
IMPROVING THE CONFIDENCE OF MACHINE LEARNING MODELS THROUGH

IMPROVED SOFTWARE TESTING APPROACHES

by

Faqeer ur Rehman

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

Doctor of Philosophy

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

Dec 2022

©COPYRIGHT

by

Faqeer ur Rehman

2022

All Rights Reserved

ii

DEDICATION

I dedicate this dissertation to my mother and father, my wife and son, and to my
siblings.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Clemente Izurieta for his continuous support,

motivation, and nice guidance that helped me in achieving this grand milestone. I also

appreciate his efforts in providing his valuable feedback for this dissertation report. Thanks

to Dr. John Paxton, Dr. Mike Wittie, and Dr. Travis Peters for being my valuable committee

members and their continuous support throughout the program.

Among my lab fellows and friends, I feel lucky to have Derek Reimanis and Madhu

Srinivasan in my circle, always available to guide me and helping me to stay focused,

deterministic and motivated.

I would like to thank Dr. John Paxton for providing me the TA ship opportunity

throughout the program, Dr. Craig Olive for awarding me the Ph.D. dissertation completion

award, and Donna Negaard for the best guidance and support.

I would like to extend my gratitude to the MSU for providing me with the amazing

educational opportunity that allowed me to fulfill my Ph.D. dream from one of the prestigious

institutes in the country. Last but not the least, special thanks to the Gianforte School of

Computing, and the Graduate School for providing me all the resources and help I ever

needed, resulting in completion of this work.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND & RELATED WORK.. 7

Background.. 7
Software Testing.. 7
Mutation Testing... 7
Machine Learning.. 8
Supervised Machine Learning ... 8

Random Forest .. 9
Support Vector Machine (SVM).. 9
k-NN... 10
Fully Connected Neural Network (NN) .. 10
Convolutional Neural Network (CNN) ... 11

Unsupervised Machine Learning ... 12
K-Means Clustering ... 12
Agglomerative Clustering ... 13
Density-based Spatial Clustering of Applications with

Noise (DBSCAN)... 14
Oracle Problem ... 16
Metamorphic Testing... 16

Metamorphic Relations (MRs) .. 16
Source and Follow-up Test Cases... 17

Related Work ... 17

3. RESEARCH OBJECTIVES .. 24

Motivation ... 24
GQM... 26

4. STATISTICAL METAMORPHIC TESTING OF NEURAL NETWORK
BASED INTRUSION DETECTION SYSTEMS ... 31

Contribution of Authors and Co-Authors ... 31
Manuscript Information Page .. 32
Abstract .. 33
Introduction ... 33
Related Work ... 37
Proposed Approach... 38

Metamorphic Relations (MRs) ... 39

v

TABLE OF CONTENTS – CONTINUED

MR-1:-Changing the order of features (of both training
and test data) .. 40

MR-2:-Addition of uninformative attribute to both train-
ing and test data.. 40

MR-3:-Shifting of both the training and test features 40
Statistical Hypothesis Tests ... 40

Maximum Voting ... 41
Comparing Distributions Using Chi-square Test of Ho-

mogeneity & Fisher’s Exact Test... 41
Comparing Distributions Using Two Sample t-Test &

Permutation Test ... 43
Empirical Results ... 44
Conclusion ... 48

5. TESTING DEEP LEARNING SYSTEMS: A STATISTICAL META-
MORPHIC APPROACH... 49

Contribution of Authors and Co-Authors ... 49
Manuscript Information Page .. 50
Abstract .. 51
Introduction ... 51
Related Work ... 55
Approach To Identify Implementation Bugs in DNN-based Applications 57

Metamorphic Relations (MRs) ... 59
MR-1:-Blurring the training and test X-ray images................................... 59
MR-2:-Flipping the training and test X-ray images................................... 60
MR-3:-Mirroring the training and test X-ray images................................. 60
MR-4:-Adding a small rectangle (outside the region of

interest) to the training and test X-ray images............................... 60
MR-5:-Rotating the training and test X-ray images 61
MR-6:-Adding scattered dots to the training and test X-

ray images ... 61
MR-7:-Sharpening the training and test X-ray images 61

Statistical Verification Method ... 62
Maximum Voting ... 62
Comparing Distributions Over All Class Labels 63
Comparing Distributions Over Probability Scores..................................... 63

Empirical Results ... 66
Conclusion ... 74

vi

TABLE OF CONTENTS – CONTINUED

6. A HYBRIDIZED APPROACH FOR TESTING NEURAL NETWORK
BASED INTRUSION DETECTION SYSTEMS ... 77

Contribution of Authors and Co-Authors ... 77
Manuscript Information Page .. 78
Abstract .. 79
Introduction ... 80
Related Work ... 83
Motivation To Use Probability Vectors / Scores.. 84
Proposed Approach... 85

Step 1:-Mutants Generation ... 87
Step 2:-Metamorphic Relation (MR-1) For New Test Inputs

Generation- Shifting the features by constant k .. 89
Step 3:-Dataset Preparation ... 89
Step 4:-Statistical Hypothesis Testing ... 90
Step 5:-Data Cleaning.. 91
Step 6:-Proposed Machine Learning Based Approach 91

Experimentation and Evaluation.. 92
Threats To Validity .. 98
Conclusion And Future Work .. 99

7. MT4UML: METAMORPHIC TESTING FOR UNSUPERVISED MA-
CHINE LEARNING ..101

Contribution of Authors and Co-Authors ..101
Manuscript Information Page ...102
Abstract ...103
Introduction ..103
Related Work ..106
Our Approach ...107

Proposed Metamorphic Relations for Unsupervised Algorithms108
Experimentation and Evaluation...121
Conclusion And Future Work ...123

8. AN APPROACH FOR VERIFYING AND VALIDATING CLUSTERING
BASED ANOMALY DETECTION SYSTEMS USING METAMORPHIC
TESTING ...125

Contribution of Authors and Co-Authors ..125
Manuscript Information Page ...126

vii

TABLE OF CONTENTS – CONTINUED

Abstract ...127
Introduction ..128
Related Work ..130
Our Approach ...131
Experimentation and Evaluation...142
Threats To Validity ...146
Conclusion And Future Work ...147

9. CONCLUSION AND FUTURE WORK..148

Conclusion ..148
Future Work..149

REFERENCES CITED...152

viii

LIST OF TABLES

Table Page

3.1 Chapters Addressing Research Questions (RQs) .. 29

4.1 Neural Network Model Architectures .. 39

4.2 Frequency Distribution Table... 42

4.3 Exemplary Probabilities ... 43

4.4 Results for Application#1: Shallow Neural Network Based
N-IDS .. 45

4.5 Results for Application#2: Deep Neural Network Based N-IDS 45

4.6 Results for Application#3: Deep Neural Network Based
Cancer Prediction System.. 46

5.1 Exemplary Probabilities ... 64

5.2 Results For Maximum Voting Concept, ✓ Denotes The
Mutant Is Killed ... 68

5.3 Results For Chi-square test/Fisher Exact Test (Significance
Level (α) = 0.05), ✓ Denotes The Mutant Is Killed 69

5.4 Results For t-Test (Significance Level (α) = 0.05), ✓
Denotes The Mutant Is Killed.. 70

5.5 Results For Permutation (Significance Level (α) = 0.05), ✓
Denotes The Mutant Is Killed.. 71

5.6 MRs Minimization .. 74

6.1 Classifiers Under Test Architecture... 86

6.2 Original And Mutated Versions Average Accuracy (%)................................ 88

6.3 Wilcoxon signed rank test results for App#1 (α = 0.05) 95

6.4 Wilcoxon signed rank test results for App#2 (α = 0.05) 95

6.5 Performance Report on App#1 Data set .. 96

6.6 Performance Report on App#2 Data set .. 96

6.7 Performance Report on App#2 Data set After Adding
Metadata features ... 98

ix

LIST OF TABLES – CONTINUED

Table Page

7.1 k-Means Algorithm: Verification (VR) And Validation
(VD) Analysis For The Proposed MRs ..113

7.2 Agglomerative Clustering Algorithm: Verification (VR)
And Validation (VD) Analysis For The Proposed MRs117

7.3 Results of testing k-Means and Agglomerative clustering algorithms............122

8.1 Proposed Metamorphic Relations ...133

8.2 DBSCAN Algorithm: Analysis For The Proposed MRs
from Verification (VR) And Validation (VD) Perspective............................137

8.3 Results from testing the DBSCAN algorithm ...143

8.4 MRs Seggregation and Their Results ...144

x

LIST OF FIGURES

Figure Page

2.1 Neural Network Architecture [56] ... 11

2.2 Convolutional Neural Network Architecture [51].. 12

2.3 Agglomerative Clustering Example... 15

2.4 DBSCAN Algorithm with min samples=5 .. 15

2.5 Metamorphic Testing Approach ... 17

3.1 GQM Approach [18] .. 26

4.1 Original Code (top) and Mutant (below). .. 46

5.1 Proposed Statistical Metamorphic Testing Approach 58

5.2 Real examples of the source and follow-up data... 59

5.3 Q-Q plot .. 66

5.4 An example of the ‘statement removal’ mutant ... 67

6.1 Proposed Approach ... 87

6.2 Mutant#4: Original Code (top) and Mutant (below). 88

6.3 Final predicted output (i.e., attack) is same but probabil-
ity distributions over predicted classes have significantly
changed for the mutated program... 93

6.4 Q-Q plot .. 94

7.1 Agglomerative Clustering Example..111

7.2 MR1 for agglomerative clustering: Added 3 as a duplicate instance111

xi

ABSTRACT

Machine learning is gaining popularity in transforming and improving a number of
different domains e.g., self-driving cars, natural language processing, healthcare, manu-
facturing, retail, banking, and cybersecurity. However, knowing the fact that machine
learning algorithms are computationally complex, it becomes a challenging task to verify
their correctness when either the oracle is not available or is available but too expensive to
apply.

Software Engineering for Machine Learning (SE4ML) is an emerging research area that
focuses on applying the SE best practices and methods for better development, testing,
operation, and maintenance of ML models. The focus of this work is on the testing aspect of
ML applications by adapting the traditional software testing approaches for improving the
confidence in them.

First, a statistical metamorphic testing technique is proposed to test Neural Network
(NN)-based classifiers in a non-deterministic environment. Furthermore, an MRs minimiza-
tion algorithm is proposed for the program under test; thus, saving computational costs and
organizational testing resources.

Second, a Metamorphic Relation (MR) is proposed to address a data generation/label-
ing problem; that is, enhancing the test inputs effectiveness by extending the prioritized test
set with new tests without incurring additional labeling costs. Further, the prioritized test
inputs are leveraged to propose a statistical hypothesis testing (for detection) and machine
learning-based approach (for prediction) of faulty behavior in two other machine learning
classifiers i.e., NN-based Intrusion Detection Systems.

Finally, to test unsupervised ML models, the metamorphic testing approach is utilized
to make some insightful contributions that include: i) proposing a broader set of 22 MRs
for assessing the behavior of clustering algorithms under test, ii) providing a detailed
analysis/reasoning to show how the proposed MRs can be used to target both the verification
and validation aspects of testing the programs under investigation, and iii) showing that
verification of MR using multiple criteria is more beneficial than relying on using just a
single criterion (i.e., clusters assigned).

Thus, the work presented here results in providing a significant contribution to address
the gaps found in the field, which enhances the body of knowledge in the emergent SE4ML
field.

1

INTRODUCTION

In such a tech-driven age, Machine learning (ML) has become an integral part of a

broad range of domains like finance, marketing, transportation, machine translation, object

detection, cybersecurity, and self-driving cars. Most of the time a software engineer focuses

more on exploring and implementing different approaches to develop accurate models but

much less on ensuring their quality and correctness. Thung et al. [73] conducted a study

in which they reported that 22.6% of faults they found in ML applications are due to the

incorrect implementation that caused them to produce unexpected and incorrect results. A

small bug in the system may have disastrous consequences and can pose serious threats to

both property and human lives. Some of the recent failures we have seen include, an incident

on 14 Feb 2016, when a Google self-driving car crashed in an attempt to avoid sandbags [90],

in May 2016, a Tesla Model S crashed when it did not treat the trailer as an obstacle [40], in

March 2018, an Uber self-driving car hit and killed a woman at night in Arizona [52], and in

2017, a Palestinian man was arrested when he posted ‘good morning’ on Facebook that was

wrongly translated as ‘attack them’ [28]. These incidents demand that we seriously think

and realize how important it is to test the correctness and robustness of ML applications

from multiple perspectives before moving them to production environments. Although this

is a very challenging task, it is an equally essential problem for researchers and practitioners

to address.

It is important to highlight that in general, the research community is focusing more

on the development of high-performance ML models (which is critical) but much less on

performing their quality assurance (which is also very important but unfortunately much

ignored). It can be argued that ML engineers already use different performance evaluation

2

metrics (i.e., accuracy, precision, recall, F1-score, etc.) during the development of ML models

to perform some testing activities. However, these evaluation metrics require a test oracle in

the form of labelled data (which is not always available) and are not meant to test ML-based

models for finding bugs in them, instead, they are used to evaluate which ML algorithm

is best suited for the underlying data/problem. Furthermore, models with low scores in

performance metrics are often representative of ML problems related to the availability

or feeding of insufficient data. However, if the problem is not related to the insufficiency

of data, and instead, there is an implementation fault in the ML-based classifier then we

need to understand the causes for the low performance in the algorithm. Collecting more

images, labeling them (a resource-intensive task), and feeding them to the same buggy

algorithm will be of no advantage to further improving the model’s performance unless we

focus on new verification techniques. Ultimately, the ML engineer will start looking for

alternative algorithms, wrongly assuming that the current algorithm used is not appropriate

for addressing the underlying problem. Therefore, it is essential to have a testing component

as a critical part of the ML pipeline.

It is important to know that the nature of ML software is different from traditional

software. This is the reason that in comparison to traditional software, testing ML models

bring its own challenges. First, when testing traditional software, the focus of testing is

usually the source code. However, when testing ML-based models, besides testing the source

code, the addition of data adds an extra layer of complexity. Second, traditional software

is manually programmed (by developers) to perform the desired functionality. The code

written is usually fixed and the output generated by the program under test is based on

a predefined set of rules. However, the decision logic derived in ML applications is not

explicitly hard-coded, instead, the logic surfaces from the data used to train these models.

Third, the low accuracy of ML model can be attributed to the composite effect of the

data, program (code written by the programmer), and the underlying framework/library

3

(e.g., Weka, Pytorch, TensorFlow). Any of these components may contain bugs, so, it is

important to verify that each of them is correct and meets the desired expectations. Last

but not the least, ML applications may have to be verified for a large set of input scenarios.

As an example, features like date of birth, distance, speed, and road conditions (in an image)

may contain a large range of valid values. As a result, it becomes difficult to verify their

correctness for all possible scenarios that ultimately leads to the exhaustive testing problem

and places these systems into the category of non-testable programs, suffering from the

oracle problem [80]. An oracle is a mechanism where a program is verified by comparing

its output with the expected outcome. To test such complex systems, either the oracle is

unavailable or it is too expensive to apply. As an example, suppose that there is a ML model

for classifying executable files, either as malicious or benign. To verify the model output, a

security professional would have to first execute all those programs in a sandbox environment

and then use the obtained results to verify the model outputs. It is a time-consuming and

resource-intensive task to first execute and then compare the results manually, especially,

when there is a large number of programs to verify.

Recently, we have seen tremendous advances in machine learning due to the availability

of high computing power and better algorithms but relative to Software Engineering it is still

a less mature field. In this context, Software Engineering for Machine Learning (SE4ML) is

an emerging research area that focuses on applying SE best practices and methods for better

development, testing, operation, and maintenance of ML-based systems [12, 38, 45, 46]. Our

focus in this work is on the testing aspect of ML models that show traditional software testing

approaches can be adapted to perform better quality assurance of these models. Although,

some of the existing literature focuses on testing ML applications using traditional software

testing techniques i.e., Metamorphic testing, Differential testing, and Combinatorial testing,

these traditional software testing techniques have their own limitations when it comes to their

direct applicability when testing ML models (some of the challenges are discussed above).

4

This motivated us to explore the gaps in the existing literature and utilize the SE approaches

(from a quality assurance perspective) to not only better test such computationally complex

ML-based systems for enhancing their quality but also to raise our trust in them. The work

conducted seeks to further the understanding of the applicability of SE testing techniques

for the quality assurance of ML-based models (supervised and unsupervised ML models).

The ML space is a broad domain, covering a large number of ML algorithms that

can broadly be classified into supervised learning, unsupervised learning, and reinforcement

learning algorithms. In this work, we focus only on the quality assurance of supervised and

unsupervised learning algorithms because these types are the most common in use. Yet

another challenge is that the corpus of both supervised and unsupervised learning contains a

plethora of algorithms, so testing all possible algorithms is beyond the scope of this research.

Therefore, in order to make a meaningful contribution, I have narrowed the problem space

to i) focus on supervised learning, where I propose testing approaches to target NN based

models (i.e., Fully connected NN and CNN based classifiers), and ii) focus on unsupervised

learning, where I identify the gaps in the literature for multiple types of algorithms i.e.,

partitioning-based, hierarchical-based, and density-based clustering, and address them using

the metamorphic testing approach.

The rest of the dissertation is organized as follows. The chapter titled ‘Background

& Related Work’ discusses the necessary background knowledge related to software testing,

mutation testing, machine learning, supervised and unsupervised ML algorithms, oracle

problem and metamorphic testing, along with related research work done in the space of

testing supervised and unsupervised ML models. Next, in the chapter titled ‘Research

Objectives’, the motivators for this dissertation are discussed and the Goal Question

Metric (GQM) is presented to frame the research work. In the chapter titled ‘Statistical

Metamorphic Testing of Neural Network Based Intrusion Detection Systems’, a statistical

metamorphic testing technique is proposed to test Neural Network (NN)-based classifiers in

5

a non-deterministic environment. In the chapter titled ‘Testing Deep Learning Systems: A

Statistical Metamorphic Approach’, the proposed statistical metamorphic testing technique

is further validated by testing a different type of deep learning model (i.e., CNN based

pneumonia detection classifier) in the healthcare space. A Metamorphic Relations (MRs)

minimization algorithm is also proposed that helps in saving organizational resources and

performing testing with fewer MRs (especially in a regression testing environment) without

compromising the overall fault detection effectiveness of the proposed approach. In the

chapter titled ‘A Hybridized Approach for Testing Neural Network Based Intrusion Detection

Systems’, an MR is proposed to address a data generation/labeling problem; that is,

enhancing the test inputs effectiveness by extending the prioritized test set with new

tests without incurring additional labeling costs. Further, the prioritized test inputs are

leveraged to propose a statistical hypothesis testing (for detection) and machine learning-

based approach (for prediction) of faulty behavior in two other machine learning classifiers

i.e., NN-based Intrusion Detection Systems. In the chapter titled ‘MT4UML: Metamorphic

Testing for Unsupervised Machine Learning’, the metamorphic testing approach is utilized

to make some insightful contributions that include: i) proposing a broader set of 22 MRs

for assessing the behavior of clustering algorithms i.e., k-means and agglomerative clustering

algorithms under test, ii) providing a detailed analysis/reasoning to show how the proposed

MRs can be used to target both the verification and validation aspects of testing the programs

under investigation, and iii) showing that verification of MRs using multiple criteria is

more beneficial than relying on using just a single criterion (i.e., clusters assigned). In

the chapter titled ‘An Approach For Verifying And Validating Clustering Based Anomaly

Detection Systems Using Metamorphic Testing’, a diverse set of MRs are proposed to test the

implementation of the award-winning density-based clustering algorithm (at the leading data

mining conference, ACM SIGKDD [70]): Density-based Spatial Clustering of Applications

with Noise (DBSCAN) from both the verification and validation perspective. Lastly, the

6

chapter titled ‘Conclusion and Future Work’, concludes the dissertation along with potential

future work and direction.

7

BACKGROUND & RELATED WORK

Background

This section covers core concepts and the terminologies most frequently used in this

work. It encompasses an introduction to software testing, machine learning, supervised and

unsupervised classification fundamentals, fully connected deep neural network, convolutional

neural networks, k-means (partitioning based), agglomerative (hierarchical based), and

Density-based spatial clustering of applications with noise (a density based) clustering

methods, the oracle problem, metamorphic testing, metamorphic relations, source test case,

follow-up test case, and mutation testing.

Software Testing

Software testing is considered one of the most important phases in the Software

Development Life Cycle (SDLC). It is a set of activities exercised to check the intended

functionality of the program under test. A program is said to be faulty if the output

produced by a program is different from the expected one. Some of the important program

characteristics that practitioners focus on during testing include security, correctness,

robustness, and performance. There is a plethora of testing techniques available but the

popular ones include differential testing, unit testing, integration testing, combinatorial

testing, metamorphic testing and adversarial testing.

Mutation Testing

Mutation testing is a fault-based testing technique that is not only used to check the

effectiveness of test cases but is also used in simulating the real faults made by developers

[13]. An artificial bug/mutant is injected into the source code of a program to check whether

the test cases can kill the mutant or not. A mutant is said to be killed if the output of

8

the mutant program is different from the output of the original program. The effectiveness

of a test case is determined based on the mutation score (number of killed mutants / total

number of mutants). Mutation testing can also be thought of as a technique to test the

adequacy of the data available for testing. If a mutant cannot be killed with the existing

data set, then the data set needs to be extended.

Machine Learning

Machine learning can be broadly defined as the study of computational methods that

learn from the data (by extracting the hidden patterns) and use this information for future

predictions [47]. For example, given a set of text documents each labeled with a topic,

a known machine learning problem is how to use and extract the knowledge from these

documents to accurately predict the topic for yet unseen documents. Machine learning can

be broadly categorized into supervised learning, unsupervised learning, and reinforcement

learning. The following subsections provide a brief overview of supervised and unsupervised

machine learning.

Supervised Machine Learning

Supervised learning is the task of learning the patterns from training data and mapping

the input features to the output/class labels. This extracted knowledge is then used to predict

the output for an instance for which the class label was previously unknown. In a supervised

ML task, training data can be represented with two k size vectors. The first vector represents

the training samples S =< s0, s1, ..., sk−1 > and the second vector represents the class labels

C =< c0, c1, ..., ck−1 >. Each sample si (where i = 0, 1, 2, ..., k − 1) has m attributes which

are used by the classifier for learning purposes. Each label ci (of sample si) corresponds

to an element taken from a finite set of class labels, i.e. ci ∈ L = {l0, l1, ..., ln−1}, where n

denotes the number of class labels [83].

9

Supervised ML algorithms work in two phases namely - the training phase and the

testing phase. In the training phase, a model tries to analyze and learn how the attributes

are related to the class label. In the next phase (known as the testing phase), the trained

model is used to predict output for the test instances. The model is then evaluated based

on the predictions made for the test data. Some of the widely used ML algorithms include

K-Nearest Neighbors, Naive Bayes, Support Vector Machine, Random Forest, and Neural

Networks.

Examples of supervised learning problems include text classification [8], image classifi-

cation [19] and spam filtering [26].

Random Forest Random Forest [11] is a supervised machine learning ensemble tech-

nique that uses multiple decision trees to make more stable and accurate predictions. The

development of each tree is based on a random selection of data with replacement (known as

bagging) and feature randomness, which makes the forest of trees diverse and less correlated.

This property protects us from the potential effects of individual errors in a single tree

provided that the same decision mistake is not present in all trees. The class label assigned

to the test instance is based on the maximum voting concept i.e., the class label for which

the maximum number of trees voted.

Support Vector Machine (SVM) SVM [11] is a supervised ML algorithm that tries to

find the best hyperplane in N-dimensional space. The best hyperplane is the one that has

maximum margin and can best separate the class instances. The hyperplane is the decision

boundary that represents a different class on either side of it. SVM supports linear and

non-linear kernels to separate both types of linear and non-linearly separable data. In order

to separate the non-linear data, SVM takes advantage of kernel tricks (e.g., RBF kernel) that

first transforms the data to a higher-dimensional space and then tries to find the hyperplane

that can best linearly separate the data.

10

k-NN The k-NN algorithm [11] works on the assumption that similar objects tend to

stay closer to each other. For a given test instance, it finds the distance (using Euclidean

distance or Manhattan distance) between the test instance and all the training set instances,

and selects the k closest neighbors. The class label being dominant in the filtered k nearest

neighbors is assigned to the test instance.

Fully Connected Neural Network (NN) As shown in Figure 2.1, a fully connected NN is

comprised of a series of fully connected layers containing multiple neurons, where each neuron

in a layer l is connected with the neurons in the next layer l+1. A simple neural network is

comprised of an input layer, a hidden layer, and an output layer. A neural network is said

to be deep if it contains multiple hidden layers. A neuron in a neural network is a basic

computing unit that receives an input, performs a dot product (of input and corresponding

weight parameter), applies the activation function, and then forwards the result to the

neurons connected in the next layer. Some of the common activation functions used in

DNNs include sigmoid, ReLU, and Tanh [56]. The output layer has either the softmax (if

the problem is a multi-class classification problem) or the sigmoid activation function (if the

problem is a binary class classification problem). The output layer produces the probability

vector and the class for which the probability score is higher is treated as a predicted output

for the given test instance.

Each layer in a neural network extracts and learns the patterns in the training data and

then uses this knowledge for future prediction. The neurons in each layer are connected with

other neurons using a weight parameter that represents the strength of the connection. The

weights are learned during the training process with an aim to minimize the loss function

(e.g., cross-entropy used for the classification problem, and mean square error used for the

regression problem). The most popular algorithm used to update the weights and train the

neural network is the gradient descent with back propagation [64].

