performance attributes of different

combinations in varying network conditions. The CLVP model [45], inspired by

OpenAI’s Contrastive Language-Image Pre-Training (CLIP)-like architecture [47],

distinctly measures the similarity between text and voice clips, thereby serving as

a potential quality metric for Text-to-Voice models. Moreover, the derived CLVP

Score evaluates the alignment between text and spoken audio, while FD provides

a contrast between genuine spoken text and TTS outputs and IS, based on Audio

Speech Recognition (ASR) and wav2vec [48] unsupervised speech recognition model,

measures the intelligibility of a TTS system’s output. By employing these metrics,

the research aims to show how diverse model and vocoder combinations affect

audio quality and network performance in low-bandwidth networks, promoting a

comprehensive understanding crucial for enhancing clear and reliable communication.

This paper investigates the potential of TTS models to effectively replace

traditional audio codecs, particularly under bandwidth constraints. Our initial

findings indicate a promising trend. Specifically, the VITS [49] model delivers

remarkable clarity, closely mirroring the original recordings, while Fastspeech2 [50]

impresses with its rapid sample generation. As this research unfolds, it becomes

evident that TTS systems might not just be alternatives, but potentially perform

better in limited bandwidth networks. There’s immense potential in refining these

TTS models further, discovering more effective vocoder pairings, and, crucially,

transitioning from controlled environments to real-world, mission-critical applications.

This not only highlights the validity of our current findings but also signifies our

commitment to elevating audio communication standards in the face of bandwidth

constraints in wireless networks.
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Background

In this chapter, we explore key components and concepts of our research on voice

communication in limited networks. We discuss Text-to-Speech (TTS) models and

their main components, describe key concepts and features of the audio codecs we

used, and describe the metrics that guide our evaluation.

Text-to-Speech

Speech synthesis, often referred to as Text-to-Speech (TTS), is the process of

turning text into understandable and natural-sounding speech using natural language

processing, signal processing, and machine and deep learning techniques. Previous

work combines techniques to develop various TTS models focusing on different aspects

of speech, like fast inference, high quality, low compute complexity, etc. A TTS model

consists of three main components; Text Analysis, Acoustic Modeling, and Vocoding.

Text analysis translates the raw text into linguistic features [51]. It lays the

groundwork for speech synthesis by addressing the text’s pronunciation, normaliza-

tion, and segmentation [52]. While recent end-to-end neural TTS methods simplify

much of this module, tasks such as text normalization and grapheme-to-phoneme

conversion remain essential in managing diverse text formats and extract specific

phonemes [53].

Acoustic modeling turns linguistic features into a spectral representation, setting

the stage for vocoding, or actual speech generation [54]. Several models have emerged

to address different challenges in TTS. For instance, Tacotron utilizes a sequence-to-

sequence model with attention mechanisms to map text to mel spectrograms [55].

FastSpeech offers a non-autoregressive approach, emphasizing faster speech synthesis

by eliminating recurrent computations [50]. VITS, on the other hand, is unique in its
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hybrid approach, integrating both Variational AutoEncoders (VAEs) and adversarial

training from Generative Adversarial Networks (GANs) with a sequence-to-sequence

model [49]. This blend aims to produce high-fidelity and varied speech.

The last component, vocoding, is responsible for the act of generating the audible

speech waveform. Utilizing various techniques differentiates vocoders. One of the

vocoder types Autoregressive vocoders, operates sequentially which potentially leads

to slower audio speech generation [56]. Flow-based vocoders harness normalizing

flows for parallel waveform generation [57]. GAN-based vocoders, such as Parallel

WaveGAN and MelGAN, employ Generative Adversarial Networks, optimizing the

quality of the generated waveforms [58].

Audio Codecs

Traditionally, when transmitting voice across networks, an audio codec applies

a process called encoding on recorded audio samples. This process involves lossy

compression, which reduces the size of the audio but can also diminish its clarity and

quality. While numerous proprietary compression techniques and audio codecs exist,

our selection focuses on open-source codecs. Specifically, we prioritize codecs capable

of compressing audio to levels suitable for low-bandwidth networks.