11

Figure 2.1: Neural Network Architecture [56]

Convolutional Neural Network (CNN) CNN is a type of feed-forward neural network

which is widely used in solving image-related problems [51]. Its architecture consists of an

input layer, hidden layers, and an output layer. The hidden layers may contain a series of

convolution, pooling, and fully-connected layers, as shown in Figure 2.2. Each convolution

layer contains several filters where each filter is used to extract specific patterns from the

input data. As an example, given the images of animals, filters in the first layer may look

for the low-level texture features e.g., edges, colors, etc., whereas, the filters in the next layer

may extract the high-level features i.e., nose, eyes, etc. The filter is like a window that slides

over the input image and calculates the inner product of weights parameters and the pixels

of the input image. The activation function is then applied to the calculated dot product

and forward this information as an input to the next layer. It is important to note that as

the training progresses, the weights parameters and the image filters will be adjusted during

the backpropagation process (using gradient-descent optimization algorithm). The pooling

layer performs dimensionality reduction by sliding the window over the output received from

the convolutional layer and obtain the pooled value (either maximum or average value) for

that sliding window. Lastly, the multidimensional data is flattened using the fully connected

layer before feeding it to the output layer of the network. The output layer will have either

12

the softmax (if the problem is a multi-class classification problem) or the sigmoid activation

function (if the problem is a binary class classification problem). The output layer produces

the probability vector and the class for which the probability score is higher is treated as a

predicted output for the given test instance.

Figure 2.2: Convolutional Neural Network Architecture [51]

Unsupervised Machine Learning

In unsupervised machine learning, given the unlabeled data set D having x inputs

with attributes < Ao, A1, A2, ..., An >, the goal is to partition the data set D into different

groups/clusters such as < C0, C1, C2, ..., Cn >, in such a way that the instances within the

cluster Ci are highly similar to each other, whereas, the instances between the clusters

Ci and Cj are highly dissimilar. Some of the widely used clustering techniques include k-

means clustering (a prototype-based approach), Agglomerative clustering (a hierarchy-based

approach), and DBSCAN clustering (a density-based approach).

Examples of unsupervised learning problems are clustering DNA patterns [9], customer

segmentation [29], and document clustering [63].

K-Means Clustering The k-means clustering algorithm belongs to the category of

partitioning based clustering algorithms that works as follows [27]:

13

1. Select the initial ‘k’ centroids randomly.

2. Iterate over all the data points, calculate the distance between them and assign each

of them to the nearest cluster centroid using the following formula.

C
(t)
i = {xp : ||xp − c

(t)
i || ≤ ||xp − c

(t)
j ||}

where, C
(t)
i represents the ith cluster (to which data instances are assigned) during the

tth iteration, ci and cj denotes the centroids, and xp denotes the data instance that will

be assigned to the cluster whose centroid has a minimum distance to it.

3. Recalculate the new centroids (it will be the mean of data points that are in the cluster

Ci) as follows.

c
(t+1)
i =

1

|C(t)
i |

n∑
j=1

xj

where, c
(t+1)
i represents the ith new centroid found, xj represents the j

th instance (where

j=1,2,...,n) belonging to the cluster Ci.

4. Repeat steps 2 and 3 until no change in centroids is found.

Agglomerative Clustering Agglomerative clustering belongs to the category of hierarchical-

based clustering algorithms that follows a bottom-up approach to cluster the data. In this

algorithm, each data point is initially considered as a single cluster and then the most similar

pair of clusters are merged together forming a new cluster. The following are the main steps

performed [84]:

1. Treat each data point as an individual cluster.

14

2. Evaluate and merge the two clusters that are most similar. The similarity between

clusters is calculated using a distance measure (i.e., Euclidean distance) and a linkage

criterion (i.e., single-linkage, complete-linkage, and average-linkage) and the two

clusters which are more similar are merged together. As an example, for the average-

linkage method, the following formula is used to calculate the distance between two

clusters which is defined as the average distance between each of the data points

(belonging to one cluster i.e., Ci) to every other data point (belonging to another

cluster i.e., Cj).

d(Ci, Cj) =
1

|Ci||Cj|
∑
xr∈Ci

∑
xs∈Cj

d(xr, xs)

where, d(Ci, Cj) represents the distance between cluster Ci and cluster Cj, xr represents

the rth data point (where r = 1,2,...,n) belonging to the cluster Ci, and xs represents

the sth data point (where s = 1,2,...,n) belonging to the cluster Cj.

3. Repeat step 2 until all the similar data points are merged into a single cluster.

The result of agglomerative clustering can be visualized as a dendrogram, as shown in

Figure 2.3. Although this algorithm does not take a number of clusters ‘k’ as input, the

dendrogram should be broken at some point using some criteria (i.e., similarity level or a

number of desired ‘k’ clusters) to obtain a disjoint set of clusters.

Density-based Spatial Clustering of Applications with Noise (DBSCAN) The DBSCAN

algorithm proposed by Ester et al. [24] is designed for a scenario when distributions contain

groups of arbitrary shapes. The algorithm has the ability to separate the noise and outliers;

which are treated as anomalies. As shown in Figure 2.4, this algorithm finds the core points

that have at least min samples (minimum number of data points) in their neighborhood

15

Figure 2.3: Agglomerative Clustering Example

within the radius epsilon. The border points are within the radius of some core point(s)

but do not have the min samples in their neighborhood to become a core point. The point

is treated as a noise point, if there is no core point in its neighborhood within the radius

epsilon.

Figure 2.4: DBSCAN Algorithm with min samples=5

The algorithm starts with an arbitrary core point ci and it grows the cluster by adding

all its neighbor core points (that are within its radius epsilon). The cluster continues growing

until all the core points and border points (reachable to the nearest core point) are assigned

to a single cluster. The same process is repeated and an arbitrary new unvisited core point

is selected to form the second cluster, then the third cluster, and so on. The points that are

16

not in the neighborhood of any core points are treated as noise or anomalies.

Oracle Problem

Oracle is a mechanism where a program is verified by comparing its output with the

expected outcome. An example can be a user authentication process in which a valid users

list is already available. A software tester knows beforehand that either the system should

grant access to the given user or not (also known as the expected behavior of a system).

However, in ML applications, the parameters are learned from the data and the results

produced by an algorithm involve a complex logical and computational process. Apart from

that, the input space for testing ML applications is so large that this brings difficulties in

figuring out the expected output for the program under test and causes ML applications to

suffer from a serious problem, known as Oracle Problem [80].

Metamorphic Testing

Metamorphic Testing (MT), a software testing method first proposed to alleviate the

oracle problem in testing traditional software [20], has also been shown to be an effective

approach in alleviating the oracle problem in testing ML applications [33, 54, 72, 79, 83].

The first step in MT is to identify the set of necessary properties/characteristics of a system

known as metamorphic relations. Second, verify, if the behavior of a program (on both

the source and follow-up test cases) is not in accordance with the identified metamorphic

relation(s), this represents the potential presence of a fault in the system.

Metamorphic Relations (MRs) The Metamorphic Relation (MR) describes the relation-

ship between the input and the related output that specifies how the output of a program

should be changed when changing the input. A simple example can be a program calculating

the standard deviation of a list of numbers. The following MRs can be formulated to check

the correctness of this program.

17

• Shuffling the order of elements in a list should not change the final output.

• Multiplying each element in the list with -1 should not change the final output.

Source and Follow-up Test Cases Once the MRs have been identified, source and follow-

up test cases are generated. The source test case (treated as original data) can either be

domain-specific or can be randomly generated, whereas, the follow-up test case is generated

by performing some valid transformation to the source test case (as specified in the related

MR). As shown in Figure 2.5, both the source and follow-up test cases are then executed

on the target program under test. If the results generated for the source and follow-up

executions do not adhere to the relation specified in MR, this would indicate that there is

some potential bug in the application.

Figure 2.5: Metamorphic Testing Approach

Related Work

A large number of contributions is available in the space of applying machine learning to

software engineering problems (especially related to software testing) [50, 57, 67, 68, 69] but

much less in the reverse direction i.e., software engineering for machine learning [12, 39, 66].

Characterizing the software engineering practices to machine learning is a very broad field,

therefore, we decide to focus only on the quality assurance aspect of machine learning models

i.e., identification, utilization, and adaptation of traditional software testing techniques in

18

machine learning space. We intend to explore the effective software testing techniques,

their applicability in the machine learning space, challenges faced, and proposing potential

solutions.

Most of the time software engineers focus more on the development of accurate models

and rely on using an accuracy measure to check the performance and appropriateness of the

proposed ML model for the underlying problem. Zheng et al. [42] has shown that using an

accuracy measure may sometimes be misleading and may not be a good measure to use for

checking the correctness of the program under test. The authors used the MT technique and

proposed several MRs to test the neural network-based classifier. To show the effectiveness

of the proposed MRs, they took advantage of mutation testing. The results obtained show

that the proposed MT-based approach is able to kill the high accuracy producing mutants,

knowing the fact that they represent the faulty implementations of the program under test.

However, one of the limitations of the proposed approach is that the software tester needs to

fix the random seeds (because of the stochastic nature in the training of neural networks) for

getting deterministic results for both the source and follow-up executions. This can be very

challenging, especially in an environment when the application under test is very complex

and is using a large number of third-party libraries and some of them do not provide any

option at all for fixing their random seeds.

In the context of white-box testing methods, the implementation details of a program

are available to the software tester which can be used to test the internal implementation

of a program under test. Pei et al. [56] propose DeepXplore, a white-box testing framework

that uncovers thousands of erroneous behaviors in 5 Deep Neural Networks (DNNs). The

following are the main contributions of this paper:

• First, a white box testing metric known as neuron coverage (number of neurons

activated) is introduced. It is used to measure the extent to which a Deep Learning

(DL) application’s logic is exercised by the test inputs. A neuron is said to be

19

covered/activated if its value is above a certain set threshold.

• Second, the authors have demonstrated that finding the behavioral differences between

multiple similar systems and obtaining a high neuron coverage can be formulated as a

joint optimization problem. A gradient-based approach is presented to solve this joint

optimization problem.

• Third, a white-box testing framework known as DeepXplore is proposed which

implements the above ideas and uncovers thousands of erroneous corner case behaviors

in 15 state-of-the-art DL models.

• Fourth, the authors showed that if the training data is augmented with the difference-

inducing inputs (inputs that triggered erroneous behaviors in DL models), the

classification accuracy of corresponding DL models can improve by up to 3%.

The proposed approach shows some promising results in uncovering the faults in the

programs under test but one of the limitations of DeepXplore is that it strongly relies on

the differential testing technique, which requires the availability of at least two similar

implementations of a system. An error is reported, if the output produced by at least

one of the DNNs is different from the others. In the real world, it is either hard to get

similar multiple implementations or too costly to implement multiple copies of the same

system. It is also possible that the developers may make similar types of coding mistakes

in all those multiple copies [37]. It will resultantly cause all the DNNs to produce the same

(but incorrect) results, thus failing to detect erroneous behaviors in the programs under test.

In the presence of these limitations, it may be difficult to apply the proposed approach to

real-world DNNs, especially when we do not have multiple implementations available.

In the space of testing supervised ML and DL-based applications, DeepTest [74]

proposed a greedy search approach that uses multiple transformations (i.e., brightness,

20

contrast, fog effect, rotation etc.) to create realistic images that can be used to test self

driving cars more effectively. The authors evaluated the proposed approach on testing CNNs

and RNNs using the Udacity self-driving car challenge dataset [4] and found more than 1000

inconsistent behaviours. Zhou et al. [88] proposed DeepBillboard, a testing approach that

adds perturbations to generate real world billboards for misleading the steering decisions in

autonomous vehicles. The authors applied the DeepBillboard on testing 4 CNNs (used in

autonomous driving testing [44, 56, 74, 87]) and uncovered numerous erroneous behaviours

in them. Zhou et al. [89] reported serious defects in the Uber system 8 days before

when on March 18, 2018, a fatal accident took place that killed the pedestrian at night

in Tempe, AZ. In their proposed work, a combination of testing techniques (Fuzz testing

and Metamorphic testing) are used to test LiDAR (light detection and ranging), an obstacle

perception module used in Uber, and revealed several previously unknown serious issues.

Ding et al. [21] applied the MT approach to validate a deep learning framework that has

been used for the classification of biomedical images. The proposed approach was shown to

be effective in validating the framework that includes, i) the architecture of a convolutional

neural network, ii) the execution environment Caffe, and iii) the data set comprised of

cellular images. Dwarakanath et al. [23] work applies MT for finding the implementation

bugs in SVM and DNN based image classifier. The authors identified 4 MRs for testing

an SVM-based model (used for classification of hand-written digit images), whereas 4 MRs

were proposed to test a DNN-based image classifier called a Residual Network (ResNet),

used for addressing a multi-class classification problem. The results obtained show that, on

average, their approach is able to uncover 71% of implementation faults. They proposed

an idea of initializing the network weights with some constant values and use maximum

standard deviation as a threshold to verify the MRs. The reason to initialize the network

weights with constant values is to get the deterministic results for multiple runs, whereas,

using maximum standard deviation as a threshold will help in checking whether the MR is

21

violated or not. However, the authors have mentioned that they were able to get deterministic

results when the DNN under test was trained on CPUs but not on GPUs due to the inherent

non-determinism introduced by NVidia CUDA libraries. Therefore, the proposed approach

will not work (as intended) in a non-deterministic environment. To address this problem, the

most recent work [60] [76] includes taking advantage of machine learning and statistical-based

MT techniques to uncover the implementation faults in a DNN-based intrusion detection

system and a cancer prediction system. Jarman et al., [32] applied MT on Adobe data

analytics software, which is used to detect trends in marketing data. The proposed MRs

are based on geometric transformations (affine transformation matrices) and are able to

successfully reveal 3 previously unknown bugs in the application. It is important to note

that the authors’ work primarily focuses on testing Adobe’s software, not the quality of data,

which is consumed by Adobe software for identification of data trends. Auer et al., [14] come

up with this novel idea of applying MT technique to address data-related issues in a big data

domain. The authors suggested that just like the necessary attributes used for verifying

the correctness of an algorithm, the data also inherits intrinsic data quality characteristics

e.g. accuracy, completeness, consistency, credibility, and correctness, which can be used

to define metamorphic data relations for verifying its quality. To show the applicability

of the proposed approach, the authors tested an open-source big data application DBpedia

(https://wiki.dbpedia.org/) and found 30 incorrect entries which violated the metamorphic

data relation.

ML Frameworks such as WEKA [81] are frequently used by technical and non-technical

users for addressing both types of supervised and unsupervised ML problems. WEKA is a

popular open-source framework that provides a large number of features i.e., data loading and

pre-processing, supervised and unsupervised algorithms and their performance evaluation,

different features selection techniques, and libraries to help in data visualization related

tasks. It allows non-technical ML enthusiasts/beginners to develop and test ML models

22

without writing a single line of code. Santos et al. [65] utilized MT to validate a k-NN

based breast cancer classifier and showed the applicability of MRs in the healthcare domain.

Xie et al. [83] proposed 6 types of MRs for testing a couple of well-known supervised ML

algorithms in WEKA i.e., Naive Bayes and k-NN. The proposed MRs are not only able to

uncover some of the implementation bugs (injected via mutation testing technique) in these

two algorithms (targeting program verification) but some of them can also be used to serve

validation purposes.

Similar to supervised algorithms, testing unsupervised algorithms also suffer from the

oracle problem. The metamorphic testing technique is considered an effective approach in

alleviating the oracle problem in testing unsupervised clustering algorithms [84, 85]. Yang

et al. [85] proposed 7 MRs to test the k-Means algorithm that target the algorithm’s

correctness from a user perspective (validation) to check whether the user expectations from

the algorithm are satisfied or not. Their results show that two of the MRs are violated but it

does not necessarily mean that there is some implementation defect in the algorithm under

test. Xie et al. [84] proposed 11 generic MRs that assess and validate the characteristics of

different clustering algorithms from a user perspective. The authors conducted an experiment

to test 6 clustering algorithms and compared them using the proposed MRs. It thus helps

the end-users (not technically expert and do not possess a solid theoretical foundation of

clustering algorithms) coming from diverse fields i.e, bioinformatics, finance, and electrical

engineering to choose a specific type of algorithm from a large set of available algorithms

that can best fit their needs. However, the following are the limitations that we have found

for the proposed works:

• They lack targeting the verification aspect of testing the clustering algorithms under

test.

• A low dimensional synthetic data is used which does not represent real world data.

23

• The proposed approaches are limited to testing clustering algorithms provided by the

WEKA tool.

These limitations make it an interesting area for investigation and making new

contributions. We therefore, address them by proposing the MT-based technique that targets

testing of clustering algorithms from both the verification and validation perspective using

real world multidimensional datasets.

24

RESEARCH OBJECTIVES

Motivation

Most of the time, a software engineer focuses more on the development of accurate ML

models but much less on ensuring their quality (in terms of correctness and robustness),

which is equally very important for enhancing trust in them. When the ML model produces

an incorrect output(s) or shows low performance, it is often attributed to deficient training

data and the developer is asked to retrain the model on more data. However, there could

be implementation bugs in the model, in which case, getting more data to train the model

will not help. Apart from that, the performance evaluation metrics used frequently by ML

engineers (i.e., accuracy, precision, recall, and F1-score) are not meant to test ML models

for finding bugs in them, instead, they are used to evaluate which algorithm is better suited

(i.e., giving better performance) for the underlying problem/data.

ML models are now becoming an integral component of security and safety-critical

applications i.e., healthcare and autonomous driving, therefore, it is very important to make

sure that these systems are correct and are working as intended. Some recent incidents like

[28, 40, 52, 90] caused serious harm to both the humans and property, which raised serious

concerns over their reliability in a real environment. Thus, this demands that researchers

propose effective testing strategies for both the verification and validation of such critical

ML-based systems.

SE4ML is an emerging research area that focuses on applying the SE best practices

and methods for better development, testing, operation, and maintenance of ML models.

The focus of this work is on the testing aspect of ML applications by utilizing and adapting

the traditional software testing approaches in performing better quality assurance of ML

models. Among the available software testing techniques, we have found MT as an effective

technique in alleviating the oracle problem in testing ML applications. However, the

25

following identified gaps in the literature (related to applicability of MT in testing ML

applications) are interesting areas to explore and also the motivators for this work:

• The first motivator for this work is that the traditional MT technique is not directly

applicable to test neural network-based models due to their stochastic nature in

the predicted outputs (i.e., if we provide the same training data to retrain the

neural network, it may produce slightly different results for the same test data).

Although few researchers [23, 42] tried to address this problem by either initializing the

network weights with some constant values or fixing the random seeds, their proposed

approaches of applying MT in such an environment has their own limitations [60].

• The second motivator for this work is that in classification problems, the data labeling

task is considered an expensive and resource-intensive task. In the existing literature,

MT has only been used mainly for testing the ML applications but none of the work

focuses on using MT for solving the data collection/labeling problem. We aim to use

its effectiveness in enhancing the prioritized test input size without incurring additional

labeling costs. It can thus save a large amount of organizational cost in dedicating the

resources for labeling the data instances manually.

• The third motivator for this work is that the existing literature focuses more on

leveraging ML approaches in the prediction of faulty behavior in traditional software

[50, 57, 67, 68] but to the best of our knowledge, we are unable to find any work

that harnesses ML-based approach in the prediction of faulty behavior in ML-based

applications. Therefore, we aim to explore this interesting area and making fruitful

contributions.

• The fourth motivator for this work is that although the existing literature discusses

taking advantage of using MT for testing unsupervised algorithms [84, 85], the work

26

proposed by them has its own limitations i.e, (i) instead of using a real data set, their

work uses a randomly generated low dimensional (2D) data, (ii) their work focuses

only on testing the algorithms provided by the WEKA tool, and (iii) their proposed

MRs target only the validation aspect of the clustering algorithms.

In this study, we aim to explore and adapt the SE testing techniques to address the gaps

(highlighted above) for producing better quality ML models.

GQM

The GQM (Goal Question Metric) is a goal oriented approach [15] that we have used in

order to lay out our research plan and guide the research. As shown in Figure 3.1, in the

GQM approach, a set of goal(s) are identified, each of them is further refined using the

questions to address the corresponding research goal, and then the metrics are outlined

to answer the questions in a quantifiable manner. In our research work, we identify the

following list of Research Goals (RGs), Research Questions (RQs), and the metrics used to

answer the RQs in a quantifiable manner. Further, in Table 3.1, we mention the chapters

addressing each of the raised RQs.

Figure 3.1: GQM Approach [18]

RG1: To detect implementation bugs in supervised ML models for the purpose of

improving their quality from the perspective of software developers in the context of testing

Fully Connected NN based models in a non-deterministic environment.

27

RQ1.1: How effective is the proposed approach in the identification of implementation

bugs in NN-based classifiers under test?

RQ1.2: Do all MRs have the same defect detection ability?

RG2: To detect buggy behavior in supervised ML models for the purpose of improving

their quality from the perspective of software engineers in the context of testing

CNN-based models in a non-deterministic environment.

RQ2.1: How effective is the proposed statistical metamorphic testing approach in the

identification of implementation bugs in CNN-based deep learning classifier under test?

RQ2.2: Do all MRs (verified through different statistical methods) show the same fault

detection ability?

RQ2.3: Using the proposed approach, which MR(s) have high fault detection

effectiveness, and which among them has the least?

RQ2.4: How can the proposed MRs (verified through the proposed statistical methods)

be minimized for the CNN-based model under test?

RG3: To investigate the MT technique for the purpose of enhancing the test inputs size

from the perspective of an organization in the context of reducing the labeling cost in

testing NN-based classifiers.

RQ3.1: Can we enhance the test set size (using MT technique) without incurring any

additional labeling cost?

RQ3.2: To what extent the given test set can be increased?

RG4: To detect and predict buggy behaviour in the new release of a classifier for the

purpose of improving its quality from the perspective of a quality assurance team in the

context of testing NN-based classifiers.

28

Detection:

RQ4.1: Is the proposed statistical hypothesis testing technique effective in detection

of buggy behavior in the classifiers under test?

Prediction:

RQ4.2: Is the proposed ML-based approach effective and which ML model is more

suitable for the problem under investigation?

RQ4.3: Does the addition of metadata features increase the performance of proposed

ML models?

RG5: To investigate the MT technique for testing unsupervised algorithms for the purpose

of improving their quality from the perspective of both the end user and a developer in the

context of testing k-Means, DBSCAN, and Agglomerative clustering algorithms.

RQ5.1: How effective are the proposed MRs in testing the clustering algorithms under

test?

RQ5.2: How to evaluate which algorithm is more stable in comparison to other(s) for

performing clustering-related tasks (from both the end-user and developer perspective)?

RQ5.3: How effective is the proposed MT approach in testing the applications under

test?

RQ5.4: Do all MRs have the same ability to detect the violations?

Research Metrics (RM): The following metrics will be used to answer the research

questions.

RM1.1: Mutation Score - Percentage of mutants killed. This metric will be used to

answer RQ1 and RQ2.

RM1.2: Yes/No - This measure tries to answer RQs in Yes/No. It will be used to

answer RQ1.2, RQ2.2, RQ3.1, RQ4.3, and RQ5.4.

29

RM1.3: Test Set Size - A measure to show that to what extent the test set size has

been increased. This metric will be used to answer RQ3.2.

RM1.4: Number of classes (or percentage) for which a buggy behavior is detected - A

count of the number of classes (or percentage) for which the program under test shows a

buggy behavior. This metric will be used to answer RQ4.1.

RM1.5: Accuracy, Precision, Recall, and F1 - These performance measures will be

used to answer RQ4.2 and RQ4.3.

RM1.6: Violation Rate - Percentage of test instances for which the model shows

inconsistent behaviour. This metric will be used to answer RQ5.

RM1.7: Number of violated MRs - A count of the number of MRs that are violated

by the program under test. This metric will be used to answer RQ5.

Table 3.1: Chapters Addressing Research Questions (RQs)

RQ# Paper/Chapter Title

RQ1.1 Statistical Metamorphic Testing of Neural Network Based Intrusion

Detection Systems

RQ1.2 Statistical Metamorphic Testing of Neural Network Based Intrusion

Detection Systems

RQ2.1 Testing Deep Learning Systems: A Statistical Metamorphic Approach

RQ2.2 Testing Deep Learning Systems: A Statistical Metamorphic Approach

RQ2.3 Testing Deep Learning Systems: A Statistical Metamorphic Approach

RQ2.4 Testing Deep Learning Systems: A Statistical Metamorphic Approach

RQ3.1 A Hybridized Approach for Testing Neural Network Based Intrusion

Detection Systems

RQ3.2 A Hybridized Approach for Testing Neural Network Based Intrusion

Detection Systems

30

RQ4.1 A Hybridized Approach for Testing Neural Network Based Intrusion

Detection Systems

RQ4.2 A Hybridized Approach for Testing Neural Network Based Intrusion

Detection Systems

RQ4.3 A Hybridized Approach for Testing Neural Network Based Intrusion

Detection Systems

RQ5.1 MT4UML: Metamorphic Testing for Unsupervised Machine Learning

RQ5.2 MT4UML: Metamorphic Testing for Unsupervised Machine Learning

RQ5.3 An Approach For Verifying And Validating Clustering Based Anomaly

Detection Systems Using Metamorphic Testing

RQ5.4 An Approach For Verifying And Validating Clustering Based Anomaly

Detection Systems Using Metamorphic Testing

31

STATISTICAL METAMORPHIC TESTING OF NEURAL NETWORK BASED

INTRUSION DETECTION SYSTEMS

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘Statistical Metamorphic Testing of Neural Network Based

Intrusion Detection Systems’

Author: Faqeer ur Rehman

Contributions: Problem identification and proposing solution, running experiment, manuscript

writing, creating tables and figures. Primary writer

Co-Author: Dr. Clemente Izurieta

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

32

Manuscript Information Page

Faqeer ur Rehman and Dr. Clemente Izurieta

IEEE International Conference on Cyber Security and Resilience (CSR)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IEEE

06 September 2021

10.1109/CSR51186.2021.9527993

33

Abstract

Testing computationally complex neural network-based applications (i.e. network

intrusion detection systems) is a challenging task due to the absence of a test oracle.

Metamorphic testing is a method to potentially address the oracle problem when the

correctness of individual output is difficult to determine. However, due to the stochastic

nature of these applications, multiple runs with the same input can produce slightly

different results; thus rendering traditional metamorphic testing technique inadequate. To

address this problem, this paper proposes a statistical metamorphic testing technique to test

neural network based Network Intrusion Detection Systems (N-IDSs) in a non-deterministic

environment. We also performed mutation analysis to show the effectiveness of the proposed

approach. The results show that the proposed method has a strong defect detection

capability and is able to kill 100% implementation bugs in two neural network-based N-

IDSs, and 66.66% in a neural network-based cancer prediction system.

Introduction

Information Technology (IT) practitioners grapple on a daily basis with how to

maintain their networks secure from malicious adversaries. A large number of tools exist

today that can help with identifying potential weaknesses and vulnerabilities regarding

all types of Cybersecurity concerns. The ISO 25k standard [7] characteristics helps us

partition such threats into different categories. However, operational solutions to theoretical

characterizations are not contextual, and require significant manual efforts from practitioners

to identify relevant attacks. To aid practitioners and prevent such disastrous threats

proactively, one possible solution would be to choose and deploy an intelligent machine

learning based Network Intrusion Detection System (N-IDS). These automated techniques

act in context and remove significant manual efforts. A challenge faced by these systems,

34

however; is how can we trust and rely on the correctness of such computationally complex

machine learning based N-IDSs?, especially, when the organization has purchased it from a

new vendor or built on top of some open source libraries.

Machine learning (ML) is heavily used in solving real-world problems in many appli-

cation domains like voice recognition [10], transportation [16], safety-critical applications

(e.g., self-driving cars and self-flying drones) [30], machine translation [36], healthcare [53],

finance [78], and as exemplified above, the Cybersecurity domain [25]. Normally, we focus

more on the development of accurate models but much less on ensuring their quality. Thung

et al. [73] showed in their study that 22.6% of faults in ML applications are due to incorrect

implementation that caused them to produce inconsistent and unexpected results. A small

bug in the system may lead to catastrophic failure which can result in both financial

and human loss. For example, on 14 Feb 2016, a Google self-driving car crashed due to

misjudgment and putting itself into the path of an oncoming bus, in an attempt to avoid

sandbags [90]. In May 2016, a Tesla Model S crashed when the autonomous driving system

hit the trailer and did not treat it as an obstacle [40]. In March 2018, an Uber self-driving

car killed a woman in Arizona, when at night it failed to recognize a pedestrian on the road

[52]. In the face of these disasters, ensuring the correctness of ML-based systems is very

challenging but equally an essential problem to be addressed.

Testing ML-based applications seriously suffer from the Oracle problem due to the

difficulty in assessing whether the generated output is correct [80]. An oracle is a mechanism

where a program is verified by comparing its output with the expected outcome. To test such

complex systems, either the oracle is unavailable or too expensive to apply. A major approach

used to address the oracle problem in such non-testable programs is known as Metamorphic

Testing (MT) [20]. MT has been proven to be an effective approach in alleviating the oracle

problem in testing ML applications, for which the correctness of individual output is difficult

to determine [83, 89]. The first step in metamorphic testing is to identify the set of necessary

35

properties/characteristics of a system known as Metamorphic Relations (MRs). Each MR

describes the relationship between the input and the related output that specifies how the

output of the program should be changed when changing the input. A simple example of

an MR for a program calculating the standard deviation of a list of numbers can be stated

as ‘shuffling the order of elements in a list should not change the final output’. Once the

MRs have been identified, source and follow-up test cases are generated. The source test

case (treated as original data) can either be domain-specific or can be randomly generated,

whereas the follow-up test case is generated by performing some valid transformation to

the original data (as specified in the related MR). Both the source and follow-up test cases

are then executed on the target program under test. If the results generated by the source

and follow-up executions do not adhere to the relation specified in the MR, then this would

indicate a potential bug in the system.

One of the challenges faced in applying MT to Neural Network (NN) based applications

is their stochastic nature (due to random initialization of weights) where they produce slightly

different outputs for multiple runs with the same inputs. In order to get consistent results

for both the source and follow-up test cases, a couple of researchers have proposed the

solution of fixing the random seeds [23, 42]. The first paper is focused on applying MT

to uncover implementation bugs in a Deep Learning (DL) based image classifier [23]. The

authors used maximum standard deviation σmax (based on variation in a loss on the test

data) as a threshold to verify if the program under test adhered to MRs or not. In order

to alleviate stochasticity, the authors fixed the random seed to get deterministic results

(obtaining consistent σmax) for the program under test. The authors highlighted that they

were able to get deterministic results on CPUs but not on GPUs due to inherent non-

determinism introduced by NVidia CUDA libraries. Hence, their approach was limited to

work only on CPUs. The second paper deals with applying MT to test an Artificial Neural

Network (ANN) based classifier, taken from Stanford’s cs231n course [42]. In order to get

36

deterministic results and to verify the MRs using the equality operator, the authors initialized

the weights of a classifier with fixed values. The problem with this approach is two-fold, (i)

it will not work in an environment where either the weights of the ANN cannot be fixed or

where getting non-deterministic results is unavoidable, and (ii) it may not be applicable in

a scenario when a model needs to be trained on GPUs to accelerate the training time.

In order to address the above highlighted problems, this paper proposes a statistical-

based MT technique to unveil implementation bugs in NN-based N-IDSs, especially, in an

environment where neither the random seeds nor the weights can be fixed in order to get

deterministic results. Apart from that, in real-world it may not be possible for a software

tester to fix the random seeds explicitly in a project that has millions lines of code and is also

using a large number of third-party libraries. Therefore, instead of relying on a single run,

the proposed approach statically analyses the results over multiple iterations (each iteration

denotes a trained NN classifier) because a correct NN classifier should converge to almost

the same solution most of the time, if not always [23]. To show the applicability of the

proposed approach, we have worked with three ML applications. Two applications belong to

Cybersecurity space i.e. N-IDSs, whereas the third one is from the healthcare domain that

classifies cancer types among patients.

The following are the main contributions of this paper [60]:

• Three metamorphic relations are proposed to uncover implementation bugs in ML-

based applications (i.e., N-IDSs and Cancer prediction system).

• Four statistical measures are used that will allow software testers to verify the

correctness of a program under test (especially in a non-deterministic environment)

using a combination of statistical hypothesis testing and MT technique.

• Mutation testing is applied to show the effectiveness of the proposed MT-based ap-

proach. The results show that the proposed method is able to kill 100% implementation

37

bugs in the two N-IDSs, whereas 66.66% in the cancer prediction system.

Related Work

Deploying applications that are not fully tested can have disastrous consequences in

the real world. Zhou et al. [89] reported serious defects in the Uber system 8 days prior

to when the autonomous Uber killed Elaine Herzberg (a pedestrian) on March 18, 2018, in

Tempe, AZ. The authors applied Fuzz testing in combination with MT to test LiDAR (light

detection and ranging), an obstacle perception module used in Uber, and revealed several

previously unknown fatal errors. Xie et al. [83] applied MT (as a test oracle) to test a popular

open-source ML tool, known as Weka. Weka provides a large number of algorithms for data-

prepossessing, classification, clustering, prediction, feature selection, and visualization [81].

The proposed MRs are not only able to find implementation bugs in K-Nearest Neighbors

and Naive Bayes classification algorithms (treated as a verification step) but are also helpful

in serving as validation steps. Pei et al. [56] proposed DeepXplore, a white-box testing

framework to address two main challenges faced in the automated testing of a large-scale DL

system: (i) identification of erroneous behavior(s) in the system without a need to labeling

each test instance manually, and (ii) generation of inputs that can exercise different parts of a

DL system’s logic (known as neuron coverage) to uncover hidden defects in it. The proposed

approach has shown promising results in uncovering thousands of erroneous behaviors in 5

DNNs. However, one of the limitations of the proposed approach is its strong dependency

on a differential testing technique, which requires at least two similar implementations of a

system. Apart from that, the authors did not provide any details regarding how they verified

that the generated images truly represent real-world scenarios.

Normally, practitioners rely on using accuracy measures to check the appropriateness

of an algorithm for the underlying problem. Li et al. [42] showed that higher accuracy does

not necessarily mean that the trained model is free of bugs. The authors applied the MT

38

technique to test NN classifiers. The proposed MRs first transform the original inputs to

generate follow-up test cases and then check, whether the produced output (for both source

execution and follow-up execution) adheres to the corresponding MRs or not. To check the

effectiveness of the proposed MRs, mutation testing is applied, and artificial bugs are injected

into the source code of a program under test. The authors highlighted a few mutants that

produced the same high accuracy as that of the original program, knowing the fact that

they represent the faulty implementations. The results obtained show that the proposed

MT-based approach is more effective in detecting faults than using the accuracy measure.

However, the proposed approach is only applicable in an environment where the software

tester can fix the random seeds to get deterministic results, which is not always possible.

It is important to note that despite efforts to find relevant references in the literature

that address how MT could be used to test N-IDSs, we were unsuccessful, and although

beyond the scope of this paper, we believe this is an important gap in the body of knowledge

that needs further investigation.

Proposed Approach

In this section, we present the proposed statistical-based MT technique in detail. First,

we provide three MRs which are used to find implementation bugs in the applications under

test. Next, instead of checking the correctness of MRs over a single source and follow-up

execution (not possible due to random initialization of weights causing the non-deterministic

behavior), we obtain results over multiple iterations and analyze them statistically (using the

proposed statistical measures) to verify whether the outputs adhere to the relation specified

in the MRs or not. The violation of an MR will be an indication of a potential bug in the

program under test. Lastly, a mutation testing technique is applied on the following N-IDSs

to check the effectiveness of proposed MRs. In order to show the relevance of the approach

in other domains (i.e., health care), we also include a DNN-based cancer prediction system.

39

The details for each application are presented in Table 4.1.

• Application#1: A shallow NN-based N-IDS used for the detection of malicious

attacks in an OpenStack environment. It is a multi-class classification problem that

classifies the network request among 3 class labels (normal, attacker, and victim).

• Application#2: A DNN-based N-IDS for intrusion detection in a network that

targets a binary class classification problem (i.e., either the request is attack or benign).

• Application#3: A DNN-based cancer prediction system used to identify cancer types

among patients. It is a multi-class classification problem that classifies the patient

among one of 10 cancer types.

Table 4.1: Neural Network Model Architectures

Application # Hidden

Layers

Hidden

Layer(s) Type

Output Layer

Application#1

(ANN N-IDS)

1 Fully Connected

+ ReLU

Softmax

Application#2

(DNN N-IDS)

3 Fully Connected

+ sigmoid

Sigmoid

Application#3

(DNN Cancer

identification)

3 Fully Connected

+ sigmoid

Softmax

Metamorphic Relations (MRs)

We propose the following three MRs that are applicable to all three ML based

applications under test:

40

MR-1:-Changing the order of features (of both training and test data) Let Xtrain be the

training data and Xtest be the test data. After training the neural network, let a specific test

instance xi
test be classified as class ‘a’. MR-1 says that if we change the order of attributes

in both the training and test data, the output for the test instance xi
test should remain same

(i.e., class ‘a’).

MR-2:-Addition of uninformative attribute to both training and test data Let Xtrain be

the training data and Xtest be the test data. After training the neural network, let a specific

test instance xi
test be classified as class ‘a’. MR-2 says that if we add an uninformative

attribute (attribute having value 6) to all the instances of both the training and test data,

the output for the test instance xi
test should remain same.

MR-3:-Shifting of both the training and test features Let Xtrain be the training data

and Xtest be the test data. After training the neural network, let a specific test instance xi
test

be classified as class ‘a’. MR-3 says that if we shift the features in both the training and

test data with some constant c, it will not change the existing relationship between the data

points, so the output for the test instance xi
test should remain same.

Statistical Hypothesis Tests

In this section, four statistical measures are discussed that we used to perform statistical

hypothesis testing and verification of a relation specified in MRs. For this purpose, we added

custom code in the classifiers under test to store their predicted results in excel files. The

generated excel files contain detailed information for each test instance e.g. expected class

label, predicted class label, the probability distribution for multiple classes, the maximum

probability for the predicted class label, etc. We then developed a C# utility to process those

excel files and extract the needed information on which the proposed statistical measures

are applied. If the results are found statistically significant e.g., if the probability (p-value)

41

is less than the set significance level (α), we reject the Null Hypothesis (H0). Rejection of

H0 would suggest that the MR has been violated and that there is a potential bug in the

system. The classifiers’ original code, mutants generated, excel files (containing predictions)

and their processed versions, the C# utility, and the results produced, all are open-sourced

1. The statistical measures are as follows:

Maximum Voting To understand the proposed maximum voting concept, let XsData be

the source data, and XfData be the follow-up data. We train the same classifier ‘n’ times

on the source data and ‘m’ times on the follow-up data (where n = m). This results in Cn

trained classifiers on the source data and Cm trained classifiers on the follow-up data. Those

trained models (Cn and Cm) are then used to predict the class label for the test instance

xi
test. The results obtained are accumulated and a frequency distribution table is prepared,

as shown in Table 4.2.

For a given test instance xi
test, the MR is said to be violated, if the maximum times of

the class predicted for the source executions is different than the maximum times predicted

for the follow-up executions.

Comparing Distributions Using Chi-square Test of Homogeneity & Fisher’s Exact Test

There may exist some scenarios where the Maximum Voting approach may not work. For

example, in Table 4.2, it can be seen that for both the source and follow-up executions, the

class which is predicted maximum times is Class2. So, the proposed measure would suggest

that the MR is satisfied. However, one may argue that the difference between the Class2

and Class3 distribution (for follow-up executions) is not very high and that this difference

could be treated as the identification of a potential bug in the system. This motivates us to

analyze the distributions over multiple class labels for better identification of true positive

1https://github.com/matifkhattak/StatisticalMT/tree/master

https://github.com/matifkhattak/StatisticalMT/tree/master

42

alarms. For this purpose, we take advantage of the Chi-square test of homogeneity (χ̃2),

which is used to compare two samples having unknown population distributions. Using the

frequency table (as shown in Table 4.2), we formulate the underlying problem as one where

we compare the source executions’ distribution Si (treated as the expected distribution) with

the follow-up executions’ distribution Fi (treated as the observed distribution).

χ̃2 =
n∑

i=1

(Fi − Si)
2

Si

However, one of the limitations of the Chi-square test is that it may produce inaccurate

and unreliable results if any of the cell values is less than 5 [2]. To solve this problem for

some of the distributions we obtained, we apply an alternative test known as Fisher’s exact

test, which works equally well for the distributions having small cell values [2]. Based on

the results obtained, if the p-value is less than the set significance level, null hypothesis is

rejected, which ultimately means that the MR is violated and there is some potential bug in

the system.

The following are the proposed null and alternative hypothesis used for both the χ̃2

and Fisher’s exact test.

• H0: The distributions for both the source and follow-up executions are same.

• Ha: The distribution for the source executions is different from the follow-up

executions.

Table 4.2: Frequency Distribution Table

Execution Type Class1 Class2 Class3

Source (n=30) 3 25 2

Follow-up (m=30) 2 15 13

43

Comparing Distributions Using Two Sample t-Test & Permutation Test In an NN-

based classifier, an activation function (e.g., sigmoid or softmax) is used in the output layer

that generates a probability vector, providing the probability for each of the class labels. A

class with the highest probability is treated as the predicted class label for the given test

instance. We take advantage of using these probabilities and perform statistical analysis to

check how close the probability distributions are for both the source and follow-up executions

for any given instance.

We treat this problem as comparing the two sample means using the t-Test. First,

the results in excel files are processed (using the C# program) and the class label predicted

maximum times during the source executions is identified. For the given test instance xi
test,

the purpose is to first find the class label for which the model is more confident and then

extracting the probability of that specific class for both the source and follow-up executions.

This will result in the generation of two samples for each MR, one for the source and other

for the follow-up executions, as shown in Table 4.3.

Table 4.3: Exemplary Probabilities

Source Executions Follow-up Executions

0.63 0.61

0.64 0.60

0.61 0.62

0.61 0.65

0.60 0.59

0.61 0.60

Let x = (x1, x2,...,xn) and y = (y1, y2,...,yn) represent two samples, one corresponding to

source executions and the other corresponding to follow-up executions. In order to conduct

44

the statistical t-Test, we need to find the mean x̄n =
∑n

i=1 xi and the variance s2x,n =

1
n−1

∑n
i=1(xi - x̄n)

2 for both samples. The t-score is calculated as,

t =
x̄n − ȳn√
s2x,n
n

+
s2y,n
n

After applying the t-Test, the p-value obtained is compared with the significance level.

If it is less than the set significance level, H0 will be rejected, which ultimately means that

the MR is violated and that there is a potential bug in the system. The following are the

null and alternative hypothesis to check whether the MRs have been satisfied or not.

• H0: There is no difference in the sample means of both the source and follow-up

executions.

• Ha: The sample mean of source executions is different from the sample mean of follow-

up executions.

It is important to note that before applying the two-sample t-Test, we have analyzed

the data to check whether the assumptions are fully satisfied. During the analysis (using a

Q-Q plot), we found that for some of the MRs, the normality assumption is slightly violated.

However, the t-Test is robust against such violations and can still be applied [59]. To

perform better analysis and support decision-making, we show our results using both the

t-Test and the permutation test. The permutation test is a non-parametric test that does

not rely on the normality assumption. For more details about the permutation test, we refer

the interested readers to read Chapter 1 [59].

Empirical Results

All three applications (N-IDSs and Cancer identification system) under test are built on

Keras 2.3.1 and TensorFlow 2.0. We used the MutPy [3] tool to generate mutated versions

45

Table 4.4: Results for Application#1: Shallow Neural Network Based N-IDS

Significance Level (α) = 0.05

Mutants
Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall

MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y

Mutant#2 Y Y Y Y

Mutant#3 Y Y Y

MS
33.33% 33.33% 33.33% 33.33% 33.33% 0% 33.33% 33.33% 0% 33.33% 33.33% 0%

66.66% 66.66% 66.66% 66.66% 100%

Significance Level (α) = 0.1

Mutants
Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall

MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y

Mutant#2 Y Y Y Y Y Y

Mutant#3 Y Y Y Y

MS
33.33% 33.33% 33.33% 66.66% 66.66% 0% 33.33% 33.33% 0% 66.66% 33.33% 0%

66.66% 100% 66.66% 66.66% 100%

Y denotes the mutant is killed, and MS represents the Mutation Score

Table 4.5: Results for Application#2: Deep Neural Network Based N-IDS

Significance Level (α) = 0.05

Mutants
Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall

MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y

Mutant#2 Y Y Y

Mutant#3 Y Y Y

MS
33.33% 33.33% 33.33% 33.33% 0% 0% 66.66% 0% 33.33% 66.66% 0% 33.33%

66.66% 33.33% 66.66% 66.66% 100%

Significance Level (α) = 0.1

Mutants
Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall

MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y Y

Mutant#2 Y Y Y

Mutant#3 Y Y Y Y Y

MS
33.33% 33.33% 33.33% 33.33% 33.33% 66.66% 66.66% 0% 33.33% 66.66% 0% 33.33%

66.66% 66.66% 66.66% 66.66% 100%

Y denotes the mutant is killed, and MS represents the Mutation Score

46

Table 4.6: Results for Application#3: Deep Neural Network Based Cancer Prediction System

Significance Level (α) = 0.05

Mutants
Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall

MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y

Mutant#2

Mutant#3 Y Y Y Y Y Y Y

MS
66.66% 33.33% 33.33% 66.66% 33.33% 0% 66.66% 33.33% 0% 66.66% 0% 0%

66.66% 66.66% 66.66% 66.66% 66.66%

Significance Level (α) = 0.1

Mutants
Maximum Voting χ̃2 / Fisher Exact Test t-Test Permutation Test Overall

MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3 MR-1 MR-2 MR-3

Mutant#1 Y Y Y Y Y Y Y

Mutant#2

Mutant#3 Y Y Y Y Y Y Y Y Y

MS
66.66% 33.33% 33.33% 66.66% 33.33% 33.33% 66.66% 33.33% 33.33% 66.66% 0% 0%

66.66% 66.66% 66.66% 66.66% 66.66%

Y denotes the mutant is killed, and MS represents the Mutation Score

of the classifiers under test. After excluding the mutants, which were either changing the

architecture of the neural network or causing the program to crash, we selected 3 valid

mutants for each application (details are available online 2). One of the generated mutants

is shown in Figure 4.1, which will cause the program to over-fit. A mutant is said to be

killed if the results do not adhere to the relation specified in the MR. The effectiveness of

MR is determined based on the mutation score (number of killed mutants / total number of

mutants).

Figure 4.1: Original Code (top) and Mutant (below).

The main objective of this study is to test the NN based N-IDSs in a non-deterministic

environment. To show whether the results are statistically significant, we analyzed the

2https://github.com/matifkhattak/StatisticalMT/tree/master

https://github.com/matifkhattak/StatisticalMT/tree/master

47

results over multiple iterations. The results for Application#1 (shown in Table 4.4) and

Application#3 (shown in Table 4.6) are obtained based on 200 trained models for each MR

(100 models trained on source data and 100 trained on follow-up data). However, due to

time resource constraints, for Application#2, we obtained the results based on 60 trained

models for each MR (30 models trained on source data and 30 trained on follow-up data),

as shown in Table 4.5. The results presented show the effectiveness of each MR using the

mutation score (as a %). We present the mutation scores at two levels, (i) of each individual

MR, and (ii) of each statistical measure (with combined MRs).

It is important to note that all three applications under investigation are critical systems

of high consequence, so a Type-II error has more severity because the acceptance of a false

Null hypothesis (in case of using low α level) will suggest that there is no bug in the system

when actually there is. To perform better analysis and support decision-making, we reported

the results with both α = 0.05 and α = 0.1. Results presented in Table 4.4, 4.5, and 4.6

show that most of the time using the proposed statistical measures, the given MRs are

able to kill at least 66% of the mutants. Further, if we have enough resources to apply all

four statistical measures, the results (under column name Overall) show that the proposed

approach is able to kill 100% of mutants in two N-IDSs (Application#1 and Application#2),

and 66% of mutants in the cancer prediction system (Application#3), which shows its

strong capability to detect defects. Therefore, we find that the proposed statistical-

based MT technique is effective in finding the implementation bugs in NN-based

applications in a non-deterministic environment, which answers RQ1.1 of RG1.

However, it can be seen that the proposed MRs have different fault detection capability

for each application under test. For example, upon closer inspection of the results in Table

4.5, when statistically analyzed using the t-Test, we can see that MR-1 has a strong defect

detection capability of 66.66%, whereas MR-2 has the lowest mutant killing rate of 0%.

We can use the same knowledge to check the effectiveness of different MRs for different

48

applications, as shown in Table 4.4, 4.5, and 4.6. The results in Table 4.6 (for Application#3)

show that mutant#2 is survived and none of the MRs are able to kill it (for both α = 0.05

and α = 0.1). Upon further analysis, we find that each time a DNN is trained, it predicts

the same class label for all the test instances, which shows that there is some potential bug

in the classifier under test. Hence, we come to the conclusion that different MRs

have different fault detection ability for the NN-based applications under test,

which answers RQ1.2 of RG1.

Conclusion

We proposed a statistical-based Metamorphic Testing (MT) technique for testing a class

of Machine Learning (ML) applications (i.e, network intrusion detection systems) that have

stochastic behaviour in their results. Having this property, traditional MT approaches are

not applicable because they rely on using an equality operator to verify the relation specified

in Metamorphic Relations (MRs). We introduce three MRs for uncovering implementation

bugs in the applications under test. Furthermore, we propose four statistical measures

that allows us to statistically analyze the predicted outputs and to verify the relation

specified in MRs. The effectiveness of our proposed method is show with the identification

of bugs (injected through mutation testing technique) in three ML-based applications. This

research is focused on showing the applicability of statistical-based MT techniques with

sample MRs for neural network-based network intrusion detection systems. Furthermore,

we also show the usefulness of the proposed approach in the healthcare domain (e.g., Cancer

identification system). A more comprehensive study on formulating new MRs and evaluating

their performance using the proposed approach is in progress.

49

TESTING DEEP LEARNING SYSTEMS: A STATISTICAL METAMORPHIC

APPROACH

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘Testing Deep Learning Systems: A Statistical Metamorphic

Approach’

Author: Faqeer ur Rehman

Contributions: Problem identification and proposing solution, conducting experiment,

manuscript writing, creating tables and figures. Primary writer

Co-Author: Dr. Clemente Izurieta

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

50

Manuscript Information Page

Faqeer ur Rehman and Dr. Clemente Izurieta

IEEE Transactions on Software Engineering

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

× Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

Published in a peer-reviewed journal

IEEE

17 September 2022

51

Abstract

Machine learning technology spans many areas and today plays a significant role in

addressing a wide range of problems in critical domains i.e., healthcare, autonomous driving,

finance, manufacturing, cybersecurity, etc. Metamorphic Testing (MT) is considered a

simpler but very powerful approach in testing such computationally complex systems for

which either an oracle is not available or is available but difficult to apply. Traditional

metamorphic testing techniques are not applicable for testing deep learning-based models

(i.e., CNNs) that have a stochastic nature in their training (the stochastic nature (because of

randomly initializing the network weights)). In this paper, we make an attempt to address

this problem by proposing a statistical metamorphic testing technique that does not require

software testers to worry about fixing the random seeds (for getting deterministic results)

in order to verify the Metamorphic Relations (MRs). We propose 7 MRs in combination

with different statistical methods to statistically verify whether the program under test

adheres to the relation(s) specified in the MR(s) or not. We further use mutation testing

techniques to show the usefulness of the proposed approach in the healthcare space and

test an open-source CNN-based deep learning model (used for pneumonia detection among

patients). The empirical results show that our proposed approach has been able to uncover

85.71% of the implementation faults in the Classifier Under Test (CUT). Furthermore, we

also propose an MR minimization algorithm for the CUT; thus, saving computational costs

and organizational testing resources.