Starting with more traditional audio codec, Codec 2 is a low-bitrate speech audio

codec that utilizes sinusoidal coding, a technique tailored for human speech [19]. It

operates at bit rates ranging from 450 bps to 3.2Kbit/s, ideal for low-bandwidth

networks like Mobile Ad-Hoc Networks (MANETs). Sinusoidal coding models

speech by summing harmonically related sine waves atop a speaker’s fundamental

frequency. It encodes the pitch and amplitude of the harmonics and exchanges them

across channels in a digital format. This approach, closely related to multi-band

excitation codecs, relies on periodicities in overtone frequencies to recreate spoken
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audio efficiently.

Transitioning from the traditional methods employed by Codec 2, Google’s Lyra

illustrates a stride towards integrating machine learning with audio compression [59].

Like its traditional counterparts, Lyra extracts distinctive speech features but

leverages a generative model to recreate the speech signal, enhancing the audio quality

while maintaining low bitrates ranging from 3.2Kbit/s to 9Kbit/s, suitable for real-

time communications in bandwidth-constrained environments.

Similarly, Facebook’s Encodec embraces neural vocoding techniques, akin to

Google’s Lyra. It employs a neural network-based encoder-decoder architecture for

real-time, high-fidelity audio compression and supports encoding rates of 1.5, 3, 6, 12,

and 24Kbit/s [60]. The utilization of neural networks illustrates a common feature

between Lyra and Encodec, showcasing a modern approach toward achieving efficient

audio compression while maintaining high audio quality. This approach caters to

the demands of real-time audio streaming and communication in resource-limited

networks.

Metrics

Next, we delve into the metrics we used for evaluating both TTS models and

audio codecs in low-bandwidth networks. These metrics offer a measurable insight

into the quality and efficiency of the audio compression techniques as well as TTS

efficacy.

Fréchet Distance The first metric we utilize is the Fréchet Distance (FD), a

concept described in detail in work by Alt et al. [61]. In the realm of audio and

Text-to-Speech (TTS) models, FD plays a pivotal role in quantitatively assessing

model performance. Specifically, FD is employed to compare the reference audio

and the audio that is in question. However, it is crucial to clarify that in our
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approach, we do not directly compute Fréchet Distance on voice signals but rather

extract feature vectors from the audio to compute FD. Extracting feature vectors

offers significant advantages: it reduces the complexity of voice signals, therefore

enhancing computational efficiency, and normalizes the data, ensuring comparability

between different samples. The comparison between reference audio can either be

with synthesized speech generated by a TTS model or an audio codec-processed voice

sample. Computing the FD score hinges on the computation of the Fréchet Distance

between two feature vectors generated by the last layer of the Contrastive Language-

Voice Pre-trained (CLVP) model. To compute FD, we first use feature vectors from

the last layer of the CLVP model for both real and generated/processed speech

samples. Then, we calculate the mean and covariance of these feature vectors for each

set of samples. The FD score is finally obtained by measuring the Fréchet Distance

between the two Gaussian distributions represented by these statistical measures.

Mathematically, this distance is given by:

FD = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (4.1)

where, µr, µg represent the means, and Σr and Σg denote the covariance matrices

of the feature vectors from the real and generated speech samples, respectively. Tr is

the trace of a matrix, representing the sum of its main diagonal elements.

A lower FD score indicates a closer resemblance between the two distributions,

signifying a higher fidelity of the generated speech in mirroring real spoken text,

thereby reflecting superior model performance.

CLVP Score Inspired by OpenAI’s Contrastive Language-Image Pretraining (CLIP),

the Contrastive Language-Voice Pre-trained (CLVP) model is specifically designed

for audio-text pairs, extending the concept beyond CLIP’s image-text focus [47].
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CLVP employs contrastive learning to align matching audio-text pairs closely and

distinguish non-matching pairs, using datasets like LJ Speech [62]. This approach

enables the model to learn from a diverse range of audio-text examples, enhancing

its understanding and accuracy.

The architecture of CLVP model features a dual-encoder setup: an audio encoder

processes audio clips, and a text encoder manages textual descriptions. The model

expects audio and its matching transcript. Through each corresponding encoder,

the model transforms the input pair into low-dimensional data called embeddings to

store extracted features, which are then projected to a multi-dimensional space called

shared latent space to facilitate comparison.

In the shared latent space, the model computes the CLVP score, a measure of

the similarity between the text and speech embeddings by performing a dot product

calculation between each corresponding text and audio pair called Einstein Sum [63].