Introduction

According to the World Health Organization (WHO), in 2019 alone, pneumonia (a

pulmonary infection illness) was responsible worldwide for almost 740180 (14%) of all deaths

in children under the age of 5 [6]. It has affected children and families all around the globe,

52

but the worst among them are mostly from sub-Saharan Africa and South Asia.

The lungs of the human body are composed of sacs (also known as alveoli), which are

filled with air when a healthy individual breathes. However, when suffering from pneumonia

(caused by viruses, bacteria, or fungi), these sacs are filled with pus/fluid which limits oxygen

intake, causes pain, and makes it hard for a person to breathe. Therefore, it is critical

to detect and diagnose infections at the earliest possible time to help prevent them from

becoming pathogenic. However, the difficulty of clinical detection remains a big challenge

due to the potential variability of symptoms, and their resemblance to those observed in

other types of illnesses such as influenza, colds, and asthma.

One of the promising diagnostic tools witnessed in medical science includes taking

advantage of chest radiography but it remains a time-consuming and resource-intensive task

for radiologists to manually examine and diagnose chest X-rays [41]. At the same time,

manual approaches are error-prone and subjective. Therefore, this raises a need for an

efficient method that can automatically detect the existence of pneumonia correctly.

Artificial Intelligence (AI) is playing a pivotal role in empowering and building

solutions in critical domains, such as medical science, in which mostly, Deep Learning (DL)

based models i.e., Convolutional Neural Networks (CNN), have become the state-of-the-

art technique. Recent work has shown their usefulness/effectiveness in the detection of

pneumonia using chest X-ray images [31, 49, 58, 75]. It is important to highlight that in

the healthcare space (and in general), the research community is focusing more on the

development of high-performance DL-based models (which is critical) but much less on

performing their quality assurance (which is also very important but unfortunately much

ignored). It can be argued that ML engineers already use different performance evaluation

metrics (i.e., accuracy, precision, recall, F1-score, etc.) during the development of ML models

to perform some testing activities. However, these evaluation metrics are not meant to test

(i.e., verify and validate) ML-based models for finding implementation bugs in them, instead,

53

they are used to evaluate which ML algorithm is best suited for the underlying data/problem.

Furthermore, models with low scores in performance metrics are often representative

of ML problems related to the availability or feeding of insufficient data. However, if the

problem is not related to the insufficiency of data, and instead, there is an implementation

fault in the DL-based classifier (in our case, used for detection of pneumonia in chest X-ray

images) then we need to understand the causes for the low performance in the algorithm.

Collecting more images, labeling them (a resource-intensive task), and feeding them to the

same buggy algorithm will be of no advantage to further improving the model’s performance

unless we focus on new verification techniques. Ultimately, the ML engineer will start

looking for alternative algorithms, wrongly assuming that the current algorithm used is

not appropriate for addressing the underlying problem. Therefore, it is essential to have a

testing component as a critical part of the ML pipeline.

Among the traditional software testing techniques, Metamorphic Testing (MT) [20] is

considered a simpler but very powerful approach to alleviating the oracle problem when

testing ML-based applications. Although MT techniques can be applied directly (without

any modifications) to test traditional ML-based algorithms that have a deterministic nature

in their predictions for multiple runs (i.e., SVM, Decision Trees, KNN, Logistic Regression,

etc.), they are not applicable when testing DL-based classifiers (i.e., CNNs). Testing CNN-

based DL models bring an added challenge (i.e., the stochastic nature of their training

because of randomly initializing the network weights) making the application of traditional

MT techniques infeasible. For example, a CNN-based model trained on the same training

data (during the source execution) may produce slightly inconsistent/different outputs for

the same test inputs (i.e., trained on the same data during the follow-up execution); thus,

consistent results may not be feasible to verify the MRs. One possible approach to obtain

deterministic results is to fix the random seeds but this may not work when, i) it is hard

for the software tester to manually identify and fix the random seed for a large number of

54

libraries, ii) a third party library used in the project does not provide options to fix random

seeds, and, iii) the underlying hardware architecture uses GPUs (that may induce non-

determinism in calculations when leveraged by libraries i.e., Nvidia CUDA Libraries [23]).

To address these challenges, our previous research work focused on adapting the traditional

MT approach and proposed statistical MT techniques for testing non-deterministic neural

network-based intrusion detection systems [60]. This research work is an extension of our

previous work in order to exemplify its further applicability to a different domain and to

present a new MR minimization algorithm. It is important to highlight that to the best of

our knowledge, we have not found any research work that focuses on using MT for testing

CNN-based image classifiers in a non-deterministic environment (especially in the healthcare

domain), which is equally, a motivator for this work.

In this paper [77], we make the following contributions:

• A statistical MT technique to test DL-based image classifiers (i.e., a CNN-based model)

that have a stochastic nature in their training.

• 7 MRs that both researchers and practitioners can leverage (in combination with

statistical methods that we proposed in our previous work [60]) to test the correctness

and robustness of CNN-based image classifiers in a stochastic environment.

• We show the applicability of the proposed approach in the healthcare space by testing

an open-source CNN-based deep learning model which is used to detect pneumonia

among patients.

• We use the mutation testing technique to show the effectiveness of the proposed

MRs (i.e., their ability to detect implementation faults in the PUT). The results

obtained show that using the proposed approach we are able to uncover 85.71% of

the implementation faults in the PUT.

55

• In the context of statistical metamorphic testing approach, we take advantage of using

multiple concepts i.e., mutation scores, the type of mutants killed by each MR, and the

difference of sets (borrowed from set theory) to propose an MR minimization algorithm;

thus, saving computational costs and organizational testing resources.

Related Work

The traditional testing activities performed while developing ML models are cross-

validation and evaluating the performance metrics (i.e., accuracy, precision, recall, F1-score,

etc.). However, they are not aimed to test ML-based models for finding bugs in them,

instead, they are used to evaluate which ML algorithm is best suited for the underlying

data/problem. Imagine, there is an implementation fault in the underlying ML algorithm

used for prediction. In that case, the aforementioned evaluation metrics will not provide any

useful information about the existence of such fault. Li et al. [42] and ur Rehman et al. [76]

utilized mutation testing techniques to generate mutated program versions (for NN-based

classifiers) that had almost the same high accuracy as that produced by the original program

(i.e., mutant free), knowing a priori that they represented the buggy versions of the PUT;

thus, showing that i) using high accuracy as a testing criterion is not a reliable choice, and

ii) a program producing high accuracy (used as a performance metric) is not an indication

that the PUT is free from bugs. Furthermore, the work in [42] proposes a set of MRs to

kill high accuracy producing mutants, whereas, the work in [76] used a statistical hypothesis

testing technique for identification (of high accuracy producing mutants) and an ML-based

approach for prediction in the next release of a Classifier Under Test (CUT).

The MT technique has shown its usefulness in alleviating the oracle problem in testing

both supervised and unsupervised ML algorithms/applications. For testing unsupervised ML

algorithms, Yang et al. [85] proposed 7 MRs to assess the behavior of the k-means clustering

algorithm, provided by the WEKA tool [5], whereas, Xie et al., [84] proposed 11 MRs

56

targeting users’ general expectations from six unsupervised ML algorithms. However, the

aforementioned research only used simple synthetic 2D data and only targeted the validation

aspects of testing clustering algorithms, which have been recently addressed in [61, 62]. In

the latter, the authors proposed a diverse set of MRs targeting both the verification and

validation aspects of testing clustering algorithms using multi-dimensional real-world data

sets that fall into three distinct categories i.e., density-based, hierarchy-based, and prototype-

based unsupervised ML algorithms.

In contrast to testing unsupervised ML applications, the MT technique has received

more attention when testing supervised ML applications. Santos et al. [65] utilized MT to

validate a k-NN based breast cancer classifier and showed the applicability of MRs (originally

proposed by Xie et al. [83], to test k-NN and Naive Bayes algorithms (provided by the

WEKA tool) in the healthcare domain. Dwarakanath et al. [23] proposed 4 MRs for testing

an SVM-based model (used for classification of hand-written digit images), whereas 4 MRs

were proposed to test a DNN-based image classifier called a Residual Network (ResNet),

used for addressing a multi-class classification problem. The results obtained show that,

on average, their approach is able to uncover 71% of implementation faults. However, the

limitation of using the traditional MT technique is that it does not work when there is non-

determinism in the outputs of a program (such as DNNs) for source and follow-up inputs.

For obtaining deterministic results, the authors fixed the random seed for each execution to

verify whether the relation provided in the MR is satisfied or not. Furthermore, Li et al.,

[42] handled the same stochastic behavior in testing the NN-based classifier by initializing

the random weights with constant values, so that consistent results could be obtained (for

both the source/original and the generated follow-up inputs) to verify the proposed MRs.

However, this research [23, 42] leaves serious questions unaddressed, i.e., what if, i) it is not

possible/feasible for a software tester to manually identify and fix the random seed for a large

number of libraries integrated with the project, ii) a third party library does not provide

57

any options to fix random seeds, and, iii) the underlying hardware architecture uses GPUs

(that may induce non-determinism in calculations when leveraged by libraries i.e., Nvidia

CUDA Libraries [23]). To address these challenges when testing DNN-based image classifiers

with their stochastic nature (which are equally the motivators for this work), we propose a

statistical metamorphic testing technique that can be used for testing such computationally

complex programs without worrying about either fixing the random seed or initializing the

weights (of neural network) with constant/fixed values.

Approach To Identify Implementation Bugs in DNN-based Applications

In this section, we provide in-depth analysis of our proposed Statistical Metamorphic

Testing (SMT) technique for testing an open source Deep Learning (DL) classifier (i.e., a

CNN-based model), used for identification of pneumonia among patients using chest X-ray

images. We propose a set of 7 MRs that have been used in combination with statistical

methods (that we proposed in our previous work [60] for testing a different class of neural

networks, known as, fully connected neural networks) for uncovering implementation bugs in

a CNN-based image CUT. Among the contributions of this work, we validate our approach

and show the applicability of the proposed statistical methods in a different domain (i.e.,

image classification in the healthcare space). Due to the stochastic nature of training CNNs

(because of random initialization of weights), a CNN trained on source data may produce

slightly inconsistent/different final outputs (for the same test inputs) when trained on follow-

up data. For this reason, a single source and follow-up program execution cannot be used to

verify an MR. Therefore, instead of comparing the outputs for a single source and follow-up

execution, we statistically compare the results for multiple source and follow-up executions.

As shown in Figure 5.1, we use the MR to generate the follow-up training/test data from the

source training/test data. Then, using the source training data and the follow-up training

data, we train the CUT multiple times and use all trained models to predict the outputs for

58

the same source and follow-up test data. The results obtained are statistically analyzed (with

the help of proposed statistical methods) to verify the satisfiability of the relation captured

in the MR. Empirical evidence from [23] shows that for different deep learning architectures,

a correct NN classifier (ran multiple times) might have different converge points but those

will be very close to each other and will not differ significantly in terms of overall loss.

An MR is said to be violated if there is a significant difference in the outputs of multiple

source and follow-up executions, which ultimately would be a sign of a potential bug in the

CUT. To show the effectiveness of the proposed MRs, we further use the mutation testing

technique for injecting artificial bugs in the CNN-based CUT, and then empirically evaluate

the number of bugs uncovered by the proposed approach.

Figure 5.1: Proposed Statistical Metamorphic Testing Approach

59

Metamorphic Relations (MRs)

We use the following set of seven MRs to test critical image processing solutions (i.e.,

the pneumonia detection application in our case) in the health care domain. It is important

to mention that we first performed a verification step to check that the transformation

proposed in each MR is not changing the overall performance (i.e., accuracy and F1-score)

of the original model (which is a mutant free program); thus, all MRs can be considered valid

transformations to test the image CUT. In Figure 5.2, we show the source/original image

and the follow-up/transformed images generated using the relation captured in the specified

MRs.

Figure 5.2: Real examples of the source and follow-up data

MR-1:-Blurring the training and test X-ray images Suppose, we have the training data

represented as Xtrain and the test data as Xtest. We train the CUT on the source data

Xtrain and use it for prediction on the test data Xtest. Let the output/class label obtained

60

for a given test instance xi
test be represented as ‘c’. This MR specifies that for the follow-up

execution, if we slightly blur the X-ray images in the given training and test data, the result

produced by the program for the given test instance xi
test should stay the same i.e., class

label ‘c’.

MR-2:-Flipping the training and test X-ray images Suppose, we have the training data

represented as Xtrain and the test data as Xtest. We train the CUT on the source data

Xtrain and use it for prediction on the test data Xtest. Let the output/class label obtained

for a given test instance xi
test be represented as ‘c’. This MR specifies that for the follow-up

execution, if we flip the X-ray images in the given training and test data, the result produced

by the program for the given test instance xi
test should stay the same i.e., class label ‘c’.

MR-3:-Mirroring the training and test X-ray images Suppose, we have the training data

represented as Xtrain and the test data as Xtest. We train the CUT on the source data Xtrain

and use it for prediction on the test dataXtest. Let the output/class label obtained for a given

test instance xi
test be represented as ‘c’. This MR specifies that for the follow-up execution,

if we mirror the X-ray images in the given training and test data, the result produced by the

program for the given test instance xi
test should stay the same i.e., class label ‘c’.

MR-4:-Adding a small rectangle (outside the region of interest) to the training and test

X-ray images Suppose, we have the training data represented as Xtrain and the test data

as Xtest. We train the CUT on the source data Xtrain and use it for prediction on the test

data Xtest. Let the output/class label obtained for a given test instance xi
test be represented

as ‘c’. This MR specifies that for the follow-up execution, if we add a small rectangle near

the border of an X-ray image, i.e., (outside the region of interest i.e., chest) in the given

training and test data, the result produced by the program for the given test instance xi
test

should stay the same i.e., class label ‘c’.

61

MR-5:-Rotating the training and test X-ray images Suppose, we have the training data

represented as Xtrain and the test data as Xtest. We train the CUT on the source data

Xtrain and use it for prediction on the test data Xtest. Let the output/class label obtained

for a given test instance xi
test be represented as ‘c’. This MR specifies that for the follow-up

execution, if we rotate the X-ray images (i.e., by 180o) in the given training and test data,

the result produced by the program for the given test instance xi
test should stay the same

i.e., class label ‘c’.

MR-6:-Adding scattered dots to the training and test X-ray images This MR can be

used to simulate the scenario when an X-ray machine has some dust on it. Suppose, we have

the training data represented as Xtrain and the test data as Xtest. We train the CUT on the

source data Xtrain and use it for prediction on the test data Xtest. Let the output/class label

obtained for a given test instance xi
test be represented as ‘c’. This MR specifies that for the

follow-up execution, if we scatter dots over X-ray images in the given training and test data,

the result produced by the program for the given test instance xi
test should stay the same

i.e., class label ‘c’.

MR-7:-Sharpening the training and test X-ray images Suppose, we have the training

data represented as Xtrain and the test data as Xtest. We train the CUT on the source data

Xtrain and use it for prediction on the test data Xtest. Let the output/class label obtained

for a given test instance xi
test be represented as ‘c’. This MR specifies that for the follow-up

execution, if we slightly sharpen the X-ray images in the given training and test data, the

result produced by the program for the given test instance xi
test should stay the same i.e.,

class label ‘c’.

62

Statistical Verification Method

In this section, we discuss the proposed statistical approach we used to verify/check the

relation(s) captured in the proposed MR(s). We leverage the existing statistical methods that

we proposed in our prior work [60] for testing a fully connected neural network-based anomaly

detection system. We further validate and show the applicability of the proposed statistical

methods in a different domain (i.e., image classification in the healthcare space). To establish

a baseline, we briefly discuss each statistical method here (additional details are available

at [60]). As previously mentioned, the limitation of using the traditional MT technique is

that it does not work well when there is non-determinism in the outputs of a program (such

as DNNs, because of randomly initializing the network weights). Therefore, we adapt the

traditional MT technique and propose a statistical MT technique that statistically compares

the outputs over multiple iterations (obtained for both the source/original and the generated

follow-up test cases) and verify whether the difference in the results is statistically significant

or not. If it is significant, the Null Hypothesis stating that ‘For a given test instance xi
test, the

difference in the outputs for the source and follow-up executions is not statistically significant’

is rejected. This ultimately suggests that the relation captured in the corresponding MR is

violated and indicates the existence of a potential bug in the application under test.

Maximum Voting In order to apply the maximum voting concept, we train the model

‘u’ times on the given source data Xsd and ‘v’ times on the generated follow-up data Xfd

(where, u = v). This results in producing Mu number of trained models on Xsd and Mv

number of trained models on Xfd. We then compare the results to see whether, for the

given test instance xi
test, the class that is predicted a maximum number of times for source

executions (by Mu models) is different from the class predicted for the follow-up executions

(by Mv models). If so, the MR is said to be violated.

63

Comparing Distributions Over All Class Labels One of the limitations we observed for

the maximum voting approach is that there may exist some cases where the class predicted

a maximum number of times for both the source/original and the follow-up executions is the

same but there is a significant difference in the frequency distribution over all predicted class

labels. In such types of scenarios, the maximum voting concept may not provide realistic

results in the identification of bugs. Therefore, this provides further motivation to compare

the distributions over all class labels (instead of just one) for better identification of faults

in the PUT. We use the Chi-square parametric test of homogeneity (χ̃2) and formulate

this problem as comparing the class labels’ distribution obtained from the source execution

(used as the expected distribution) with the class labels’ distribution obtained from the

follow-up execution (treated as the observed distribution). However, one of the assumptions

for the Chi-square test of homogeneity is that each cell value (in a frequency distribution

table) should have a reading of at least five [2]. In the cases where this assumption was

violated, we also applied Fisher’s non-parametric exact test, which does not require this

assumption to be satisfied. In order to compare the distributions using the Chi-square test

of homogeneity/Fisher’s exact test, we propose the following null and alternative hypothesis:

• H0: The class distributions obtained for the source and follow-up executions are similar.

• Ha: The class distributions obtained for the source executions are different from the

class distributions obtained for the follow-up executions.

If the p-value obtained is below the set significance level, the null hypothesis is said to

be rejected, which will suggest that there is a significant difference in the class distributions

obtained for the source and follow-up executions. Thus, the MR is said to be violated.

Comparing Distributions Over Probability Scores Another method that we propose

to verify MRs is to statistically compare the predicted probability scores (instead of final

64

output/class labels). In the CNN-based CUT, the last layer (which is an output layer) uses

the sigmoid activation function which produces a probability vector containing probability

scores for all the class labels. For the given test instance xi
test, the class for which the

probability score is higher is treated as the final output of the model. We leverage these

probability scores and perform statistical analysis to check whether for the given test

instance xi
test, the probability scores predicted during source executions are close to the

scores predicted for the follow-up executions. If there is a significant difference, the MR is

said to be violated.

In order to compare the probability scores, we developed a Windows-based desktop

utility (using C#) that processes the raw results (obtained in the form of probability scores

for each class label) and transform them into a form in which statistical analysis could

be performed. We first identify the class label that is predicted a maximum number of

times (i.e., identifying the class for which the model is most likely to be sure) during source

executions. We then leverage this knowledge and extract the probability scores for the same

class predicted during follow-up executions. As an example, Table 5.1 shows the probability

scores extracted for a specific class for both the source/original and the follow-up executions.

Table 5.1: Exemplary Probabilities

Source Executions Follow-up Executions

0.77 0.57

0.71 0.51

0.79 0.53

0.72 0.52

0.75 0.53

0.72 0.53

65

We treat this problem as comparing two sample means and propose the following null

and alternative hypotheses:

• H0: The sample mean of probability scores for the source executions is similar to the

sample mean of probability scores for the follow-up executions.

• Ha: There is a significant difference in the sample means of probability scores for the

source and follow-up executions.

In order to statistically compare the two sample means, we use the parametric t-Test

to compare the means of the two groups. One of the assumptions for the t-Test is the

satisfiability of the normality assumption. Although the t-Test is considered robust to slight

violations in the normality assumption, during our analysis, we found some cases where this

assumption is badly violated. For example, Figure 5.3 shows the Q-Q plot (for MR-5) that

has long tails at the end, showing a slight violation of the normality assumption. Therefore,

for making better analysis and decision-making purposes, we also applied the non-parametric

‘permutation test’ to present our results. For the given test instance xi
test, if the difference

between the probability scores is found to be statistically significant (i.e., less than the set

significance level), the null hypothesis H0 is rejected; thus, the MR is said to be violated,

which signifies the existence of a potential bug in the PUT.

66

Figure 5.3: Q-Q plot

Empirical Results

We evaluate our proposed statistical metamorphic testing technique for testing an open

source deep learning-based pneumonia detection model 1. It uses a CNN (as a deep learning

neural network) built on top of Keras 2.8.0 and TensorFlow 2.8.0, trained on a data set

having 5216 chest X-ray images. We further use the mutation testing technique to inject

7 valid mutants that are either of ‘statement replacement, statement removal, or constant

replacement’ type. For example, one of the mutants (of type ‘statement removal’ mutant)

is shown in Figure 5.4 which prevents the model from aggregating the calculated gradients

and may cause multiple models to converge at significantly different points.

Due to the stochastic nature of training CNN-based CUTs, we use multiple iterations

of source and follow-up executions to statistically verify the MRs. For each MR, we train the

model ‘u’ times on the given source/original data and ‘v’ times on the generated follow-up

data (where, u=30 and v=30). We then use these trained models to predict the output for

the given test data. All the necessary information about the predicted outputs (i.e., test

instance, predicted class label, expected class label, probability vector, and max probability

1https://github.com/sanghvirajit/Medical-Image-Classification-using-CNN

67

Figure 5.4: An example of the ‘statement removal’ mutant

for the predicted class) is logged into excel files. We then develop a .Net Framework-based

desktop utility (using C#) to further process this raw data and transform it into a form (i.e.,

storing the processed results into new excel files) on which we apply the proposed statistical

methods (implemented in R) to verify the relation specified in the MRs. The violation of the

MR will suggest that the mutant is killed. The application code, details about the injected

mutants, the MRs implementation, the raw excel files, the processed versions of raw files,

the .Net utility, R scripts, and the final results (in excel format), all are publicly available in

a shared GitHub repository2.

We use the Mutation Score, which is ‘Number of mutants killed / Total number of

injected mutants,’ as a measure to show the effectiveness of our proposed approach in the

identification of faults injected in the CUT. As shown in Tables 5.2, 5.3, 5.4, and 5.5, we

use this measure to not only show the results of each MR at an individual level but also for

2https://github.com/matifkhattak/SMT4DL

68

combined MRs for each of the proposed statistical methods. In order to identify whether

the MR is able to kill the mutant or not, we use a standard significance level (α) of 0.05 and

statistically evaluate the results (for both the source/original and the follow-up executions)

to check whether the difference is statistically significant or not. If it is, the null hypothesis

is said to be rejected, suggesting that the MR has been violated and the mutant is said to

be killed.

Table 5.2: Results For Maximum Voting Concept, ✓ Denotes The Mutant Is Killed

MR1 MR2 MR3 MR4 MR5 MR6 MR7

Mutant1 ✓ ✓

Mutant2 ✓

Mutant3

Mutant4 ✓

Mutant5 ✓ ✓ ✓ ✓ ✓

Mutant6 ✓ ✓

Mutant7 ✓

Mutation Score
28.57% 14.29% 14.29% 57.14% 0% 42.86% 14.29%

85.71%

RQ2.1 (of RG2): How effective is the proposed approach (i.e, Statistical

Metamorphic Testing) in the identification of implementation bugs in the CUT?

In Table 5.2, we provide the mutation score (used as a metric to answer the research

questions in a quantifiable manner) for all the combined MRs verified through the maximum

voting concept, Table 5.3 provides the mutation score for all the combined MRs verified

through the chi-square test/fisher exact test (significance level = 0.05), Table 5.4 provides

the mutation score for all the combined MRs verified through the t-Test (significance level =

69

Table 5.3: Results For Chi-square test/Fisher Exact Test (Significance Level (α) = 0.05), ✓
Denotes The Mutant Is Killed

MR1 MR2 MR3 MR4 MR5 MR6 MR7

Mutant1 ✓ ✓ ✓ ✓ ✓

Mutant2 ✓ ✓

Mutant3

Mutant4 ✓ ✓ ✓

Mutant5 ✓ ✓

Mutant6 ✓ ✓

Mutant7 ✓

Mutation Score
14.29% 28.57% 57.14% 57.14% 14.29% 42.86% 0%

85.71%

0.05), and Table 5.5 provides the mutation score for all the combined MRs verified through

the permutation test (significance level = 0.05). In total, we inject 7 valid mutants into the

CUT, among which 6 (85.71%) have been killed by the proposed MRs (for all the statistical

methods). So, the overall fault detection effectiveness of the proposed MRs is 85.71%,

suggesting that the proposed statistical metamorphic testing approach is effective in the

identification of faults in the CUT, which answers RQ2.1 (of RG2).

RQ2.2 (of RG2): Do all MRs (verified through different statistical methods)

have the same fault detection effectivenss?

In Tables 5.2, 5.3, 5.4, and 5.5, we also present the results of each MR at the individual

level. In Table 5.2, it can be seen that when the maximum voting approach is used for

verification of MRs, MR4 has the highest mutation score (57.14%), whereas, MR5 has

the lowest i.e., 0%. Similarly, results in Table 5.3 show that when MRs are evaluated

70

Table 5.4: Results For t-Test (Significance Level (α) = 0.05), ✓ Denotes The Mutant Is
Killed

MR1 MR2 MR3 MR4 MR5 MR6 MR7

Mutant1 ✓ ✓ ✓ ✓ ✓ ✓

Mutant2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutant3

Mutant4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutant5 ✓ ✓ ✓

Mutant6 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutant7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutation Score
71.43% 71.43% 71.43% 85.71% 71.43% 85.71% 71.43%

85.71%

statistically using the chi-square test/fisher exact test, both MR3 and MR4 have the highest

fault detection effectiveness (57.14%), whereas, MR7 has the lowest (0%). Lastly, results in

Table 5.4, and 5.5 show that MRs statistically verified through the t-Test and permutation

test give better results (in terms of their fault detection effectiveness) and show that for both

methods, MR4 and MR6 have the highest fault detection effectiveness (85.71%), whereas,

the rest of the MRs have the same (71.43%). This answers RQ2.2 (of RG2), that most

of the MRs when verified through a t-Test and a permutation test have the same defect

detection ability, whereas, for maximum voting, MR1, MR4, MR5, and MR6 have different

fault detection effectiveness, and for the chi-square test/fisher exact test, MR2, MR3, MR6,

and MR7 uncover a different number of faults in the CUT.