This calculation yields a value that directly correlates with the pair’s similarity: a

greater dot product indicates higher degrees of similarity between the pairs thus a

higher CLVP score. The CLVP score is central to evaluating Text-to-Speech (TTS)

systems, as it quantitatively assesses how closely the generated speech matches the

input text. A higher CLVP score indicates a more accurate alignment, reflecting the

model’s effectiveness.

Through its innovative architecture and contrastive learning approach, the CLVP

model emerges as a significant tool for evaluating and improving TTS systems and

Automatic Speech Recognition technologies.

Intelligibility Score The Intelligibility Score (IS) is a metric in evaluating Text-

to-Speech (TTS) systems, leveraging the Wav2Vec model, particularly trained to

discern correct audio snippets from distractors using the contrastive loss function [48].
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In the context of TTS evaluation, the IS employs the Wav2Vec2ForCTC variant

to analyze TTS-generated audio in comparison to the original text. Given the

original transcription and the audio in question, Wav2Vec2ForCTC transcribes the

audio into text, and this transcribed text is then compared to the original text

for evaluation. This analysis is grounded in the principles of Connectionist

Temporal Classification (CTC) loss, a method widely used in automatic speech

recognition (ASR) for aligning continuous audio input with its corresponding discrete

text output [64].

CTC loss addresses the challenges of sequence alignment in ASR without

requiring a predetermined alignment. It introduces a ‘blank’ character to manage

the discrepancies in sequence lengths and to accommodate the variability in speech

patterns as seen in Figure 4.1. By considering all possible alignments and their

cumulative probabilities, the CTC loss function calculates the likelihood of the target

transcription given the input audio, guiding the model to maximize this likelihood

during training.

g g _ o _ o o d

g o_ _ o d

g o o d

Figure 4.1: Steps taken by CTC method discern the word ‘good’.

In TTS systems, the Intelligibility Score (IS) is calculated using the CTC loss to

evaluate the accuracy of ASR models in transcribing TTS-generated speech compared

to real human speech. The process starts with normalizing audio samples from



65

both TTS and real speech to standardize input levels. The ASR model, specifically

Wav2Vec2ForCTC, then computes the CTC loss by comparing its transcription to the

actual text, pinpointing differences. When real speech is present, this loss is adjusted

to factor in natural speech intelligibility variations. The final IS, reflecting the mean of

these adjusted CTC losses, indicates how closely the TTS-generated speech resembles

the original text in content and clarity. Lower scores suggest better intelligibility and

naturalness of the TTS model.

Perceptual Evaluation of Speech Quality The Perceptual Evaluation of Speech

Quality (PESQ) serves as an objective tool for estimating the Mean Opinion

Score (MOS), a standard method used for evaluating the quality of voice record-

ings [46]. While MOS traditionally relies on subjective assessments from numerous

participants, PESQ offers an efficient, objective alternative that can assess the quality

of telephone networks and audio codecs without direct user feedback.

PESQ operates by analyzing the degradation and noise in audio that has been

transmitted over a telephone network or encoded by an audio codec. It employs a

process that begins with the alignment of a reference voice signal with a degraded

one, followed by an auditory transformation simulating the human hearing process.

The algorithm then calculates perceptual differences, using a psychoacoustic model

to emphasize critical aspects of speech as perceived by human listeners [46].

However, PESQ is not ideally tailored for TTS-generated audio evaluations.

TTS systems are evaluated on criteria beyond mere signal degradation, such as tone,

natural sounding, and pronunciation clarity. Consequently, PESQ yields lower scores

for TTS systems, approaching its baseline of 1. This discrepancy primarily may

arise from the variations in duration and subtle acoustic differences between the

TTS-generated voice signal and the reference voice signal, highlighting the divergence
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in specific attributes such as tone and pronunciation which results in lower PESQ

score.

Although PESQ is not ideally suited for evaluating TTS-generated audio,

research by Cernak et al. and Bhattacharjee et al. suggests a correlation between

PESQ scores and MOS in the context of TTS models [65, 66]. Both work indicates

that PESQ can still offer valuable insights into the perceptual quality of TTS systems

once it is scaled to default MOS scale, providing a potential avenue for approximating

TTS quality in scenarios where traditional MOS testing is impractical.