RQ2.3 (of RG2): Using the proposed approach, which MR(s) have high fault

detection effectiveness and which among them have the least?

71

Table 5.5: Results For Permutation (Significance Level (α) = 0.05), ✓ Denotes The Mutant
Is Killed

MR1 MR2 MR3 MR4 MR5 MR6 MR7

Mutant1 ✓ ✓ ✓ ✓ ✓ ✓

Mutant2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutant3

Mutant4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutant5 ✓ ✓ ✓

Mutant6 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutant7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mutation Score
71.43% 71.43% 71.43% 85.71% 71.43% 85.71% 71.43%

85.71%

To answer this research question, we analyze the results at a broader level. We

collectively analyze the results provided in Tables 5.2, 5.3, 5.4, and 5.5 in order to understand

how many of the total mutants have been killed by each of the individual MRs, assuming

that the organization has enough testing resources to verify the MRs using all the proposed

statistical methods. In this case, a mutant is said to be killed if any of the MRs (for any

of the proposed statistical methods) has been violated. After close review, we identify that

every MR is able to kill a sufficient number of mutants (i.e., 6 out of 7), and noticed a couple

of interesting cases, i) MR5 is unable to kill mutant5 for any of the proposed statistical

methods, and ii) none of the proposed MRs is able to kill mutant3. We perform further

analysis to check why mutant3 has survived. Upon close analysis, we identify that every

CNN trained (for all the source and follow-up executions) has predicted the same class label

and produced the same probability vector for all the given test instances; thus, none of the

MRs (using the proposed statistical methods) was able to kill the mutant. Therefore, based

72

on our analysis, we conclude that among all the MRs, MR5 has the least fault detection

effectiveness (killing 5 out of 7 mutants), whereas, the rest of the MRs have the highest fault

detection effectiveness (killing 6 out of 7 mutants), which answers RQ2.3 (of RG2).

RQ2.4 (of RG2): How can the proposed MRs (verified through the proposed

statistical methods) be minimized for the DNN-based pneumonia detection

model under test?

To answer this research question (in the context of the proposed statistical metamorphic

testing approach), we take advantage of using a few concepts together, i.e., the mutation

score, the type of mutants killed by each MR, and the difference of sets (from set theory) to

propose an MR minimization algorithm. The new set of minimized MRs (i.e., represented

as C) is expected to have the same fault detection effectiveness (i.e., the same mutation

score) as that of using the original set of 7 MRs (i.e., represented as D), where |C| <= |D|;

thus, saving computational costs and organizational testing resources. As an example, to

minimize the list of MRs verified through the maximum voting concept (as shown in Table.

5.2), the following steps are followed. This algorithm will execute when the base condition

(i.e., mutation score > 0) is true.

Step#1: Create a set called SetAllMutantsKilled that stores information about all the

mutants that have been killed by the proposed method i.e. for the maximum voting approach,

the set would be comprised of {Mutant1, Mutant2, Mutant4, Mutant5, Mutant6, Mutant7}.

Step#2: Create two empty sets, i) SetMutants (that progressively keeps track of killed

mutants), and ii) SetMRs (that progressively keeps track of MRs that have killed the mutants

i.e., mutants existing in SetMutants).

Step#3: Start with the identification of an MR that has the highest mutation score i.e.

MR4 (for maximum voting approach). Then, add this MR to SetMRs i.e, {MR4}, and the

mutants it killed to SetMutants i.e, {Mutant2,Mutant4,Mutant5,Mutant6}. In case, there

are multiple MRs having the same mutation score, two possibilities can exist, i) they killed

73

the same type of mutants. If so, then randomly select one of them (since using one of them

is enough to kill all those mutants), ii) they killed different types of mutants. In this case,

we treat each of them as a separate case and follow the remaining steps for each of the cases.

As an example, in Table 5.3, it can be seen that for the Chi-square test/fisher exact test,

MR3 and MR4 have the same mutation score but have killed different types of mutants.

Therefore, two possible MRs prioritization paths could be initiated (i.e., one with MR3, and

the other with MR4) that will end up in the identification of two MRs minimization sets i.e.,

{MR3, MR6} and {MR4, MR3, MR6} (as shown in Table 5.6).

Step#4: Sequentially, iterate over the remaining set of MRs (not yet added to

SetMRs). For each MR, identify the mutant(s) it killed, add them to a separate set i.e,

SetTemp (that will keep track of the mutants killed by the selected MR), and calculate the

difference between the two sets i.e., SetTemp - SetMutants. The MR for which the difference

is largest (i.e., killing the largest number of mutants missing in SetMutants) is added to

further expand the SetMRs, and its corresponding killed mutants to SetMutants. As an

example, for the maximum voting approach, the next MR added to the SetMRs is MR1 i.e.,

{MR4, MR1}, and its killed mutants to the SetMutants = {Mutant2, Mutant4, Mutant5,

Mutant6, Mutant1, Mutant7}.

Step#5: The algorithm will stop when the difference between the two sets i.e.,

SetAllMutantsKilled - SetMutants = ∅, which means there are no more mutants left for

the algorithm to identify and add the MR to further expand the minimized set of MRs

(i.e., SetMRs). As an example, the final minimized set of MRs identified for max-voting

is comprised of {MR4, MR1}. Similarly, for the Chi-square test, we used the same steps

(defined above) and identified two MRs minimization sets i.e., {MR3, MR6} and {MR4,

MR3, MR6}. However, the set containing a minimal set of MRs will be selected i.e., {MR3,

MR6} as a final set, because this set contains fewer MRs (hence, less testing resources will be

consumed) but has the ability to kill the same number of mutants which are either killable

74

through {MR4, MR3, MR6} or using the complete set of 7 MRs.

Table 5.6: MRs Minimization

Priority Max-

voting

Chi-

square/Fisher

Exact Test

t-Test Permutation

Test

1 MR4 MR3 —— MR4 MR4 or MR6 MR4 or MR6

2 MR1 MR6 —— MR3

3 —— MR6

We follow the algorithm (proposed above) to minimize the set of MRs for rest of the

statistical methods and present the results in Table 5.6. It can be seen that for maximum

voting, just two MRs with their prioritization order MR4, and M1 are enough to attain a

mutation score of 85.71% (i.e., the overall mutation score achievable through all the 7 MRs).

Similarly, for the chi-square/fisher exact test, MR3, and MR6 are enough to attain the

overall mutation score, whereas, for the t-Test and permutation test, only one MR (either

of MR4 or MR6) is enough to kill the 6 mutants, which answers RQ2.4 (of RG2).

Such a minimized set of MRs (for each of the proposed statistical methods) helps in saving

organizational resources and performing testing with fewer MRs (especially in a regression

testing environment) without compromising the overall fault detection effectiveness of the

proposed approach.

Conclusion

Manual examination of chest X-rays images (for detection of pneumonia among

patients) is not only a time-consuming and resource-intensive task but is also subjective

and prone to errors. This raises a need for an efficient method that can automatically detect

75

the existence of pneumonia among patients correctly. ML-based solutions are playing a

significant role in the automatic and timely detection of pneumonia among patients using

chest X-ray images. To test such critical systems, the ML community frequently uses

performance evaluation metrics i.e., accuracy, precision, recall, F1-score, etc. However, the

fact is that these evaluation metrics are not meant to test (i.e., verify and validate) ML-based

models for finding bugs in them, instead, they are used to evaluate which ML algorithm is

best suited for the underlying data/problem. Apart from that, these evaluation metrics

say nothing about the existence of faults in the model or the underlying used algorithm.

Therefore, the use of a systematic testing strategy is essential to test such critical systems

in order to verify their correctness and enhance trust in them.

The metamorphic testing technique is a simple but effective testing strategy to alleviate

the oracle problem in testing such computationally complex programs where the output for

individual input is difficult to verify. However, the stochastic nature (because of randomly

initializing the network weights) in the training of deep learning-based models, (i.e., the

CNN-based pneumonia detection model in our case) adds an extra challenge and makes

the traditional metamorphic testing technique infeasible to apply. In this research, we

address this problem by proposing a statistical metamorphic testing technique that does not

require fixing the random seeds to get deterministic results for verification of the MRs. We

propose 7 MRs in combination with statistical methods (for MRs verification) to identify

implementation faults in an open-source CNN-based image classifier that has stochastic

nature in its results. The empirical results obtained show that our proposed method is able

to uncover 85.71% of the implementation faults in the CUT. Furthermore, we also propose

an algorithm for minimization of the proposed MRs; thus, saving computational costs and

organizational testing resources.

In the future, we aim to show further applicability of the proposed approach in

testing CNNs-based ML models used for addressing multi-class classification problems in

76

the healthcare space. We also aim to further expand the MRs repository and leverage

machine learning techniques for their effective prioritization and minimization.

77

A HYBRIDIZED APPROACH FOR TESTING NEURAL NETWORK BASED

INTRUSION DETECTION SYSTEMS

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘A Hybridized Approach for Testing Neural Network Based

Intrusion Detection Systems’

Author: Faqeer ur Rehman

Contributions: Problem identification and proposing solution, running experiment, manuscript

writing, creating tables and figures. Primary writer

Co-Author: Dr. Clemente Izurieta

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

78

Manuscript Information Page

Faqeer ur Rehman and Dr. Clemente Izurieta

IEEE International Conference on Smart Applications, Communications and Networking

(SmartNets)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IEEE

05 October 2021

10.1109/SmartNets50376.2021

79

Abstract

Enhancing the trust of machine learning-based classifiers with large input spaces is a

desirable goal; however, due to high labeling costs and limited resources, this is a challenging

task. One solution is to use test input prioritization techniques that aim to identify the most

effective test instances. These prioritized test inputs can then be used with some popular

testing techniques e.g., Metamorphic testing (MT) to test and uncover implementation

bugs in computationally complex machine learning classifiers that suffer from the oracle

problem. However, there are certain limitations involved with this approach, (i) using a small

number of prioritized test inputs may not be enough to check the program correctness over a

large variety of input scenarios, and (ii) traditional MT approaches become infeasible when

the programs under test exhibit a non-deterministic behavior during training e.g., Neural

Network-based classifiers. Therefore, instead of using MT for testing purposes, we propose a

metamorphic relation to address a data generation/labeling problem; that is, enhancing the

test inputs effectiveness by extending the prioritized test set with new tests without incurring

additional labeling costs. Further, we leverage the prioritized test inputs (both source and

follow-up data sets) and propose a statistical hypothesis testing (for detection) and machine

learning-based approach (for prediction) of faulty behavior in two other machine learning

classifiers (Neural Network-based Intrusion Detection Systems). In our case, the problem is

interesting in the sense that injected bugs represent the high accuracy producing mutated

program versions that may be difficult to detect by a software developer. The results indicate

that (i) the proposed statistical hypothesis testing is able to identify the induced buggy

behavior, and (ii) Random Forest outperforms and achieves the best performance over SVM

and k-NN algorithms.

80

Introduction

Machine Learning (ML) provides core functionality to many critical application

domains, such as bioinformatics, network security, collaborative robots, and self-driving

vehicles. Developing high-quality ML models to solve real-world classification, prediction,

and clustering problems is always desirable because a small bug in these critical high-

consequence applications can lead to disastrous consequences and can pose serious threats

to life and property [40, 52, 90]. Therefore, it is very important to verify their correctness

before deploying them in a production environment. However, the computational complexity,

large input space, and lack of a test oracle raise serious challenges in order to verify their

correct functionality. Consequently, these applications end up in a category of non-testable

programs, also known as programs suffering from the Oracle Problem [80].

From a quality assurance perspective, it is always desirable to verify the correctness of

ML-based classifiers over a large range of test scenarios. However, the high cost of obtaining

a test oracle, a.k.a. labeling a large number of test instances, makes it a resource-intensive

and infeasible task. One of the solutions proposed in the literature is to use test input

prioritization techniques that aim to identify and label only the most effective test instances

[17, 86]. However, concerns like, whether the small number of prioritized test inputs are

enough to test the correctness of critical ML applications over a diverse set of data, are

unaddressed. We propose a Metamorphic Relation (MR) that aims to target this data

collection/labeling problem by extending the prioritized test set with new tests without

incurring additional labeling costs. It thus allows the software tester to check the program

correctness over a diverse set of input scenarios.

Metamorphic Testing (MT) is considered an effective testing technique to alleviate the

oracle problem in testing ML applications [20, 23, 42, 72]. MT is not only a testing technique

but can also be used to generate domain specific data using valid transformations to the input

81

data e.g., rotation, scaling, reflection etc. At the heart of MT are MRs that are derived from

the necessary characteristics of the program under test. Each MR is composed of a source

test case and a follow-up test case. A valid transformation performed on the source test-case

generates a new test case, known as a follow-up test case. Instead of verifying the output

for individual inputs, the relation between the input and its associated output is used to

verify the program correctness. The MR is said to be violated if the result of the source

and follow-up test case does not adhere to the relation specified in the corresponding MR.

A violation of a MR will indicate that there is some potential bug in the system.

One of the challenges faced in applying tradition MT approach to test ML applications is

when the program under test exhibits a stochastic behavior in training e.g., Artificial Neural

Network (ANN) based classifiers (due to random initialization of weights). For example,

given the same inputs, the NN-based application may produce slightly different output in

each run; thus rendering traditional MT techniques inadequate if they rely on using the

equality operator to check the relation specified in the MR. One of the solutions proposed

in the literature (for getting deterministic results) is either to fix the random seed(s) or

initialize the network weights with the same constant values [23, 42]. However, the proposed

solution has its own limitations i.e., it is only applicable in an environment where either the

random seeds or the weights can be fixed, which is not always possible. Furthermore, even

if somehow the random seeds have successfully been fixed, it is not guaranteed that we can

obtain deterministic results on GPUs because of inherent non-determinism introduced by

NVidia CUDA libraries [23]. Also, in practice, it may not be viable for a software tester to

identify and then fix the seeds in a highly complex system internally using a large number

of third-party libraries, especially when some of the libraries do not provide any option at

all. To alleviate this problem, our prior work focuses on proposing statistical measures for

testing deep neural network based applications in a non-deterministic environment [60].

The above-highlighted limitations motivate us to propose an approach that can not

82

only be used to extend the prioritized test set with new test inputs (using the proposed MR)

but can also leverage these inputs (both source and follow-up test sets) to test NN-based

classifiers (in both deterministic and non-deterministic environments) using a combination

of statistical and ML techniques. The purpose of performing statistical analysis is to check

whether the difference between the results produced by original and mutated program

versions is statistically significant. If so, the buggy behavior is said to be detected. Next, we

use this knowledge to build ML classifier that can be used to predict whether, for the given

prioritized test inputs, the output (probability distribution over classes) produced by an

NN-based classifiers under test exhibits a ‘buggy’ or ‘non-buggy’ behavior. These prioritized

test inputs can be a part of permanent test case repository that the organization frequently

uses to test the new release in regression testing environment and reducing the overall cost

of software testing phase.

To show the effectiveness of the proposed approach, we have worked with detecting

and predicting buggy behavior in two NN-based Intrusion Detection Systems (N-IDSs). The

following are the main contributions made in this paper [76]:

• Mutants generation to obtain the faulty versions of the program which give the same

high accuracy as that of the original program, hence difficult to identify the buggy

behavior induced by them.

• Instead of relying on a synthetic data set (generated randomly) that may contain noise

and missing values, we propose an MR to generate a new set of prioritized data without

incurring additional labeling costs. Such MRs can be very useful in a scenario when

we do not have enough test instances available but are still interested in verifying the

system correctness over a diverse set of data (other than the data already available).

• Statistical analysis of probability scores over predicted classes (predicted by original

and mutated programs) using a statistical hypothesis testing technique to check

83

whether the difference is significant. If so, the buggy behavior is said to be successfully

detected.

• Proposed an approach that takes advantage of ML techniques to test and predict faults

in NN-based classifiers using prioritized test inputs.

• Conducted one more independent experiment to show that addition of an informative

metadata features can further enhance the performance of proposed ML classifiers.

Related Work

Testing ML applications is getting considerable attention in the research community,

however, couple of challenges make it a harder task, i.e., (i) high labelling costs, and (ii)

susceptibility to the oracle problem due to large input space. Byun et al. [17] focused

on proposing a test prioritization technique to reduce the cost associated with labeling

the data instances. They took advantage of the probability vectors (produced by either

softmax or sigmoid output layers in neural networks) and proposed three sentiment measures

(confidence,uncertainty, and surprise) to prioritize the inputs that are more likely to reveal

faults in a trained model. Zhang et al. [86] used probability vectors to prioritize the uncertain

or sensitive inputs that have the high potential to become adversarial examples using small

perturbations. Dwarakanath et al. [23] proposed MT based approach to alleviate the oracle

problem in testing DNN based image classifiers but the proposed approach is only applicable

in an environment where the random seeds can be fixed to get deterministic results.

Shaikh et al. [68] introduced ML-based classification models (LibSVM and LinearLib)

that use NASA dataset models to foresee the faults in a software defect-prone model. Based

on comparative analysis performed, the results show that overall LibSVM attains high

accuracy and is more efficient than LinearLib. Prabha et al., [57] first performed dataset

dimensionality reduction (using PCA) and then applied Random Forest, Näıve Bayes, SVM,

84

and Neural Networks to predict software defects that can help software developers to identify

and correct a program’s buggy code before deploying them in the actual environment. It

also allows the software development team to prioritize and focus more on the modules

that are problematic. Sethi [67] proposed Artificial Neural Network (a feed-forward back

propagation model) to predict defects in twenty software projects. It was found that the

proposed model provides better performance than the classic fuzzy-based approach. Nehi

et al., [50] took advantage of the history available in version control systems to perform

software defect prediction. The authors used the code history information (e.g., bug reported

by the client, code defects determined, etc.) extracted from several open-source projects and

prepared a benchmark data set. To show its usefulness, the data set is used to evaluate

the performance of different defect prediction approaches. The authors applied Artificial

Neural Networks, Random Forest, K-Nearest Neighbor, Näıve Bayes, and Support Vector

Machine and performed their evaluation using different measures e.g., Precision, Recall, F-

measure, G-mean, and AUC. The results show that Random Forest outperforms and has

higher predictive power in the identification of faults in the programs under test.

It is important to mention that the available literature primarily focuses on using the

public data sets and harnessing ML approaches in the prediction of faults in traditional

software, not specifically in ML applications. This makes it a potential area for exploration

and making for fruitful contributions; thus we propose an approach that takes advantage of

statistical and ML techniques to detect and predict buggy behavior in ML classifiers using

prioritized test inputs.

Motivation To Use Probability Vectors / Scores

In this study, we took an advantage of using the probability vectors produced by the

output layer in NN-based classifiers under test. Therefore, we provide a brief motivation

regarding why we think that probability vectors contain additional information about the

85

computation performed in an NN-based application and can be used for detecting and

predicting buggy behavior in the programs under test. The probability vectors have been

used to prioritize test inputs that are more likely to uncover faulty behavior in deep neural

networks so that efforts can focus only on labeling the prioritized inputs [17]. These vectors

help in deriving sentiment-based metrics (confidence, uncertainty, and surprise) that capture

extra information about the computation performed inside deep neural networks on the given

data input(s). The higher priority is given to the data inputs that are more uncertain or

surprising (i.e., the inputs for which the probability distribution is spread out) and likely

to reveal the faulty behavior in the trained model. The probability vectors have also been

used to detect high-noise sensitive inputs that have a high potential to become adversarial

examples, such that if a small perturbation is added to them, they can fool the DNN [86].

Alternatively, low noise-sensitive inputs will require a significant perturbation that will easily

be detected by defensive models and hence is not effective.

Knowing that probability vectors have been used in addressing the test input

prioritization problem, we are interested in exploring their usefulness in the detection of

buggy behavior and the development of ML models for its prediction in NN-based classifiers.

Proposed Approach

This section discusses the proposed approach used for detection (using statistical

hypothesis testing) and prediction (using ML-based approach) of implementation bugs in

two NN-based classifiers under test, as shown in Figure 6.1.

In order to detect and predict defects in NN-based classifiers under test, we took

advantage of multiple techniques namely, (i) random sampling method [59] for selection

of prioritized test inputs (ii) MR: applying valid transformation to the source/original

prioritized inputs to generate new (follow-up) prioritized inputs without incurring additional

labeling costs, (iii) Mutants generation: injecting high accuracy producing mutants into the

86

NN-based classifiers under test, so that for the prioritized test inputs (both source and follow-

up), the behavior of non-buggy/original and mutated program versions can be recorded and

analyzed, (iv) Statistical hypothesis testing : to check statistically, whether the difference in

the results produced by multiple program versions is statistically significant. If so, the buggy

behavior is said to be detected, and (v) ML: automatic detection of bugs by leveraging ML

techniques to learn from this difference and to predict whether, for the same prioritized test

inputs, the new release under test shows the buggy or non-buggy behavior.

The effectiveness of the proposed approach is shown by testing two NN-based Network

Intrusion Detection Systems (N-IDSs). The details for each classifier are shown in Table 6.1.

• Application#1: This application is a shallow NN-based N-IDS (having one hidden

layer, an input layer, and an output layer) that deals with a multi-class classification

problem in an Open Stack environment and predicts whether the request is normal,

by an attacker, or by a victim.

• Application#2: This application is a deep neural network-based N-IDS (having three

hidden layers, an input layer, and an output layer) that deals with a binary class

classification problem and predicts whether the network request is malicious or benign.

Table 6.1: Classifiers Under Test Architecture

Classifiers Under

Test

No of Layers Hidden

Layer(s) Type

Output Layer

Application#1 3 Fully Connected

+ ReLU

Softmax

Application#2 5 Fully Connected

+ sigmoid

Sigmoid

87

Figure 6.1: Proposed Approach

Step 1:-Mutants Generation

For the development of a machine learning model, a data set containing information

about the buggy/mutated and non-buggy/original program versions is needed. So, the first

step is to obtain the buggy code for the classifiers under test. As we do not have access to

actual buggy versions of the classifiers under test, we took advantage of mutants generation

process used in mutation testing technique [34], that is considered an effective approach in

simulating the real faults made by programmers [71]. We injected 4 valid mutants into the

88

programs under test that give the same high accuracy as that of the original program. These

mutants belong to the category of CRP-constant replacement type mutants. The behavior

recorded for all these mutated versions is treated as buggy behavior. As shown in Table 6.2,

it can be seen that these mutated versions achieve the same high accuracy as that of the

original program, knowing the fact that they represent the faulty implementations. The goal

is to apply statistical and ML techniques for the identification of buggy behavior induced

by such high accuracy producing faulty programs; which otherwise may not be possible

for software engineers who primarily focus on using accuracy measure to develop accurate

models. Figure 6.2 represents one of the injected mutants to simulate the mistake made by

a software developer. It will cause the model to learn from a lesser number of informative

features but it has been observed that this mutated model has produced almost the same

high accuracy as that of the original program. The details of other mutants, the python

code for the NN-based classifiers under test, the data used for training the models, the R-

code for performing statistical analysis, and the proposed ML models’ Python code, are all

open-source and available online1.

Table 6.2: Original And Mutated Versions Average Accuracy (%)

Application Original Mutant#1 Mutant#2 Mutant#3 Mutant#4

App#1 98.9% 98.3% 98.9% N/A N/A

App#2 92.5% N/A N/A 92.5% 92.9%

Figure 6.2: Mutant#4: Original Code (top) and Mutant (below).

1https://github.com/matifkhattak/MLTesting/tree/master

https://github.com/matifkhattak/MLTesting/tree/master

89

Step 2:-Metamorphic Relation (MR-1) For New Test Inputs Generation- Shifting the features

by constant k

Let Xtrain denote the training data and Xtest denote the prioritized test data. In

order to select the prioritized test instances, we have used the random sampling method

[59]. After training the NN classifier, suppose it classifies a specific test instance xi
test as

belonging to class ‘a’ (known as source execution). MR-1 says that if the features in both

the training and test data are shifted by constant k; where k = 0.3, the output for the

test instance xi
test should remain the same i.e., class ‘a’ (known as the follow-up execution).

Such transformation will not change the existing relationship between the data points, and a

correct NN model should learn from the relationship among the data points, not from their

position in the space [23]. The follow-up transformation will help in the generation of new

‘m’ prioritized follow-up instances from the given ‘n’ number of prioritized original/source

data instances (where n=m), thus extending the prioritized test set size from ‘n’ to ‘n+m’,

which answers RQ3.1 and RQ3.2 of RG3.

The proposed MR1 will facilitate in enhancing the testing phase effectiveness by

doubling the size of prioritized test inputs, so that the behavior of NN-classifiers under

test can be observed over a diverse set of data (both source and follow-up data). Another

advantage of the proposed MR is that it also helps in removing the labeling costs for the

newly generated test instances (follow-up data instances) that might be expensive in some

cases.

Step 3:-Dataset Preparation

Due to the stochastic nature of NN-based classifiers, a single run may not be enough

to verify their correctness, therefore, we obtain the results over multiple iterations. In this

step, we record the results (probability distribution over classes predicted by original and

mutated versions) and metadata information of NN-based classifiers under test separately

90

for both the prioritized source and follow-up test instances. As shown in Figure 6.1, each

instance in the prepared data set is comprised of a prioritized test instance features, the

probability scores over predicted classes, the trained NN Model’s metadata information, and

the class label (Buggy, Non-Buggy). As mentioned earlier, a correct NN classifier (retrained

on the same data) may produce slightly different results for the given test instances; which

does not necessarily mean that there is a bug in the system. Those multiple trained NN

classifiers (if correct) may have different initialization points but will have almost the same

convergence points [23]. By utilizing this property of NN classifiers, we obtain the results

for prioritized test inputs over multiple iterations, whereas each iteration denotes a trained

NN classifier. This allows us to capture the probability distribution for each prioritized test

instance for a sufficient number of times that have been predicted by both the mutated and

original NN-based classifiers under test.

Step 4:-Statistical Hypothesis Testing

Once the probability scores (over predicted classes) for both the original/non-buggy

and mutated/buggy programs are obtained, we compare the probability scores for each of

the classi (produced by the mutated version) with the probability scores of the same classj

(produced by the original version). This is important because before developing the ML

model, it first needs to be confirmed that for the given prioritized test inputs, the difference

between the probability distributions over predicted classes for both types of programs is

statistically significant, otherwise, there is no information available for the ML model to

distinguish the buggy program version’s behavior from the non-buggy one. It is important

to mention that the proposed approach is not meant to identify the individual injected

mutants, instead we are interested to identify whether in general, the program behavior can

be characterized as buggy or not. This is the reason that we treat the behavior produced by

all the mutated versions as ‘buggy’ and formulate this problem as statistically comparing the

91

two samples (buggy vs non-buggy). The following are the Null and Alternative hypothesis.

• H0: There is no difference in the probability scores predicted by the original and the

mutated programs.

• Ha: The probability scores predicted by the mutated programs are different from the

original program.

After applying the test-statistic, the p-value obtained is compared with the set standard

significance level (α = 0.05). If it is less than the value of α, H0 is rejected. The rejection

of H0 would suggest that (i) the difference between two samples is significant, showing that

there is likely a bug in the system, and (ii) the probability scores do have some information

available to distinguish both types of programs (buggy and non-buggy).

Step 5:-Data Cleaning

It is possible that for multiple iterations the same probability distribution over classes

is predicted for a specific test instance, which will result in the addition of duplicate

observations in the data set. Such duplicate instances may bias the results of the ML models

and can lead to incorrect conclusions. Therefore, a data cleaning process is an essential step

in making sure that the observations are unique and the results produced by the models

are unbiased. Thus, we performed the data pre-processing step and removed the duplicate

observations before training the models.

Step 6:-Proposed Machine Learning Based Approach

The last step is to harness ML techniques for predicting buggy behavior in NN-based

classifiers using prioritized test inputs. For this purpose, we select three widely used ML

algorithms in the literature (i.e., Random Forest, SVM, and k-NN) to extract the hidden

knowledge captured in the data set, as shown in Figure 6.1. The data set is split into

80%-20%, where 80% is used for training purposes and 20% is used for testing. We use

92

the k-fold cross-validated grid-search method to find the best hyperparameter settings for

the classifiers. The best classifier (with optimal hyperparameter settings) is identified and

is used as a final model to predict the output for the test data. In the end, a performance

report is generated for each of the classifiers, and results are compared using the evaluation

metrics e.g., accuracy, precision, recall, and F1-score (harmonic mean of precision and recall)

[11], to select the best model having higher prediction power.

Experimentation and Evaluation

A faulty new program release giving the same high accuracy as that of the origi-

nal/correct program may classify a test instance with the same class label ‘a’ that was

predicted by the original/correct program but may affect the probability distribution over

the predicted classes. As an example, Figure 6.3 shows that both the original and high

accuracy producing mutated programs have predicted the same class label ‘attack’ but the

probability distributions over predicted classes have significantly changed for the mutated

version. Our experiment shows that unlike predicted class labels, the probability scores

provide more granular details and can be analyzed statistically to detect the buggy behavior

induced by such high accuracy producing mutated program versions. In total, we injected

4 valid mutants into the programs under test and performed multiple iterations to obtain

the results for 200 prioritized test instances (100 source and 100 follow-up instances), which

resulted in a total of 8000 data instances (50% of the data is labeled as buggy and the other

50% is labeled as non-buggy). The data set for App#1 contains 37 features, whereas, for

App#2, it contains 46 features.

RQ4.1 (targeting RG4): Is the proposed statistical hypothesis testing

technique effective in detection of buggy behavior (produced by the high

accuracy producing mutated program versions) in the classifiers under test?

Before training the ML model, it is important to check whether the probability

93

distribution over predicted classes for both types of programs (original and mutated)

is statistically significant. Therefore, we perform statistical hypothesis testing to check

whether, for the given prioritized test inputs, the injected mutants have significantly

changed the probability distributions over predicted classes. Comparing the distributions

of two classes (e.g., classi probability scores produced by mutated code vs the same classj

probability scores produced by the original code) can be treated as a problem of statistically

comparing two samples. During a single run, the same model is used for predictions for

multiple prioritized test inputs, so they all are connected to the same model. For this

reason, applying a paired t-Test will be an appropriate choice. However, during analysis, we

found that the normality assumption was badly violated, hence applying the paired t-Test,

although known to be a robust test, may not provide reliable results. For example, Figure 6.4

provides evidence that the normality assumption is violated for one of the classes (because

of large tails at both ends). For this reason, the Wilcoxon signed-rank test is applied, which

is a non-parametric test used for paired data and does not rely on the satisfiability of the

normality assumption [59].

Figure 6.3: Final predicted output (i.e., attack) is same but probability distributions over
predicted classes have significantly changed for the mutated program

After performing the statistical analysis on the probability distributions over predicted

94

Figure 6.4: Q-Q plot

classes, results in Table 6.3 and Table 6.4 show that we have strong evidence to reject H0

for all the classes (except for class2 in App#1) for both the classifiers under test (p-value

< 0.05). Rejection of H0 means that the difference is significant and there is likely some

bug in the system, hence the buggy behavior is said to be detected. It is important to note

that the mutated program versions under investigation produce the same high accuracy as

the original program, knowing the fact that they represent the faulty implementation of the

programs under test. Such mutants may otherwise be difficult to detect and can mislead

if the software developers solely rely on observing the accuracy of the ML model in a new

release. Therefore, we conclude that high accuracy does not necessarily mean

that the program is correct/free of bugs, and the proposed statistical hypothesis

testing technique is effective in the detection of buggy behavior produced by

such high accuracy producing program versions, which answers RQ4.1 of RG4.

RQ4.2 (targeting RG4): Is the proposed ML-based approach effective and

which ML model is more suitable for the problem under investigation?

After answering RQ#4.1 and finding that the difference between the probability

distribution over predicted classes is statistically significant, the next step is to use this

knowledge for developing the ML models, so that the ‘buggy’ and ‘non-buggy’ behavior

95

Table 6.3: Wilcoxon signed rank test results for App#1 (α = 0.05)

Class Label p-value Reject H0 Buggy behavior

Detected?

Class1 (Normal) < 0.0001 Yes Yes

Class2 (Attacker) 0.63 No No

Class3 (Victim) < 0.0001 Yes Yes

Table 6.4: Wilcoxon signed rank test results for App#2 (α = 0.05)

Class Label p-value Reject H0 Buggy behavior

Detected?

Class1 (Attack) < 0.0001 Yes Yes

Class2 (Benign) < 0.0001 Yes Yes

for the prioritized test inputs can be learned and then using this knowledge to predict the

faulty behavior in the new release (using the same prioritized test inputs). Table 6.5 and

Table 6.6 shows the performance of Random Forest, SVM (with RBF kernel) and k-NN

algorithms on App#1 and App#2 data sets respectively. We used a fixed random seed to

make sure that the data set is split in the same way for all the algorithms, so that, every

algorithm is trained and evaluated on the same data instances. The evaluation metrics used

to evaluate the performance of models include accuracy, precision, recall, and the F1-score.

The results obtained show that for both the classifiers under test, random forest outperforms,

having higher scores for all four measures. For App#1, SVM and k-NN provide satisfactory

performance but not very well for App#2. Apart from that, SVM attains a lower F1-score

than k-NN for App#2 but performs better than k-NN for App#1. We also observed that for

the given data set, even the best identified k-NN model (using 10-fold cross-validated grid-

96

search method) is over-fitting, thus may not be an appropriate choice for predicting buggy

behavior in App#2. Based on the results shown in Table 6.5 and Table 6.6, we conclude

that overall, the proposed ML models have performed well in extracting the hidden patterns

of ‘buggy’ and ‘non-buggy’ program versions. Furthermore, among the proposed models,

random forest outperforms and attains higher performance (high accuracy and F1-score)

than SVM and k-NN. Hence, it answers our RQ4.2 (of RG4) that the proposed

ML based approach is effective in predicting the faulty behavior in the programs

under test (especially for App#1), and among the proposed models, Random

Forest achieves the best performance for both the NN based N-IDSs under test.

Table 6.5: Performance Report on App#1 Data set

Classifier Accuracy Precision Recall F1

SVM 0.87 0.86 0.88 0.87

Random Forest 0.93 ± 0.0 0.93 ± 0.0 0.93 ± 0.001 0.93 ± 0.0

k-NN 0.84 0.83 0.86 0.85

Table 6.6: Performance Report on App#2 Data set

Classifier Accuracy Precision Recall F1

SVM 0.60 0.67 0.47 0.55

Random Forest 0.83 ± 0.004 0.86 ± 0.008 0.81 ± 0.008 0.83 ± 0.005

k-NN 0.59 0.62 0.54 0.58

RQ4.3 (targeting RG4): Does the addition of metadata features increase

the performance of proposed ML models?

97

The results in Table 6.6 show that for App#2, the SVM, and k-NN classifiers do not

achieve very good performance. This motivates us to conduct one more experiment and

to add metadata features extracted during training of both types of programs (original

and mutated ones), expecting the addition of new informative features to increase the

performance of models. The two metadata features extracted include ‘training time taken in

minutes’, and ‘training time taken in seconds’. We are interested in observing whether the

addition of metadata features can further discriminate both classes (high accuracy producing

buggy code and non-buggy code) and whether they can help to enhance the ML models’

performance. This model can be used in a scenario where the developer has submitted the

change documentation mentioning that the change is neither related to enhancing/reducing

the model complexity nor significantly expanding the training set size. An example can

be: changing the Min-Max Normalization method to z-Score Normalization. Such change

should not have a significant impact on either enhancing or reducing the model’s training

time. However, if the model mistakenly becomes overly or insufficiently complex, it will

have an impact on the model training time which can be a useful feature in capturing the

information about the trained NN-based classifier under test. Based on the results obtained

on a new data set having metadata features, if the results in Table 6.7 are compared with

Table 6.6, it can be seen that the performance of all the models has significantly improved.

In comparison to k-NN, SVM attains high accuracy and precision but has a low recall value.

However, random forest still outperforms and achieves the best predictive power. Therefore,

we conclude that the addition of metadata features is useful in enhancing the

ML models’ performance and can play a handy role in developing accurate ML

models, which answers RQ4.3 (of RG4).

98

Table 6.7: Performance Report on App#2 Data set After Adding Metadata features

Classifier Accuracy Precision Recall F1

SVM 0.76 0.96 0.54 0.69

Random Forest 0.90 ± 0.0 0.96 ± 0.0 0.93 ± 0.01 0.94 ± 0.01

k-NN 0.70 0.72 0.65 0.68

Threats To Validity

In this study, we do not aim to identify the individual injected mutants, instead we are

interested in identifying whether, in general, the program behavior can be characterized as

buggy or not. This is the reason that we treat the behavior produced by all the mutated

versions as ‘buggy’ and by the original program as ‘non-buggy’. The proposed approach

serves its purpose well in meeting this objective. Nevertheless, we identify the following

threats to validity:

• Although we propose only a single MR, it worked sufficiently well to show the applica-

bility of the MT approach, (i) in extending the prioritized test set with additional tests

without incurring additional labeling costs, and (ii) using the prioritized test inputs

(both source and follow-up data) to record and observe the behavior of the classifiers

under test over a diverse set of inputs.

• Due to time and resource constraints, we are only able to find and inject 4 valid high

accuracy producing mutants in the NN-based N-IDSs under test. Although the number

of mutants is small, it fulfills the objective and applicability of the proposed approach

in detecting their buggy behavior that may otherwise be difficult to detect by a software

developer. Second, the main reason to use only the high accuracy producing mutants

is that when the software developer sees the low accuracy of the model, the developer

99

gets an alert indicating that some problem in the model requires further investigation.

However, when the model produces high accuracy, that may be skeptical and mislead

the developer, assuming that everything is fine and model is ready to be deployed in

the production environment.

• It can be argued that some of the mutants will produce a different probability class

distribution than the original/correct program version, and hence it can be easy to

identify them. This poses a potential threat to the construct validity of this study,

however, this observation is subjective and is error prone. Also, it may not hold true

without providing some solid statistical evidence. Second, in order to automate the

testing process, there must exist a systematic approach to automatically detect the

buggy behavior in such high accuracy producing faulty program versions.

• The NN-based N-IDSs under test belong to the class of fully connected neural networks,

thus generalizing the results to other types of DNNs e.g. CNNs, RNNs, would be

speculative and reveals a threat to external validity.

Conclusion And Future Work

The high labeling cost associated with data instances and testing computationally

complex machine learning classifiers that have stochastic behavior are both challenging

and resource-intensive tasks. To address the first challenge, we propose a Metamorphic

Relation (MR) that effectively addresses the data generation/labeling problem without any

need to label the new test instances manually. To target the second challenge, we propose

a statistical hypothesis testing (for detection) and machine learning-based approach (for

prediction) of faulty behavior in NN-based classifiers using the prioritized test inputs. The

proposed statistical and ML-based approach is applicable for testing NN-based classifiers in

an environment where the random seeds can not be fixed for getting deterministic results

100

and checking the program correctness. The usefulness of our proposed approach is shown

in detecting and predicting buggy behavior in two NN-based network intrusion detection

systems i.e., one based on Shallow NN, whereas the other is a DNN-based classifier. The

results obtained show that, (i) the proposed statistical hypothesis testing is effective in

detecting the buggy behavior, and (ii) among the proposed ML models, random forest

outperforms and achieves better performance than SVM and k-NN algorithms.

In this paper, we propose a sample MR to show the effectiveness of MT in addressing

the data generation/labeling problem. In future research work, we intend to propose more

effective MRs that can be used to generate additional representative data; thus reducing the

labeling cost further and enabling organizations to check program correctness on large input

scenarios for enhancing their trust. It will also be interesting to explore what other types

of useful features can be added to enhance the performance of ML models and to show the

applicability of the proposed approach in general. The results obtained in this preliminary

study are encouraging, and a comprehensive study on applying the proposed approach on a

larger number of mutants is in progress.

101

MT4UML: METAMORPHIC TESTING FOR UNSUPERVISED MACHINE LEARNING

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘MT4UML: Metamorphic Testing for Unsupervised Machine

Learning’

Author: Faqeer ur Rehman

Contributions: Problem identification and proposing solution, conducting experiment,

manuscript writing, creating tables and figures. Primary writer

Co-Author: Dr. Clemente Izurieta

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

102

Manuscript Information Page

Faqeer ur Rehman and Dr. Clemente Izurieta

IEEE Swiss Conference on Data Science (SDS)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IEEE

14 October 2022

10.1109/SDS54800.2022.00012

103

Abstract

One of the advantages of using unsupervised machine learning algorithms is that they

don’t need labeled data; thus, ultimately saving higher labeling costs for an organization.

However, the computational complexity and large input space put these algorithms into the

category of non-testable programs, which also suffer from the oracle problem. One popular

testing approach, borrowed from the Software Engineering (SE) domain is the Metamorphic

Testing (MT) technique that has been proven to be an effective approach in alleviating

the oracle problem in testing such non-testable programs. We take advantage of this MT

approach to make some insightful contributions that include: i) proposing a broader set

of 22 Metamorphic Relations (MRs) for assessing the behavior of the K-means clustering

algorithm (a prototype-based approach) and the Agglomerative clustering algorithm (a

hierarchy-based approach), provided by the leading scikit-learn Python library, ii) providing

a detailed analysis/reasoning to show how the proposed MRs can be used to target both the

verification and validation aspects of testing the clustering algorithms under investigation,

and iii) showing that verification of MRs using multiple criteria is more beneficial than relying

on using just a single criterion (i.e., clusters assigned). We further applied the proposed

approach to test an open source customer segmentation application and the results obtained

show that, i) 10 MRs have been violated for both the K-means and Agglomerative clustering

algorithms, and ii) in comparison to K-means, the Agglomerative clustering algorithm is

highly susceptible to small changes in inputs and may not offer a better alternative to

scenarios captured by the violated MRs.

Introduction

Machine Learning (ML) can broadly be classified into supervised and unsupervised

machine learning algorithms. Supervised machine learning learns patterns from the labeled

104

data, whereas, there is no class label available for the data points when the problem under

investigation falls under the unsupervised machine learning category. Some of the widely used

unsupervised machine learning algorithms include K-means clustering (a prototype-based

approach) and Agglomerative clustering (a hierarchy-based approach). These algorithms can

be used to address a wide range of real world problems i.e., customer segmentation, document

clustering, clustering DNA patterns, recommendation systems, and anomaly detection. It

is thus important that such applications are tested properly to ensure their quality before

moving them to production environments. Further, one should also be aware of the possible

changes in clustering results when the data itself undergoes changes in the future. However,

similar to supervised ML algorithms, one of the challenges faced in testing unsupervised ML

algorithms is their complexity and their exposure to the oracle problem. The oracle is a

mechanism that a software tester uses to verify the output of the program under test. When

the oracle is not available (or is available but infeasible to apply) we call a program suffering

from the oracle problem.

Software Engineering for Machine Learning (SE4ML) is an emerging research area

that focuses on applying SE best practices and methods for better development, testing,

operation, and maintenance of ML-based systems [12, 38, 45, 46]. Our focus in this work is

on the testing aspect of unsupervised ML algorithms and how a traditional software testing

approach i.e., Metamorphic Testing (MT) can be utilized to perform better quality assurance

from both the verification and validation perspective.

MT is considered an effective testing strategy in alleviating the oracle problem in

testing both type of supervised and unsupervised ML algorithms. In MT, Metamorphic

Relations (MRs) are proposed to test the program under test. Each MR is composed of

a source test case and a follow-up test case. An MR is said to be violated if the result

obtained for the source test case is different from the follow-up test case. The MRs can

be used to target either i) the necessary characteristics (related to implementation), or ii)

105

expected characteristics (related to user expectations) of the program under test. MT is

different from using the classical evaluation methods i.e., residual sum-of-squares, silhouette

coefficient, Davies–Bouldin index, etc. (frequently used to evaluate the clustering results of

different algorithms) in the sense that MT is a testing technique, whereas, these evaluation

methods aim to identify the algorithm more suitable for the problem under investigation.

It is important to note that much of the research work has focused on utilizing the power

of MT for testing supervised ML algorithms [48, 56, 60, 74, 76] but much less work has

been done in using MT for testing unsupervised algorithms [84, 85]. Prior work (related

to testing unsupervised ML algorithms) uses MT to test clustering algorithms, provided by

the WEKA tool [81], only from the validation perspective. This motivates us to take MT

one step further and utilize its power to test some widely used clustering algorithms (i.e.,

K-means clustering and Agglomerative clustering), provided by a popular and widely used

Python library i.e., scikit-learn [55] from both the verification and validation perspective.

The following presents the main contributions made in this paper [62]:

• We propose an MT based approach for verification and validation of two popular

clustering algorithms, provided by the leading Python library known as scikit-learn.

These includes K-means (a prototype-based approach) and Agglomerative clustering

(a hierarchy-based approach) algorithms.

• We propose 22 MRs to assess the behaviour (from both the user’s and devel-

oper’s/implementation perspective) of the clustering algorithms under test.

• The proposed MRs are further analyzed, necessary reasoning is provided, and MRs

are then categorized to show whether each of those MRs targets the verification or the

validation aspect of testing the two algorithms under investigation.

• The effectiveness of the proposed approach is demonstrated by applying it to testing

106

an open source customer segmentation application 1. The results show that among

the proposed MRs, 10 MRs are violated for both the K-means and the Agglomerative

clustering algorithm.

Related Work

The MT technique has been shown to be an effective approach in alleviating the oracle

problem in computationally complex machine learning based classifiers [48, 56, 60, 74, 76].

To the best of our knowledge we are able to find only two research papers in which MT

has been utilized to test unsupervised clustering algorithms [84, 85], which is equally the

motivator for this work and for making some beneficial research contributions. Yang et

al. [85] proposed 7 MRs to test the K-means algorithm (in WEKA tool) that target

the algorithm’s correctness from a user perspective (validation) to check whether the user

expectations from the algorithm are satisfied or not. Their results show that two of the MRs

are violated but this does not necessarily mean that there is some implementation defect in

the algorithm under test. Xie et al. [84] proposed 11 generic MRs that assess and validate

the characteristics of different clustering algorithms from a user perspective. The authors

conducted an experiment to test 6 clustering algorithms (provided by WEKA) and compared

them using the proposed MRs. This research helps end-users (non-technical users) coming

from diverse fields such as bioinformatics, finance, and electrical engineering to choose a

specific type of algorithm from a large set of available algorithms that can best fit their

needs. However, the following are the limitations we have found in their work:

• The proposed approaches only serve validation purposes, and only check whether the

algorithms under test meet the user expectations.

1https://github.com/matifkhattak/MT4UML

https://github.com/matifkhattak/MT4UML

107

• The proposed MRs only target the algorithms provided by the WEKA tool. It is

equally worth exploring to test the behavior of other notable clustering algorithms

provided by widely used Python libraries i.e., Scikit-learn. It will not only help the

end-users in choosing the most suitable clustering algorithm but it will also help in

selecting the right ML library for their problem under investigation.

• The proposed approaches use synthetic 2D data (i.e., not real data). It is worth

exploring whether the proposed MRs are effective in testing the models that use multi-

dimensional real-world data sets as well.

Our Approach

Our approach for testing the K-means and Agglomerative clustering algorithms is based

on the Metamorphic Testing (MT) technique [20]. In K-means algorithm, the following

equation is used for calculation of new centroids [27], in which c
(t+1)
i represents the ith new

centroid found, and xj represents the jth instance (where j = 1, 2, ..., n) belonging to the

cluster Ci.

c
(t+1)
i = 1

|C(t)
i |

∑n
j=1 xj (7.1)

In Agglomerative clustering, the following equation represents the average linkage

method used to merge two similar clusters [84]:

d(Ci, Cj) =
1

|Ci||Cj |
∑

xr∈Ci

∑
xs∈Cj

d(xr, xs) (7.2)

where, d(Ci, Cj) represents the distance between cluster Ci and cluster Cj, xr represents

the rth data point (where r = 1,2,...,n) belonging to the cluster Ci, and xs represents the s
th

data point (where s = 1,2,...,n) belonging to the cluster Cj.

108

In the rest of this section, we define the proposed MRs along with the analysis/reasoning

to show how the proposed MRs target both the verification and validation aspect of testing

the clustering algorithms under investigation.

Proposed Metamorphic Relations for Unsupervised Algorithms

We provide a set of 22 MRs that can be broadly classified into 14 categories. Each

of the proposed MRs either targets the verification or the validation aspect of testing

the clustering algorithms under test. The MRs targeting the verification aspect aim to

check whether the algorithms under test adhere to the necessary characteristics (from the

implementation perspective) expected from the algorithms, whereas, the MRs targeting the

validation aspect aim to check whether the algorithms under test meet the general user

expectations or not. This large set of MRs are not just limited to the two algorithms under

investigation (provided by the scikit-learn library), instead, they can also be used by naive

users, developers and professionals to assess any clustering algorithm(s) they are interested

in using for their respective problems. For better support and guidance, as shown in Tables

7.1 and 7.2, we further provide the verification and validation analysis and reasoning for the

proposed MRs. This analysis gives users a better idea in understanding the algorithms and

in choosing the appropriate solution that best fits their needs.

MR1 - Duplication of Data Instance(s):

MR1.1 - Duplication of single instance: For a given source input s, with associated

data instances assigned to clusters ci (where i = 1, 2, 3, ..., n), we denote the output as Os.

If we duplicate a single instance in the follow-up input f, the output Of should remain

consistent i.e., Os = Of .

MR1.2 - Duplication of multiple instances: For a given source input s, with

associated data instances assigned to clusters ci (where i = 1, 2, 3, ..., n), we denote the

109

output as Os. If we duplicate multiple instances (i.e., each belonging to a different cluster)

in the follow-up input, the output Of should remain unchanged i.e., Os = Of .

MR1.3 - Duplication of cluster centroids: For a given source input s, we denote

a set of centroids found as ti (where i = 1, 2, 3, ..., n). If we duplicate these centroids in the

follow-up input, the output Of should remain unchanged i.e., Os = Of .

MR2 - Data Standardization: If the existing standardized data is once again

standardized, the output for both the source and follow-up inputs should remain the same

i.e., Os = Of .

MR3 - Duplication of Features: For a given source input s, we denote the output as

Os. For the follow-up input, if new features are added by duplicating existing features, the

output Of should remain unchanged i.e., Os = Of .

MR4 - Removal of Instance(s):

MR4.1 - Removal of instance from one cluster: For a given source input s, we

denote the result as Os. If an instance from a cluster ci is removed for the follow-up input,

it should not have any effect on changing the results for the remaining inputs, so the output

Of should remain the same i.e., Os = Of .

MR4.2 - Removal of instance from different clusters: For the follow-up input,

if an instance from each of the clusters ci (found during the source execution, where i =

1, 2, 3, ..., n) is removed, the output should remain consistent.

MR4.3 - Removal of multiple instances from a single cluster: For the follow-up

input, if some random number of n instances are removed from a single cluster ci, it should

not have any effect on changing the results for the remaining inputs.

MR5 - Addition of Uninformative Attribute: For the follow-up input, if a new

uninformative feature (i.e., a feature having the same value for all the instances) is added,

the output should remain unchanged.

110

MR6 - Deterministic Output Across Multiple Runs: If a new data point is added,

it should be assigned to the same cluster no matter how many times the algorithm under

test is executed, i.e., the output for the execution at time timei (where i = 1, 2, 3, ..., n) and

timei+1 should remain consistent for both the source and follow-up inputs.