Inference Time In the context of real-time voice communication over bandwidth-

constrained networks, evaluating TTS models using the inference time metric is cru-

cial because it directly affects real-time data delivery in real-time voice communication

scenarios. In this study, inference time was precisely measured from the timestamp the

input text was provided to the TTS model until the audio output file was generated.

The duration a TTS model takes to translate text into natural-sounding speech is

a key performance indicator in environments where network resources are limited,

and keeping latency as low as possible is essential. For such applications, it is

imperative that the TTS model not only generates clear and understandable audio

but does so with minimal delay. This requirement is vital in maintaining effective

communication, ensuring that the generated speech is delivered promptly without

taxing the limited network resources, especially in mission-critical applications. The

challenge lies in optimizing TTS models to achieve a balance between swift response

times and maintaining speech clarity, all within the constraints of limited bandwidth.

This balancing act is especially vital in domains like mission-critical applications

where real-time data delivery is as important as the quality and clarity of the voice

signal output.
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Methodology

I conducted our experiments on a computer, featuring an Intel Core i9-9900K

CPU and an NVIDIA GeForce RTX 2080 SUPER GPU, with 3072 CUDA cores [67].

The setup includes 32 GB of RAM and an INTEL 660P series SSD [68], facilitating

swift data processing essential for model training purposes. I opted to use the

LJ Speech dataset [62], a widely-utilized resource in Text-to-Speech research. The

dataset offers around 24 hours of single-speaker English recordings with sampling

rate of 22.05KHz and serves as the experimental foundation for this study. Its

notable usage in prior research provides various pre-trained vocoders, enabling a

robust comparison of TTS models and traditional audio codecs within our evaluation.

For this study, I utilized three prominent TTS models: FastSpeech2 [50],

Tacotron2 [55], and VITS [49]. Utilizing the ESPNet 2 framework [69], a compre-

hensive toolkit for exploring a variety of TTS models and vocoders, I coupled TTS

models with an array of vocoders such as Parallel WaveGAN [70], HiFiGAN [71],

Style MelGAN [72], Fullband MelGAN, and Multiband MelGAN [73]. Table 4.2 lists

the vocoder output Mel Range, training constraints, and overall model checkpoint

size after respective number of iterations [74]. I selected audio codecs, Codec 2 [19],

Lyra [59] and Encodec [60], that are particularly suited for networks with constrained

resources, emphasizing low encoding rates. I gathered our data by randomly picking

audio samples from the LJ Speech Dataset and generating corresponding speech

samples from transcripts across all TTS systems. Then, I encoded and decoded

these original recordings using the chosen audio codecs and encoding rates. Finally, I

compared the TTS-generated samples with the decoded audio samples derived from

the original recordings.

In my investigation, I employed Analysis of Variance (ANOVA) test as the
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primary statistical method to recognize and validate significant differences in the mean

scores of various metrics across distinct groups of TTS model and vocoder pairings and

audio codecs. The ANOVA yielded p-values substantially lower than the conventional

significance level of 0.05 for each metric, suggesting apparent differences in model

performances. However, the reliability of ANOVA hinges on certain assumptions –

namely, the normality of data and homogeneity of variances across groups [75].

To verify these assumptions, I conducted the Shapiro-Wilk test for normality

and Levene’s test for homogeneity of variances [76, 77]. The results, unexpectedly,

indicated a departure from normality and unequal variances among the groups. This

meant that we could not utilize ANOVA test, as these tests have fundamentally

shown.

Given these violations, I shifted my analytical approach to the Kruskal-Wallis

test, a non-parametric alternative to ANOVA. The Kruskal-Wallis test is particularly

suited for data that do not meet the normality and homogeneity prerequisites of

ANOVA [78]. This test evaluates the differences in medians rather than means and

is less sensitive to the distribution of the data, thereby providing a more appropriate

analysis framework for our dataset. The test affirmed the initial indications from

the ANOVA, revealing significant differences across TTS models and audio codecs

for all considered metrics as detailed in Table 4.1. This reinforced the conclusion

that the variances observed in the metrics across models were not mere coincidences

but statistically significant. Such findings underscore the criticality of selecting

appropriate statistical tests and validating their underlying assumptions, especially

in the context of comparative analyses.
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Table 4.1: ANOVA Validity and Kruskal-Wallis Test Results