MR7 - Shifting Features With constant k : For the follow-up input, if the feature(s)

for all the instances are shifted with some constant k, the output should remain the same

for both the source and follow-up inputs.

MR8 - Scaling Features With Constant k : If the feature(s) for all the instances are

scaled with some constant k, the output should remain unchanged for both the source and

follow-up inputs.

MR9 - Replacement of Instance(s):

MR9.1 - Replacement of single instance: If a single instance belonging to a cluster

ci is replaced with some other instance x (belonging to the same cluster ci), it should not

have any impact on changing the clustering results i.e., the output Of should remain the

same for both the source and follow-up inputs.

MR9.2 - Replacement of multiple instances: If multiple instances belonging to

a cluster ci are replaced with some other instance x (belonging to the same cluster), the

output Of should remain consistent for both the source and follow-up inputs.

MR9.3 - Replacement of all instances: If all the instances belonging to a cluster

ci are replaced with some other instance x (belonging to the same cluster), the output Of

should remain consistent for both the source and follow-up inputs.

MR10 - Changing the Location of Features: If we change the order of features, the

clustering result should remain unchanged for both the source and follow-up inputs.

111

Figure 7.1: Agglomerative Clustering Example

Figure 7.2: MR1 for agglomerative clustering: Added 3 as a duplicate instance

MR11 - Adding an Informative Attribute: For a given source input s, we denote the

identified set of clusters as C={c1, c2, ..., cn}. For the follow-up input, if a new attribute

whose value is strongly associated with each of the clusters i.e., value x1 with c1, x2 with

c2,..., and xn with cn, is added to the original data instances, the clustering result should

remain the same for both the source and follow-up inputs.

MR12 - Rows Transformation:

MR12.1 - Reversing the order: If we reverse the order of data points/rows, the

clustering result should remain consistent for both the source and follow-up inputs.

MR12.2 - Random shuffling: If we randomly shuffle the order of data points/rows,

the clustering result should remain unchanged for both the source and follow-up inputs.

MR13 - Reflection Transformation: For a given source input s, we denote the output

as Os. For the follow-up input, if we multiply all the features with -1 (performing the data

reflection), the output Of should remain the same i.e., Os = Of .

112

MR14 - Addition of New Instance(s):

MR14.1 - Addition of instance with informative attributes: If we increase the

cluster ci density by adding a new data-point(s) in the middle of two existing data points

(i.e., instance x and y belonging to the same cluster ci), it should not have any effect on

changing clustering results, i.e., the output should remain consistent for both the source and

follow-up inputs i.e., Os = Of .

MR14.2 - Addition of instance with uninformative attributes: If we increase

the cluster ci density by adding a new data-point(s) such that all the features have 0 values

in them, it should not have any effect on the clustering results, i.e., the output should remain

consistent for both the source and follow-up inputs.

113

Table 7.1: k-Means Algorithm: Verification (VR) And Validation (VD) Analysis For The
Proposed MRs

VR? VD? Reasoning

MR1 × ✓ For the follow-up input, if we add a duplicate instance(s) to any of

the clusters, this will result in different cluster centroid(s) (calculated

using Equation 7.1) which may cause the original data points to

get assigned to different clusters; thus, changing the output for the

follow-up input. It is important to note that this is how (as shown

in Equation 7.1) the centroid/mean calculation is implemented in

the K-means algorithm under test, which ultimately means that

the violation of this MR can not be characterized as violating the

necessary characteristics (related to implementation) of the algorithm

under test. Therefore, this MR can not be used for verification

purposes (because its violation can not be characterized as the bug

in the implementation) but can be used for validation purposes

(because this is what the user’s general expectation would be from

this algorithm).

Note: Readers can use the same reasoning for the verification and

validation aspect of testing the algorithms under test for rest of the

proposed MRs.

MR2 ✓ ✓ For the follow-up input, if we re-apply the standardization step, i) it

will not change the mean and variance of the data points, and ii) it

will maintain the same distance among the data points (similar to the

source-input); thus, it should not not change the results.

114

MR3 × ✓ For the follow-up intput, if we add a duplicate attribute(s) to the

original data points, they may have a strong influence on changing

the distance between the data points and their existing centroids; thus,

assigning the data points to different clusters. An example is provided

(inside excel sheet available in GitHub repo), where, a violation of this

MR can be seen.

MR4 × ✓ For the follow-up input, if we remove any instance(s), Equation 7.1

will result in the calculation of different centroids which ultimately

may lead to changing the final output i.e., data points assigned to

different clusters. Since this violation can not be characterized to the

wrong implementation, it can only be used for validation purposes.

MR5 ✓ ✓ The addition of uninformative attributes (e.g., 0 or some other

constant) will not change the existing relationship between the data

points and will also maintain the same relationship between the data

points and the initial centroids. Therefore, the output for the follow-

up input should remain the same.

MR6 ✓ ✓ Running the algorithm at different times (keeping the initial centroids

the same) should not have any effect on how the centroids are

calculated. Further, as there is no change made in the data points,

the output should remain the same. If the output changes, it means

that there is some implementation bug in the algorithm under test.

115

MR7 ✓ ✓ If we shift all the features with some constant k, it will maintain

the same distance between the data instances. So, Equation 7.1 will

produce the same centroids as the one found during source execution;

thus, not changing the final output. Let x be the centroid, y be

the data point and the distance d (x, y) found between them during

source execution is z. Now, if we shift the features of both x and y

with some constant (i.e., k) then the distance between them would be

d (x, y) =
√

((x+ c)− (y + c))2 =>
√

(x− y)2 => x − y => z (i.e.,

will remain the same). Therefore, the output for both the source and

follow-up inputs should remain consistent.

MR8 ✓ ✓ If we scale all the features with some constant k, it will maintain the

same relationship between the data points and the centroids. Let x

and y be the two data points and during the source execution their

relationship to the centroid c is x − c < y − c. During the follow-up

execution, after scaling the features with constant k i.e., k(x − c) <

k(y − c) => x − c < y − c, the relationship (i.e., greater than, less

than, and equal) remains the same. Therefore, if the output for the

follow-up input changes, that would suggest that there is some bug in

the algorithm under test.

MR9 × ✓ If we replace any of the instances with some other instance (belonging

to the same cluster), it may result in the calculation of different

centroids (as per Equation 7.1); thus an instance xi (where i =

1, 2, .., n) may get assigned to a different cluster.

116

MR10 ✓ ✓ For the follow-up input, if we change the location of features, it will

not have any affect on the relationship between the data points and

calculation of centroids (using Equation 7.1). So, the output should

remain the same.

MR11 × ✓ For the follow-up input, if we add an informative attribute to each of

the clusters instances, it may result in changing the centroids that can

assign the instances to different clusters; thus, leading to a different

final output.

MR12 ✓ ✓ For the follow-up input, if we change the order of rows/data points,

it will not have any affect on existing relationship between the data

points and will lead to the calculation of same centroids (similar to the

one found during source execution). Thus, the output for the source

and follow-up inputs should remain consistent.

MR13 ✓ ✓ For the follow-input, if we apply reflection transformation, the distance

between the data points will remain the same thus leading to the

calculation of same centroids (using Equation 7.1). This should result

in consistent output for both the source and follow-up inputs.

MR14 × ✓ If we add a new instance(s) to any of the clusters, this addition of new

instance(s) may result in the change of centroids (different from the

one found during source execution); thus, changing the final output.

117

Table 7.2: Agglomerative Clustering Algorithm: Verification (VR) And Validation (VD)
Analysis For The Proposed MRs

VR? VD? Reasoning

MR1 × ✓ For the follow-up input, if we add a duplicate instance(s) to any of

the clusters, this may change the average distance between the two

clusters (calculated using Equation 7.2), thus ending up with changing

the clusters for the original data points. For understanding purposes,

suppose in Figure 7.1, the dendogram for the source input is cut to

obtain the two clusters. The data points 7,6,6,10 will be assigned to

one cluster, whereas, the data points 2,3 will be assigned to a second

cluster. Now, if we duplicate the data point 3 and cut the dendogram

to obtain the two clusters, it can be seen in Figure 7.2 that the original

data points 7,6,6,2,3 are now assigned to one cluster, whereas, the data

point 10 is assigned to the second cluster; thus, changing the output

for the follow-up inputs.

MR2 ✓ ✓ Same reasoning as provided for MR2 in Table 7.1

MR3 × ✓ For the follow-up intput, if we add a duplicate attribute(s) to the

original data points, they may have a strong influence on changing

the average distance between the clusters; thus, changing the overall

result. An example is provided (inside excel sheet available in GitHub

repo), where, a violation of this MR can be seen.

118

MR4 × ✓ For the follow-up input, if we remove an instance(s), Equation 7.2 will

result in changing the average distance between the clusters. As an

example, in Figure 7.1, if we remove the data point ‘2’, the data point

‘3’ (instead of data point ‘10’) will get assigned to the cluster ‘7,6,6’.

Now, if the dendogram is cut to obtain the two clusters, one cluster

will have data points ‘7,6,6,3’, whereas, the second one will have only

‘10‘, thus changing the clustering result for the follow-up inputs.

MR5 ✓ ✓ The addition of uninformative attribute (e.g., 0 or some other

constant) will neither change the existing relationship between the

data points nor the average distance between the clusters. Therefore,

the output for the follow-up input should remain the same.

MR6 ✓ ✓ Running the algorithm at different times should not have any affect

on how the average distance between the clusters is calculated. Apart

from that, as there is no change made in the data points, so the output

should remain consistent.

MR7 ✓ ✓ If we shift all the features with some constant k, it will maintain the

same distance between all the data instances. So, Equation 7.2 will

result in merging the same clusters that were merged during the source

execution. As an example, let x and y be the two data-points merged

together during the source execution. Now, if we shift the features of

both the x and y with some constant ‘c’ then the distance between

them i.e., d (x, y) =
√
((x+ c)− (y + c))2 =>

√
(x− y)2 , would

remain similar to the one calculated during the source execution.

Therefore, the output for both the source and follow-up inputs should

remain the same.

119

MR8 ✓ ✓ If we scale all the features with some constant k, it will maintain the

same relationship (i.e., greater than, less than, and equal) between the

data points. As an example, let suppose that we have three data points

x, y, and z that we are interested to group them into two clusters.

During the source execution, let x and y are merged together to form

one cluster, and z in another cluster. The current relationship between

them is x−y < z−y. During the follow-up execution, after scaling the

features with a constant k i.e., k(x−y) < k(z−y) => x−y < y−z, the

relationship remains the same. Therefore, the output should remain

consistent for both the source and follow-up executions.

MR9 × ✓ For the follow-up input, if we replace any of the instances with some

other instance (that belongs to the same cluster), it may change the

average distance between them (calculated using Equation 7.2) which

can result in assigning the original input to different clusters. As an

example, as shown in Figure 7.1, if in cluster#2 (which contain data

points 2 and 3), we replace the instance 2 with instance 3, it will assign

them to the cluster#1 which contains the data points 7,6,6. Now if

the dendogram is cut to obtain the two clusters, one cluster will have

the data-points 7,6,6,3,3, whereas, the other will have only 10; thus,

the original data-point (which is 3) has been assigned to the cluster#1

(instead of cluster#2). This will result in violation of this MR.

120

MR10 ✓ ✓ For the follow-up input, if we change the location of features, it will

not have any affect on the relationship between the data points and

calculation of average distance between the clusters (calculated using

Equation 7.2). So, the output should remain unchanged for both the

source and follow-up executions.

MR11 ✓ ✓ If we add an informative attribute such that it is strongly associated

with each of the clusters, it will not change the existing relationship

between the data points assigned to each clusters. As an example,

let suppose that the dendogram for the source execution (as shown in

Figure 7.1) is cut to form two clusters, one cluster will have the data

points 7,6,6,10, whereas, the other cluster will have the data points

2,3. Now, for the follow-up execution, if we add a new informative

attribute which has the value 3 for all the instances in cluster#1 i.e.,

(7,3),(6,3),(6,3),(10,3) and value 4 for all the instances in cluster#2

i.e., (2,4),(3,4), it will not change the existing relationship between

the clusters; thus, the output should remain the same.

MR12 ✓ ✓ For the follow-up input, if we change the order of rows/data instances,

it will not have any affect on the way the calculation is made (using

Equation 7.2) to merge the two clusters. Thus, the output for both

the source and follow-up inputs should remain the same.

MR13 ✓ ✓ For the follow-input, if we apply reflection transformation to all

data points, the distance between them will remain the same; thus,

leading to the identification of the same clusters found during source

execution.

121

MR14 × ✓ If we add a new instance(s) to any of the clusters, this addition of

new instance(s) may result in change of average distance between the

clusters; thus, changing the final output. An example is provided

(inside excel sheet available in GitHub repo), where, a violation of

this MR can be seen.

Experimentation and Evaluation

To check the effectiveness of the proposed approach, we have selected an open source

customer segmentation application that uses a real world multi-dimensional data-set 2. The

selected application uses K-means and Agglomerative clustering algorithms, provided by the

leading Python library known as scikit-learn. It is worth mentioning that the proposed MRs

are not just limited to this single application, instead, they can be used to test clustering

algorithms in other domains as well (i.e., document clustering, clustering DNA patterns, and

anomaly detection) in which the term ‘data point/data instance’ will represent either the

document instance, DNA sequence, or the network traffic instance respectively.

In K-means, if the centroids are selected randomly, it will produce different results

which can not be characterized as a violation of the MR. Therefore, we initialized the K-

means algorithm with fixed centroids to make sure that it is converging to the same point for

multiple iterations; thus, the focus is placed on testing the characteristics of the algorithms

under test using the proposed MRs.

Table 7.3 summarizes the results obtained for both clustering algorithms under test.

For testing the K-means algorithm, we present the results and verify the proposed MRs

using multiple criteria e.g., whether the i) clusters, ii) centroids, and iii) nearest point to

2https://github.com/matifkhattak/MT4UML

https://github.com/matifkhattak/MT4UML

122

Table 7.3: Results of testing k-Means and Agglomerative clustering algorithms

K-Means Agglomerative Clustering

MR# Same cluster as-

signed?

Centroids

same?

Nearest point to cen-

troid(s) same?

Violation?

(Violation rate)

Same cluster as-

signed?

Violation?

(Violation rate)

1.1 × × ✓ ✓(0.12%) × ✓(0.05%)

1.2 × × ✓ ✓(0.10%) × ✓(98.53%)

1.3 ✓ ✓ ✓ × N/A N/A

2 ✓ ✓ ✓ × ✓ ×

3 ✓ ✓ ✓ × ✓ ×

4.1 × × ✓ ✓(0.14%) × ✓(0.09%)

4.2 × × ✓ ✓(0.23%) × ✓(0.23%)

4.3 × × × ✓(57.82%) × ✓(93.40%)

5 ✓ ✓ ✓ × ✓ ×

6 ✓ ✓ ✓ × ✓ ×

7 ✓ ✓ ✓ × ✓ ×

8 ✓ ✓ ✓ × ✓ ×

9.1 ✓ × ✓ ✓ × ✓(2.14%)

9.2 ✓ ✓ ✓ × × ✓(98.07%)

9.3 × × ✓ ✓(0.02%) × ✓(99.28%)

10 ✓ ✓ ✓ × ✓ ×

11 ✓ × × ✓ ✓ ×

12.1 ✓ ✓ ✓ × ✓ ×

12.2 ✓ ✓ ✓ × ✓ ×

13 ✓ ✓ ✓ × ✓ ×

14.1 × × ✓ ✓(0.05%) × ✓(0.28)

14.2 ✓ × × ✓ × ✓(94.90%)

each centroid, are the same for both the source and follow-up inputs. This is beneficial,

because if we are unlucky in identifying the violation(s) for MRs using the first criterion,

we hope to uncover them using the other criteria. For example, in Table 7.3, it can be seen

that for some of the MRs e.g., MR9.1, MR11, and MR14.2, the clusters assigned to data

instances are the same for both the source and follow-up executions (thus, if only the first

criterion is used, the MR is said to be satisfied) but those MRs were violated for the other

criteria (e.g., verifying the centroids, and the nearest point to each of the centroids), thus

showing the usefulness of using multiple criteria to verify the MRs. This also opens a new

research direction for researchers to explore the type of different criteria that can be used for

verification of MRs (for different clustering algorithms) instead of relying only on comparing

the final output (i.e., clusters assigned), which may mislead the results.

123

The results presented in Table 7.3 show the violated MRs and their comparison for both

algorithms under investigation. Each of the violated MRs either implies the implementation

faults in the algorithm (verification), or its deviation from the user expectations (validation).

For both the K-means and Agglomerative clustering alogrithms, 10 (out of 22) MRs (which

quantifies RM1) have been violated. We also show the violation rate (i.e., RM2) for each of

the violated MRs, and it can be seen that the K-means algorithm shows a higher violation

rate for MR4.3, whereas, the Agglomerative clustering algorithm has a higher violation rate

for MR1.2, MR4.3, MR9.2, MR9.3, and MR14.2. This answers the RQ5.1 (of RG5) that

the proposed MRs are effective in testing the clustering algorithms under test. To

answer the second RQ, it can be seen that both of the algorithms under investigation show the

violations for the same number of MRs. However, agglomerative clustering seems to be more

sensitive to smaller changes because a small change is causing a higher violation rate among

the violated MRs. Therefore, we conclude that in comparison to agglomerative

clustering, the K-means algorithm is more stable for the scenarios captured in

the proposed MRs, which answers RQ5.2 (of RG5).

Conclusion And Future Work

Similar to supervised ML algorithms, one of the challenges faced in testing unsupervised

algorithms is that they also suffer from the Oracle problem. Software Engineering for

Machine Learning (SE4ML) is an emerging research area that focuses on applying SE best

practices and methods for better development, testing, operation, and maintenance of ML-

based systems. Our contribution in this work focuses on testing some popular unsupervised

ML algorithms (i.e., K-means and Agglomerative clustering algorithms, provided by the

leading Python library ‘scikit-learn’) and investigate how the traditional software testing

approach i.e., Metamorphic Testing (MT) can be utilized to perform better quality assurance

from both the verification and validation perspective. We propose a broader set of 22 MRs

124

that both researchers and practitioners can take advantage of to assess the behaviour of the

clustering algorithms under test from both the user’s general expectation (validation) and

from the implementation perspective (verification). For testing the K-means algorithm, we

also propose multiple criteria that can be used for verification of the MRs. Our results show

that both the algorithms under test exhibit violations (from the validation perspective) for

10 MRs, which implies that the behaviour of the algorithms deviates from the general user

expectations. Further, in comparison to K-means, the Agglomerative clustering algorithm

is highly susceptible to small changes in inputs and may not offer a better alternative to

scenarios captured by the violated MRs.

In the future, and to improve the testing of agglomerative clustering based applications,

we intend to develop new criteria that can be used to verify MRs, and which will ultimately

help in building trust in using critical application algorithms. Second, to show the general

applicability of the proposed MRs, we intend to utilize the proposed approach by testing

a broad range of other clustering algorithms that are popular among both researchers and

practitioners of the ML community.

125

AN APPROACH FOR VERIFYING AND VALIDATING CLUSTERING BASED

ANOMALY DETECTION SYSTEMS USING METAMORPHIC TESTING

Contribution of Authors and Co-Authors

Manuscript in Chapter titled ‘An Approach For Verifying And Validating Clustering Based

Anomaly Detection Systems Using Metamorphic Testing’

Author: Faqeer ur Rehman

Contributions: Problem identification and proposing solution, conducting experiment,

manuscript writing, creating tables. Primary writer

Co-Author: Dr. Clemente Izurieta

Contributions: Contribution in manuscript editing/writing, provided feedback, guidance and

advice.

126

Manuscript Information Page

Faqeer ur Rehman and Dr. Clemente Izurieta

IEEE International Conference On Artificial Intelligence Testing (AITest)

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

× Published in a peer-reviewed journal

IEEE

26 September 2022

10.1109/AITest55621.2022.00011

127

Abstract

An oracle or test oracle is a mechanism that a software tester uses to verify the program

output. In software testing, the oracle problem arises when either the oracle is not available

or it may be available but is so expensive that it is infeasible to apply. To help address

this problem in testing machine learning-based applications, we propose an approach for

testing clustering algorithms. We exemplify this in the implementation of the award-winning

density-based clustering algorithm i.e., Density-based Spatial Clustering of Applications

with Noise (DBSCAN). Our proposed approach is based on the ‘Metamorphic Testing’

technique which is considered an effective approach in alleviating the oracle problem. Our

contributions in this paper include, i) proposing and showing the applicability of a broader

set of 21 Metamorphic Relations (belonging to 14 different categories), among which 7 type

of MRs target the verification aspect of testing the algorithm under test, and ii) identifying

and segregating the MRs (by providing a detailed analysis) to help both naive and expert

users understand how the proposed MRs target both the verification and validation aspects

of testing the DBSCAN algorithm. To show the effectiveness of the proposed approach,

we further conduct a case study on an anomaly detection system. The results obtained

show that, i) different MRs have the ability to reveal different violation rates (for the

given data instances); thus, showing their effectiveness, and ii) although we have not found

any implementation issues (through verification) in the algorithm under test (that further

enhances our trust in the implementation), the results suggest that the DBSCAN algorithm

may not be suitable for scenarios (meeting the user expectations a.k.a validation) captured

by almost 52.4% of violated MRs; which show high susceptibility to small changes in the

dataset.

128

Introduction

The use of machine learning algorithms is growing fast in a number of application

domains i.e., document clustering, image processing, social network analysis, recommenda-

tion systems, customer segmentation, and anomaly detection. As these applications become

pervasive in real-world environments, it becomes crucial to verify their correct behavior.

Software testing is a common approach used to test and verify the quality of software.

However, one of the problems it faces is the oracle problem. An oracle is a mechanism that

a software tester uses to verify the program under test. Software is executed for a given test

case and the output produced is compared with the expected outcome. A program is said

to be buggy if the output produced by the program does not match the expected output. In

real-life scenarios, the oracle may not be available or it may exist but is so expensive that it

is infeasible to apply.

It always remains a challenging task to test unsupervised machine learning applications

in the absence of a test oracle (i.e., in the form of ground truth/class label). To help address

improving the quality of such machine learning-based applications, this work focuses on

testing the following award-winning unsupervised clustering algorithm (at the leading data

mining conference, ACM SIGKDD [70]): Density-based spatial clustering of applications

with noise (DBSCAN) (provided by the leading python library scikit-learn [55]). Our

approach uses the ‘Metamorphic Testing (MT)’ [20] technique that has been shown to

be an effective approach in alleviating the oracle problem [35] [43]. It uses the necessary

characteristics of the program as relations (known as Metamorphic Relations i.e., MRs) to

check whether the program under test adheres to specified relations or not. Each MR uses

a source test case and a follow-up test case to verify the output (instead of verifying the

individual test case output). The violation of an MR is treated as a bug in the application.

To the best of our knowledge, very little effort has been placed in using the MT technique

129

for quality assurance of clustering algorithms [84] [85], and we are only able to find just one

paper in which the authors leveraged the MT approach for testing the DBSCAN algorithm

(provided by the WEKA tool) [84]. However, the limitations of their approach are that, i) it

uses synthetic and unrealistic 2D data, ii) it lacks targeting the verification aspect of testing

the DBSCAN algorithm, and iii) it does not provide any evidence to show whether their

approach is also applicable to assess the behaviour of the DBSCAN algorithm provided by

some popular open source python libraries i.e., sci-kit learn, which are equally the motivators

for this work.

In this study [61], we make the following main contributions:

• We propose an MT-based approach for verification and validation of a density based

clustering algorithm i.e., DBSCAN.

• We propose a collection of 21 diverse MRs that the clustering algorithm under test is

expected to satisfy.

• We further provide the analysis and reasoning for the proposed MRs to show whether

each of the MRs target the necessary characteristics of the program; and thus, the MR

can be used to serve for verification purposes. If the program reveals a violation, it

would suggest that there is some bug in the program under test. On the other hand,

if the MR does not target the necessary characteristics of the program, it can still be

used to show evidence for validation purposes (i.e., the ‘expected’ behaviour). In other

words, the proposed MRs target both the verification and validation aspects of testing

the DBSCAN algorithm under test.

• To show the applicability of the proposed MRs, we conduct a case study on an open-

source anomaly detection system1 that internally uses the DBSCAN algorithm (to

1https://github.com/matifkhattak/DBScanAnomalyDetection

130

isolate/detect the noise).

Related Work

MT has been shown to be an effective approach in alleviating the oracle problem in

a broad range of applications i.e., forecasting [22], image classification [23], acoustic scene

classification [48], intrusion detection systems [60] [76], and machine translation [72]. Xie et

al. [83] applied MT to test a category of supervised classifiers that includes K-means and

Naive Bayes algorithms (provided by the WEKA tool). The authors proposed 11 MRs to test

these two algorithms and identified real faults in the Naive Bayes classifier. Dwarakanath

et al. [23] proposed 8 MRs to test an SVM-based digits image classifier. Their results

show that the proposed approach is able to uncover 71% of the implementation faults in the

applications under test. Santos et al. [65] applied MT on a breast cancer machine learning

classifier and the results obtained show that MT can be considered a useful approach in

testing the effectiveness of ML-based classifier in a medical domain.

With the availability of large data sets and higher computing power, deep learning

solutions are getting popular and are becoming an integral part of critical applications

e.g., autonomous vehicles, health care systems, and intrusion detection systems. Pei et

al. [56] used the differential testing technique in combination with MT to test real-world

deep learning systems. They leveraged the MRs to generate difference-causing images and

found thousands of erroneous behaviors in the programs under test. Zhou et al. [89] used MT

to test self-driving cars and found subtle errors eight days before the deadly Uber accident

took place. Ding et al. [21] applied the MT approach to validate a deep learning framework

that has been used for the classification of biomedical images. The proposed approach

was shown to be effective in validating the framework that includes, i) the architecture of

a convolutional neural network, ii) the execution environment Caffe, and iii) the data set

comprised of cellular images. The most recent work [60] [76] includes taking advantage of

131

machine learning and statistical-based MT techniques to uncover the implementation faults

in a DNN-based intrusion detection system and a cancer prediction system.