Metric Test Test Statistic p-value Conclusion

FD Shapiro-Wilk 0.74 7.35× 10−19 Normality violated

Levene’s 2.35 1.40× 10−3 Homogeneity violated

Kruskal-Wallis 158.77 1.30× 10−23 Statistically significant

IS Shapiro-Wilk 0.55 5.08× 10−24 Normality violated

Levene’s 2.09 5.40× 10−3 Homogeneity violated

Kruskal-Wallis 52.25 1.05× 10−4 Statistically significant

CLVP Shapiro-Wilk 0.80 2.00× 10−16 Normality violated

Levene’s 1.12 3.30× 10−1 Homogeneity not violated

Kruskal-Wallis 154.09 1.03× 10−22 Statistically significant

PESQ Shapiro-Wilk 0.66 3.32× 10−21 Normality violated

Levene’s 1.92 1.24× 10−2 Homogeneity violated

Kruskal-Wallis 178.88 1.61× 10−27 Statistically significant

Vocoder Mel Range (Hz) # of Iterations Checkpoint Size

Parallel WaveGAN (v3) 80-7600 3M 214.9MB

Fullband MelGAN (v2) 80-7600 1M 138.4MB

Multiband MelGAN (v2) 80-7600 1M 105.3MB

HiFiGAN (v1) 80-7600 2.5M 968.9MB

Style MelGAN (v1) 80-7600 1.5M 108.5MB

Table 4.2: Training and checkpoint information for vocoders used in the evaluation.

In this section, we strictly compare TTS results to traditional audio codecs. To

achieve objective comparison we use the following metrics.
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Frechet Distance

Figure 4.2 presents the distribution of FD values among 15 unique combinations

of TTS models and 6 audio codecs. The x-axis denotes the FD values, while the

various pairings of TTS models and audio codecs are outlined on the y-axis.

Figure 4.2: Frechet Distance between the original sample from LJ Speech dataset and
synthesized/decoded speech.

The Figure 4.2 reveals that both FastSpeech2 and Tacotron2 exhibit higher FD

values compared to VITS, indicating that VITS maintains a closer resemblance to

the original recording during its speech synthesis. It is also evident that Tacotron2

displays a broader range of values, suggesting some level of inconsistency in its

output. In the realm of vocoders, Style MelGAN and Fullband MelGAN consistently

demonstrate lower FD values, outperforming their counterparts when integrated with
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all three models.

In comparing audio codecs, it is clear that the combined output from any TTS

model and vocoder more closely mirrors the original sample than that produced solely

by the audio codecs. As anticipated, a reduction in encoding rate is associated with

a compromise in quality. This correlation is pronounced in the Encodec with a

1.5Kbit/s encoding rate, which exhibits the highest FD, diverging most from the

original sample.

When drawing parallels among audio codecs with proximate encoding rates

– Encodec at 3Kbit/s, Codec2, and Lyra at 3.2Kbit/s – Encodec is discerned to

produce speech with a higher FD. While Codec2 and Lyra showcase comparable

efficacy, Lyra slightly edges out Codec2, possibly due to its unconventional audio

encoding approach. Notably, despite boasting a loftier encoding rate, Encodec at

12Kbit/s still registers a higher FD than Lyra at 9Kbit/s. This observation clearly

shows the optimized nature of the Lyra audio codec, marking it as a better choice

over Encodec.

Intelligibility Score (IS)

Figure 4.3 depicts the distribution of IS across 15 different combinations of TTS

models paired with 6 distinct audio codecs. Similar to Figure 4.2, on the x-axis we

have IS, whereas the y-axis represents the various combinations of TTS models and

audio codecs.

An obvious observation emerging from the data is the pronounced spread of VITS

model in its distribution relative to the other two models. Specifically, when paired

with Parallel WaveGAN, this combination yields results with notable variability and

it suggests that the remaining models offer a more consistent mapping to the original

transcript. Furthermore, Fastspeech2 manifests the narrowest distribution, leading
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Figure 4.3: Intelligibility Score based on LJ Speech transcripts and synthesized/de-
coded speech.

to highly consistent outcomes. In contrast, Tacotron2, despite its broader spread,

consistently reports the lowest IS across all vocoder pairings.

Overall, audio codecs and TTS models seem to showcase comparable perfor-

mance. However, a subtle performance improvement is discernible in favor of audio

codecs when considering the spread of their distributions.

A crucial point of consideration that we need to make is that the CLVP model

is trained on the LibriSpeech [79] and Common Voice datasets [80], followed by fine-

tuning on libriTTS [81]. Given that our evaluation uses the LJ Speech dataset,

we encounter results that appear counterintuitive, suggesting superior intelligibility

over the actual ground truth. This anomaly can be explained by the ideal recording
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conditions of the LJ Speech dataset and its single-speaker nature. Consequently,

certain TTS model pairings might appear to synthesize speech surpassing the original

quality.

CLVP Score

Figure 4.4 displays the CLVP score in a descending order on the x-axis, with

combinations of TTS models and vocoders, as well as the related audio codecs, on

the y-axis. Traditionally, a lower CLVP score should indicate a closer representation of

text within the audio according to [45]. However, our results challenge this premise.

Audio codecs with lower encoding rates, which would be expected to have greater

losses, curiously produce lower CLVP scores. This counterintuitive finding suggests

that a higher CLVP score might actually offer a more accurate representation of text

in the audio. Furthermore, it’s clear that TTS model and vocoder pairings generally

outperform audio codecs in fidelity. The standout is the Fastspeech2 model paired

with the Style MelGAN vocoder, achieving a CLVP score close to 15, while other

TTS models hover between CLVP scores of 13 and 14. Among audio codecs, Lyra

with 9Kbit/s consistently achieves the highest CLVP score, yet it still lags behind

the average performance of TTS models.

PESQ Score

Figure 4.5 displays the PESQ scores on the x-axis, contrasted against various

model and vocoder combinations on the y-axis. A distinct separation is observable

between TTS models and audio codecs. While audio codecs with higher encoding

rates often achieve higher PESQ scores, it is important to note that PESQ

primarily assesses degradation and noise in audio quality rather than elements like

pronunciation, tone, and punctuation. Consequently, this nature of PESQ does

accurately portrays the actual quality and leads to TTS-generated speech scores
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Figure 4.4: CLVP Score based on LJ Speech transcripts and synthesized/decoded
speech.

typically ranging between 1 and 1.5. Another trend worth mentioning is that Encodec

and Lyra, with encoding rates close to 3 and 3.2Kbit/s, outperform Codec2.

Inference Duration

In assessing hardware performance and computational complexity, I focused on

the inference duration required by TTS models to generate speech samples. Compared

to the simpler decoding process of audio codecs, TTS models exhibit varying inference

durations based on model and vocoder combinations. Figure 4.6 displays the inference

duration, with the x-axis denoting duration in seconds and the y-axis showing model

and vocoder combinations. The results were consistent; VITS, which produced more
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Figure 4.5: PESQ Scores based on LJ Speech dataset and synthesized/decoded
speech.

accurate speech samples, took about 300 to 700ms longer per sample. Interestingly,

the choice of vocoder in VITS did not affect the duration. On the other hand,

Fastspeech2 generated samples fastest as the name suggests. Among vocoders,

HiFiGAN had the longest inference duration for both Tacotron2 and Fastspeech2

correlated with its checkpoint size as shown in Table 4.2, aligning with its higher

quality and clarity as well as complexity.

The results further indicate the performance in a bandwidth-constrained network

scenario, for instance, a network with a bandwidth of 10Kbit/s, an audio codec with

an encoding rate of 3.2Kbit/s can facilitate three concurrent real-time voice streams.

Link layer protocol can partition encoded real-time voice samples into smaller chunks
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Figure 4.6: Inference time required for each TTS model and vocoder combinations.

for transmission over the network. To ensure smoother playback, voice samples

can undergo a buffering process at the receiver. The overall latency, including the

buffering latency, typically remains below the range of 500ms, as the evidence shown

in an earlier research [42]. In a network with similar resources and configuration,

TTS can handle not just three concurrent data streams, but a significantly larger

number. I determined the median text size from the LJ Speech dataset samples used

for TTS evaluation by counting characters and character memory allocation which is

approximately 128B or 1.028Kb. With the median duration of generated TTS voice

samples at 8.74 s, we can calculate the encoding rate (ER) using the formula:

ER =
DataSize

Duration
(4.2)



77

Figure 4.7: Concurrent voice streams possible within varying network bandwidth.

Substituting the given values yields:

ER =
1.028Kb

8.74 s
≈ 0.117Kbit/s (4.3)

This translates to eighty-five concurrent transmissions, a significant contrast to the

three allowed by audio codecs. Figure 4.7 offers a more detailed understanding of

concurrent transmissions in logarithmic scale on the y-axis against diverse network

bandwidths on the x-axis. It is evident that TTS utilization greatly boosts the

potential for concurrent transmissions, outpacing other audio codecs by a wide

margin. However, it is crucial to recognize that the inference process at the receiver

does slightly increase latency compared to traditional audio codecs, resulting in delays

between 1.2 s to 1.9 s as shown in Figure 4.6 [42].



78

Conclusion and Future Work

In this study, we investigated the efficiency of Text-to-Speech (TTS) models

in comparison to traditional audio codecs in low-bandwidth conditions. Utilizing

metrics such as Fréchet Distance, Intelligibility Score, CLVP, and PESQ scores

as well as inference time, we discerned the performance characteristics of various

models, vocoders, and audio codecs in bandwidth-constrained environments. The

study initially employed the ANOVA test to validate statistical significance, but due

to violations in normality and homogeneity assumptions, we shifted to the Kruskal-

Wallis test due to the non-parametric approach. This methodological pivot, not only

validated the significant differences across TTS models and audio codecs but also

highlighted the importance of selecting appropriate statistical tests in comparative

analyses. While audio codecs consistently performed well in the Intelligibility Score,

TTS models, especially when paired with the appropriate vocoders, demonstrated

superior audio clarity as evidenced by metrics like Fréchet Distance, Intelligibility, and

CLVP Scores. Notably, VITS emerged as the leading model in terms of audio fidelity,

whereas Fastspeech2 excelled in processing speed, as indicated by the inference

duration metric. We further delved into the implications of inference duration in

resource-constrained networks. In such settings, TTS systems offer efficient resource

management, allowing a network to support a higher number of concurrent TTS-

generated playbacks, provided the application can tolerate the inherent latency

associated with inference. Future endeavors will center on enhancing the assessed TTS

models, investigating diverse vocoder combinations, and broadening the evaluation to

include real-world, mission-critical applications. This will further validate our findings

and contribute to advancements in real-time voice communication in bandwidth-

constrained networks.
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CONCLUSION

The integration and advancement of wireless communication technologies have

played a crucial role in shaping modern applications, from consumer products to

military applications. This thesis presented two innovative approaches to address

the challenges in diverse areas of wireless communication by proposing the Beartooth

Relay Protocol (BRP) and the Beartooth MKII radio system.

BRP, a flexible MAC protocol designed for LoRa, aims to enhance the

performance of real-time and streaming applications. By employing BRP with an

advanced LoRa radio, the protocol can address the limitations of previous LoRa MAC

protocols, such as constrained flexibility, high latency, and difficulties with real-time

data transmission. This development expands LoRa’s applicability to a more diverse

range of IoT scenarios in a wider range of applications.

Further, the Beartooth MKII radio system, based on the low-cost and power-

efficient XBee radio platform, provides a scalable and cost-effective situational

awareness (SA) solution for military applications. The Beartooth MKII radio’s

integration with the Android Tactical Assault Kit (ATAK) and the Beartooth

Gateway enable seamless and secure communication among squads, commanders,

and command centers. Additionally, the compact form factor of the Beartooth MKII

radio offers significant weight reduction compared to existing solutions.

In the concluding chapter, I delved into an essential component of real-time SA:

voice communications within bandwidth-limited networks. The examination centered

on the efficacy of Text-to-Speech (TTS) systems versus the conventional method of

transmitting audio codec compressed speech data. The results indicated that voice

samples generated by TTS not only provide superior clarity but also necessitate less

data transmission. This, in turn, enables the network protocols to allocate resources
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more wisely.

In summary, the proposed solutions demonstrate the potential for advancing

the capabilities of wireless communication technologies in both civilian and military

contexts. By leveraging the flexibility and configurability of these systems, it is

possible to address the challenges associated with real-time data streaming and

situational awareness in a wide range of applications. Future research should focus on

evaluating on further optimizing these systems for specific use cases and evaluating

their performance in real-world scenarios and mission-critical applications.
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