Our Approach

In this study, we propose Metamorphic Testing (MT) based approach and show how

can it be used to target both the verification and validation aspect of testing the clustering-

based ML applications. To date, one of the main challenges faced in the software testing

domain is the oracle problem. One possible approach to target the oracle problem is the

Differential Testing technique that uses multiple implementations of the same program as a

pseudo oracle to verify the output. However, the limitation of this approach that makes it

unrealistic in real life is that it is very difficult to obtain multiple copies of the same system,

and second, it is possible that multiple implementations have the same bug which causes

them to produce the same output for the same given input.

Our approach for testing the DBSCAN algorithm uses the MT technique which is

considered an effective approach in alleviating the oracle problem and it also does not require

multiple implementations of the program under test. Instead of verifying the individual

output, it uses multiple executions of the program to check whether the output is correct or

not. The output should adhere to the relation known as Metamorphic Relation (MR) that

targets the necessary characteristics of the program under test. Each MR uses the source

input and some valid change/transformation made to the source input (using the relation

specified in the MR) known as the follow-up input. The MR is said to be violated if the

output produced for the source input does not match with the output produced for the

follow-up input. As an example, suppose there is a program that calculates the standard

deviation for the given inputs. An instance of an MR can be exemplified by multiplying the

original inputs with -1 (this transformation will produce the follow-up inputs), the output of

the program should remain the same because this change will have no effect on the deviation

132

from the mean.

First, we refer to the official documentation of python based implementation available

for the DBSCAN algorithm [1] and propose a broader set of 21 MRs which will enable novice

to expert data scientists the ability to test and assess DBSCAN’s behavior from multiple

perspectives. The list of all the proposed MRs along with their descriptions is provided

in Table 8.1. Next, in Table 8.2, we further analyze the proposed MRs and provide the

detailed reasoning to show whether each of the MRs targets the verification aspect or the

validation aspect of testing the DBSCAN algorithm. This is important because in real-life

projects, the data may undergo through some modification and if the user is not aware of

the potential consequences on the clustering results, it may lead to misleading decisions and

disastrous consequences. Lastly, we show the effectiveness of the proposed MRs on testing an

anomaly detection system that utilizes the DBSCAN algorithm, provided by the scikit-learn

python library. It is important to highlight that the proposed MRs are not just limited to

testing the anomaly detection system under test, instead, they are applicable to number of

other real-world applications (i.e., market and customer segmentation, document clustering,

search results clustering, biological data clustering, etc.) as long as they use the DBSCAN

algorithm for identification of clusters in the data.

133

Table 8.1: Proposed Metamorphic Relations

Metamorphic

Relations (MRs)

Description

MR1 - Data

Duplication

MR1.1 - Duplicating single instance: For the source input s,

we denote the output obtained as Os. This MR says that if a single

instance in the follow-up input f is duplicated, the output Of should

remain similar to the Os i.e., Os = Of .

MR1.2 - Duplicating multiple instances: This MR says that

if we duplicate multiple instances (i.e., each belonging to a different

cluster) in the follow-up input, the output for both the source and

follow-up inputs should remain the same.

MR2 - Data

Standardization

For the follow-up input, if the existing standardized data is once

again standardized, it should not have any effect on changing the

final output i.e., Os = Of .

MR3 - Features

Duplication

For the follow-up input, if the existing feature(s) are duplicated, the

output should remain consistent for both the source and follow-up

inputs i.e., Os = Of .

134

MR4 - Removing

Instance(s)

MR4.1 - Removing an instance from a single cluster: For

the source input s, we denote the clusters found as C0, C1, C2, ..., Cn.

This MR says that for the follow-up input if an instance is removed

from just a single cluster i.e., C1, the output should remain the

same i.e., it should not have any effect on changing the results for

the remaining instances.

MR4.2 - Removing an instance from multiple clusters: For

the source input s, we denote the clusters found as C0, C1, C2, ..., Cn.

This MR says that for the follow-up input if an instance is removed

from each of the obtained clusters i.e., C1, C2, C3, ..., Cn, the output

should remain the same.

MR4.3 - Removing multiple instances from a single clus-

ter: For the source input s, we denote the clusters found as

C0, C1, C2, ..., Cn. This MR says that for the follow-up input if

multiple instances are removed from just a single cluster i.e., C1, it

should not have any effect on changing the results for the remaining

instances.

MR5 -

Adding an

Uninformative

Feature

This MR says that for the follow-up input if we add a new

uninformative feature (i.e., having a constant value for all the

instances), the output should remain consistent for both the source

and follow-up inputs i.e., Os = Of .

MR6 - Deter-

ministic Output

Across Multiple

Runs

This MR says that if a new data point is added to the original data

set, no matter how many times an algorithm under test is run, the

output for this input and other inputs should remain consistent i.e.,

the output at timei and timei+1 should remain the same.

135

MR7 - Shifting

of Data

This MR says that if we shift the feature(s) with some constant k,

the output for both the source and follow-up inputs should remain

consistent i.e., Os = Of .

MR8 - Scaling of

Data

This MR says that if we scale the feature(s) with some constant k,

the output for both the source and follow-up inputs should remain

unchanged i.e., Os = Of .

MR9 - Data Re-

placement

MR9.1 - Replacing single instance: This MR says that if

we replace a single instance in cluster ci with another instance

(belonging to the same cluster ci), the output should remain

unchanged.

MR9.2 - Replacing multiple instances: This MR says that

if we replace multiple instances in cluster ci with another instance

(belonging to the same cluster ci), the output for both the source

and follow-up inputs should remain the same.

MR9.3 - Replacing all instances: This MR says that if we replace

all the instances in cluster ci with another instance (belonging to the

same cluster ci), it should not have any effect on changing the output

for this, and the remaining instances.

MR10 - Shuffling

the Features

This MR says that if we shuffle the data features to change their

existing order, the output for both the source and follow-up inputs

should remain the same.

MR11 - Adding

an Informative

Attribute

This MR says that for the follow-up input if we add a new

informative feature (i.e., its value is strongly associated with each

of the clusters), the output should remain consistent for both the

source and follow-up inputs i.e., Os = Of .

136

MR12 -

Transformation

of Rows

MR12.1 - Reversing the order: This MR says that reversing the

order of data instances should not have any effect on changing the

final output i.e., the output for both the source and follow-up inputs

should remain consistent.

MR12.2 - Random shuffling: This MR says that if we randomly

shuffle the data instances, it should not have any effect on changing

the final output i.e., the output for both the source and follow-up

inputs should remain the same.

MR13 - Data Re-

flection

This MR says that if we perform the data reflection transformation

on the original inputs i.e., multiply all the features with -1, the

output should remain unchanged i.e., Os = Of .

MR14 - Addition

of Instance(s)

MR14.1 - Adding a new instance with informative at-

tributes: For the follow-up input, if we add a new data point in the

middle of two existing data points of cluster ci (thus enhancing the

density of the cluster), it should not have any effect on changing the

results for remaining instances.

MR14.2 - Adding a new instance with uninformative at-

tributes For the follow-up input, if we add a new data point with

uninformative attributes i.e., features with 0 value, it should not

have any effect on changing the results for the remaining instances.

137

Table 8.2: DBSCAN Algorithm: Analysis For The Proposed MRs from Verification (VR)
And Validation (VD) Perspective

VR? VD? Reasoning

MR1 × ✓ For the source input, we denote the clusters identified as C1, C2, C3,

..., Cn. For the follow-up input, if we duplicate a data point x (which is

a border point) in cluster C1, the addition of a new data instance may

change this border point x to become a core point. This core point will

now be used by the DBSCAN algorithm to further grow the cluster,

which can resultantly assign the other border points (belonging to

different clusters) to this cluster C1; thus, changing the final output for

the follow-up inputs. A sample example is provided in the excel sheet

(available in the shared GitHub repository) that shows the violation

of this MR.

It is worth mentioning that this MR is not the necessary characteristic

of the algorithm under test because the violation of this MR is

not due to the bug in the implementation. Instead, the behavior

of the program does adhere to the implementation but violates the

user’s potential requirements/expectations; thus, can not be used for

verification but can definitely be used for validation purposes. Apart

from that, an MR targeting the verification aspect can also be used

for validation purposes but not always vice versa.

Note: We urge the readers to use the same reasoning (as mentioned

above) for the rest of the proposed MRs in order to target the

verification and validation aspect of testing the algorithm under test.

138

MR2 ✓ ✓ This MR can be used for verification (hence also for validation)

purposes because the re-execution of the standardization step will

neither change the mean and variance of data points nor the distance

between the core points, border points and noisy points. Therefore,

this transformation should not have any effect on how the core points,

border points, and noisy points are identified by the algorithm to make

the clusters. If this MR is violated, it would depict that there is some

bug in the program under test.

MR3 × ✓ For the follow-up input, if we duplicate all the existing attributes to

the original data points, it will result in doubling the distance between

them. As a result, for a data point xi, the min samples (i.e., minimum

no of data points) within the epsilon distance may get fewer which will

result in the identification of a different number of core points, border

points, and noisy points; thus, may assign the data points to different

clusters.

MR4 × ✓ For the follow-up input, if we remove any data point(s), it may lead

to i) changing the core point to become a border point, and ii) a

border point to the noisy point; thus, changing the final output for

the program under investigation. Since this violation can not be

characterized as a violation of the program specification, so, this MR

can be used for validation purposes (but not for verification purposes).

139

MR5 ✓ ✓ For the follow-up input, if we add an uninformative feature i.e., a

feature with value 0, to all the data points, it will not change the

existing relationship between the core points, border points, and noisy

points. Therefore, the output should remain consistent for both the

source and follow-up inputs.

MR6 ✓ ✓ If we run the program under test multiple times, it will not have any

effect on how the algorithm identifies the core points, border points

and noisy points. Furthermore, as we do not make any change in the

data, so, the output should remain consistent. On the contrary, if the

output for the follow-up input is different from the output obtained

for the source input, it would depict that there is some bug in the

implementation of the program under test. Therefore, this MR can

be used for both verification and validation purposes.

MR7 ✓ ✓ For the follow-up input, if we shift all the features of the data points

with some constant c, it will not change the existing relationship/dis-

tance between the data points. To understand this concept, suppose

x represents the core point, y represents the border point, and, the

distance found between them during the source execution (i.e., d (x, y))

is represented as z. Now, after shifting the features for the follow-up

inputs, the distance between these two points will remain the same

i.e., d (x, y) =
√

((x+ c)− (y + c))2 =>
√

(x− y)2 => x − y => z.

Therefore, the output should remain unchanged for both the source

and follow-up inputs.

140

MR8 × ✓ If all the features are scaled with some constant c, it will result in

increasing the distance between the data points. As a result, for a

data point xi, the min samples within the epsilon distance may get

fewer which will result in the identification of a different number of core

points, border points, and noisy points; thus, leading to the assignment

of data points to different clusters. In our conducted experiment

(results are shown in Table 8.3), the scaling of features moved the

data points so farther away that majority of them got assigned to

cluster -1 (treated as noise/anomaly).

MR9 × ✓ For the follow-up input, if we replace the instance x with y (which

is a border point), this will add a new data point within the epislon

distance of y, which may make this instance to become a core point.

This core point will now be used by the DBSCAN algorithm to further

grow the cluster, which can resultantly assign the other border points

(belonging to different clusters) to the cluster to which y belongs; thus,

changing the final output for the follow-up execution.

MR10 ✓ ✓ This MR can be used for verification and validation purposes because

changing the location of features will neither change the distance

between the data points nor their location in space. Therefore, this

transformation should not have any effect on how the core points,

border points, and noisy points are identified to make the clusters. The

violation of this MR would depict that there is some implementation

bug in the program under test.

141

MR11 ✓ ✓ For the source input, we denote the clusters identified as C1, C2,

C3, ..., Cn. This MR says that for the follow-up input, if we add

an informative attribute such that the added attribute is strongly

associated with each cluster’s instances i.e., having value s for C1

instances, having value t for C2 instances, having value u for C3

instances, and similarly, having value v for Cn instances, this will not

change the existing relationship between the data points belonging to

the same cluster; thus, the instances should be assigned to the same

clusters as identified for the source inputs.

MR12 × ✓ For the follow-up input, if we change the order of data instances, the

algorithm will assign the core data points to the same clusters but

i) it may change their labels (based on the order in which they were

provided to the algorithm under test [1]), and ii) it may assign the non-

core points to different clusters [1]; thus, changing the final output for

the follow-up inputs.

MR13 ✓ ✓ This MR will also not change the existing relationship/distance

between the data points. Therefore, it should not have any effect

on changing the final output for the follow-up inputs.

MR14 × ✓ Same reasoning as provided for MR9. If we add a new data point to

any of the clusters (identified for the source inputs), it may change

the border point y to become a core point. This core point will now

be used by the DBSCAN algorithm to further grow the cluster, which

can resultantly assign the other border points (belonging to different

clusters) to the cluster to which y belongs; thus, changing the final

output for the follow-up inputs.

142

Experimentation and Evaluation

To show the effectiveness of our proposed MT-based approach, we applied our technique

to test an open-source anomaly detection system that internally uses the DBSCAN algorithm

(provided by scikit-learn 0.24.1 [55]) to identify noise and anomalies. The scikit-learn is

a popular python library that provides a large set of features for performing data pre-

processing, classification, and clustering related tasks. Due to its wide range of capabilities,

it is very popular among both researchers and practitioners for addressing ML-related

problems.

The ingested data to the application under test is comprised of 3093 instances (having

29 features). This data is used to cluster the input data into different groups. Once the

clustering process is completed, the instances that are assigned to the -1 cluster are treated

as noise/anomaly. All the application code, the data, and the MRs implementation are

provided online2.

After applying the proposed MRs to the anomaly detection application under test, we

present the results in Tables 8.3 and 8.4. The results in Table 8.3 shows, i) whether the

MR is rejected/violated, and ii) for the given violated MR, what number and percentage of

data instances have shown violations. A higher percentage of violation rate suggests that the

program is highly susceptible to small changes in the dataset, therefore, it should be avoided

in the scenarios captured by the violated MRs. Each of the rejected MRs either shows

the deviation from the program implementation (verification) or its deviation from general

user expectations (validation). If the application under test violates the MR targeting the

verification aspect, it would suggest that there is some bug in the program under test. On

the other hand, if the MR that does not target the necessary characteristics of the program

is violated, it can still be used to show evidence for validation purposes (i.e., the ‘expected’

2https://github.com/matifkhattak/DBScanAnomalyDetection

143

behaviour). Further analysis of the results in Table 8.3 show that in total, the application

under test has violated 11 out of 21 MRs (i.e., 52%).

In order to synthesize the granular information provided in Table 8.2, we present the

results of violated MRs at two levels (as shown in Table 8.4):

i) MRs targeting the verification aspect, and

ii) MRs targeting the validation aspect.

Table 8.3: Results from testing the DBSCAN algorithm

MR# Violation? No of Violated Instance(s) Violation Rate

MR1.1 ✓ 5 0.16%

MR1.2 ✓ 7 0.23%

MR2 ×

MR3 ✓ 240 7.76%

MR4.1 ✓ 1 0.03%

MR4.2 ✓ 2 0.06%

MR4.3 ✓ 1937 62.63%

MR5 ×

MR6 ×

MR7 ×

MR8 ✓ 2926 94.60%

MR9.1 ✓ 1 0.03%

MR9.2 ✓ 4 0.13%

MR9.3 ✓ 171 5.53%

MR10 ×

MR11 ×

144

MR12.1 ×

MR12.2 ×

MR13 ×

MR14.1 ×

MR14.2 ✓ 1 0.03%

Table 8.4: MRs Seggregation and Their Results

Total No. of MRs No. of Violated MRs % of Violated MRs

Verification 7 0 0%

Validation 21 11 52.4%

In order to understand the possible reasons behind the violated MRs, we refer readers

to the detailed analysis and reasoning provided in Table 8.2. The results provided in Table

8.4 show that none of the MRs targeting the verification aspect have been violated, which

further enhance our trust on the implementation of this algorithm (i.e., its adherence of

implementation to specification). However, it is important to note that failure to detect

the violations for this type of MRs does not necessarily mean that the program under

test is free from bugs. Instead, it is the inherent limitation of every testing technique

(i.e., if a testing technique is unable to uncover bugs in a program, it does not necessarily

mean that the program does not contain any defects at all), as is with ours. Therefore,

we recommend that the proposed MRs should still be used as a supplementary testing

technique in the organization’s existing built-in testing pipeline. Apart from that, we see

a higher number of violated MRs (i.e., 11 out of 21 => 52.4%) targeting the validation

aspect, which ultimately suggests that the program under test is highly susceptible to small

valid changes in the input data and may not be suitable for the scenarios (captured by the

145

violated MRs) to meet the general user expectations from this algorithm. This answers

the RQ5.3 (of RG5) that the proposed approach is effective in the detection of

violations (targeting the validation aspect) in the program under test. We hope

that this type of useful information will help both researchers and practitioners to be aware

of possible repercussions in the final results when the data itself may undergo changes in

the future (which is very common in real world use cases). If they foresee the possible usage

of application in the environment/scenarios captured by the violated MRs then this set of

knowledge would significantly help them to perform a comparative analysis of the behaviour

of different clustering algorithms, choosing the one best suited for their problem, and making

well informed decisions.

To answer the RQ5.4 (of RG5), the results obtained show that different MRs

have detected a different percentage of violations for the given instances. It can be seen

in Table 8.3 that MR8 has detected a higher percentage (94.60%) of violations, showing

that the program under test is highly susceptible to small input changes (captured by this

MR), whereas, MR4.1, MR9.1, and MR14.2 have the lowest percentage (0.3%) of violations

(showing that among the violated MRs, for these three MRs, the program under test is least

susceptible to small modifications). Apart from that, MR4.1, MR9.1, and MR14.2 have

shown the violation for the same number of instances (i.e., one instance), thus; one may argue

that since these all three MRs have the same test effectiveness, using only one of them would

be enough. However, this reasoning (without making a deeper analysis) may be subjective

and incorrect. Therefore, we further analysed the results for these three MRs and found

that the instance for which the program shows a violation is different for each of the violated

MRs; thus, revealing the diversity of the proposed MRs and suggesting that they all have

different test effectiveness. This answers the raised research question that different MRs

have different ability to detect the violation for different number/percentage of

data inputs.

146

Threats To Validity

In this section, we examine the threats to the validity of this research as described by

Wohlin et al. [82]. Although the proposed approach seems to be effective in its ability to

identify scenarios for which DBSCAN shows inconsistent behavior, we identify the following

threats to validity:

• It can be argued that the proposed MRs may not be sufficient to validate a potentially

large set of scenarios. This threat refers to the possibility of having unwanted or

unanticipated causal relationships as a result of the MRs selected. This poses a

potential threat to internal validity of this study. We minimize this threat by proposing

a sufficient number of diverse MRs whose results show that even with this limited, but

diverse set of MRs, we successfully identify the violations for 52.4% of the scenarios

(captured by the MRs targeting the validation aspect).

• Construct validity refers to the meaningfulness of measurements made. The threat to

construct validity may occur because of the selection of the algorithm for this study.

We tried to minimize this threat by showing the effectiveness of the proposed MRs

on an award-winning DBSCAN clustering algorithm, provided by the leading python

library scikit-learn.

• Content validity refers to how complete the proposed MRs cover the content domain;

which in our case is clustering algorithms. Although our focus is on DBSCAN, we have

proposed a large set (i.e., 21) diverse MRs that are not only applicable to test this

algorithm but has also been applied in our previous work [62] for testing partitioning-

based and hierarchical-based clustering algorithms.

• The DBSCAN algorithm under test belongs to the category of density-based clustering

147

algorithms, thus generalizing the results (obtained from the proposed approach) to

other type of density-based algorithms might be speculative and poses a threat to

external validity. We aim to minimize this threat in the future by showing the

applicability of the proposed approach on a collection of other density-based algorithms.

Conclusion And Future Work

Our contribution with this research includes proposing an approach that both naive

and expert users can benefit from for testing clustering based applications. This work shows

the feasibility of the proposed MT based approach in both the verification and validation of

the award-winning DBSCAN algorithm (a density based clustering algorithm), provided by

the widely used python library i.e., scikit-learn. We proposed a broader set of 21 MRs and

also provided a detailed analysis and reasoning to show whether each of the proposed MRs

targets the verification or the validation aspect of testing the algorithm under test. Despite

the fact that we have proposed a broader set of 21 MRs, this list is not exhaustive, and

instead, we expect researchers to further expand this seminal list with additional MRs that

can be leveraged to test a broader set of ML applications.

To show the effectiveness of the proposed approach, we further conducted a case study

on an anomaly detection system. The results obtained show that 52.4% of the MRs (targeting

the validation aspect) have been violated by the program under test, with one MR showing

the highest violation rate of 94.5%. To show the applicability of the proposed MRs in general,

we not only hope to apply them in testing other types of density based algorithms but also

aim to further enhance the MR repository in the future.

148

CONCLUSION AND FUTURE WORK

Conclusion

This dissertation outlines current research in applying SE testing techniques for the

quality assurance of machine learning models (supervised and unsupervised) and proposes

an extension to this research by addressing existing gaps in the literature. This extension

includes conducting multiple case studies to show the applicability of proposed approaches

for testing both the supervised learning algorithms (i.e, neural network-based classifiers),

and unsupervised learning algorithms (i.e., partitioning, hierarchical, and density-based

clustering). To complete this dissertation, first, we adapted the traditional SE testing

technique (metamorphic testing) and propose a statistical metamorphic testing technique

for the identification of implementation bugs in NN-based classifiers that have a stochastic

nature in training. To show the applicability of the proposed approach (in terms of further

validation) in the image classification domain, we apply the proposed approach to test

a CNN-based image classifier used for detecting pneumonia among patients. We also

propose an MRs minimization algorithm that helps in saving organizational resources and

performing testing with fewer MRs (especially in a regression testing environment) without

compromising the overall fault detection effectiveness of the proposed approach. Second,

we propose a hybridized testing approach in which, (i) instead of using MT for testing

purposes, we utilize its power for addressing the data collection/labeling problem; that is,

enhancing the prioritized test set size without incurring any additional labeling cost for an

organization, and (ii) propose a statistical hypothesis testing technique (for detection) and

ML-based approach (for prediction) of buggy behavior in the next release of the program

under test. Other than the popularity of supervised learning algorithms, unsupervised

learning algorithms i.e., partitioning-based, hierarchical-based, and density-based clustering,

are also very common in solving data clustering related problems. However, to the best of

149

our knowledge, much less effort has been put in testing clustering algorithms. To contribute

in this space, we use metamorphic testing technique and propose a diverse set of MRs to

test such types of algorithms i.e., k-means (a partitioning-based algorithm), agglomerative

clustering (a hierarchical-based clustering), and DBSCAN (a density-based clustering)

from both the verification (targeting the necessary characteristics of the algorithm) and

validation (targeting the user expectations from the algorithm) perspective. To the best

of our knowledge, this work is novel in addressing the gaps identified in the literature and

contributes to the body of knowledge of the SE4ML community.

Future Work

This dissertation is focused on the testing aspect of ML applications and proposes

multiple testing strategies for testing both supervised and unsupervised ML algorithms for

improving confidence in them. In the future, we intend to make additional contributions in

the emerging space of SE4ML by extending this work.

First, we intend to enhance the MRs repository for testing classification models dealing

with both the structured and unstructured data, and evaluating their performance using

the proposed statistical metamorphic testing technique. To show the applicability of the

proposed approach in other domains, we intend to apply it in testing of DNNs used in

speech recognition and natural language processing domains. Further, we aim to leverage

machine learning techniques for effective MRs prioritization and their minimization.

Second, we intend to propose more effective MRs that can be used to leverage prioritized

test inputs for generating additional representative data; thus reducing labeling costs

further and enabling organizations to check program correctness on large input scenarios

for enhancing their trust. This work will be an extension to the existing work proposed

in the chapter titled ‘A Hybridized Approach for Testing Neural Network Based Intrusion

Detection Systems’. The results obtained in this preliminary study are encouraging, and a

150

comprehensive study on applying the proposed approach on a larger number of mutants is

in progress. It will also be interesting to explore what other types of useful features can be

added to enhance the performance of ML models for predicting bugs in the next release of

the classifiers under test.

In the space of testing unsupervised ML algorithms, we have seen much less research

work done. Therefore, we not only aim to enhance the MRs repository targeting clustering

algorithms (from both the verification and validation perspective) but will also show the

general applicability of the proposed MRs [61] [62] by utilizing the proposed approach in

testing a broad range of other clustering algorithms that are popular among both researchers

and practitioners of the ML community. Further, to improve the testing of agglomerative

and DBSCAN clustering based applications, we intend to develop new criteria that can be

used to verify MRs at multiple levels, which will ultimately help in building trust in using

critical application algorithms.

Last but not least, we also see a research gap in the availability of open-source ML

testing tools. Therefore, we aim to develop an open source testing tool for testing a variety

of ML models in an automated fashion. First, we intend to unify the approaches (proposed

in this dissertation) into a single tool and then expand it gradually with new research

contributions. Second, we aim to integrate machine learning based techniques for predicting

potential MRs best suited for testing the ML model(s) under test. Third, this tool will

utilze the MRs prioritization/minimization component to prioritize/minimize MRs for the

program(s) under test. This initiative will make this tool available for everyone and will

also allow researchers across the globe to contribute and extend it for better serving the

community.

We equally believe that the metamorphic testing is a simpler but a very powerful

approach that can be used for testing a plethora of complex and critical programs; thus,

more contributions in this space will further raise its awareness among both researchers and

151

practitioners. It is also worth exploring to check what other types of traditional software

testing techniques can be leveraged and reused in the emerging ML space, thus; preventing

reinvention of techniques.

152

REFERENCES CITED

[1] https://scikit-learn.org/stable/modules/clustering.html#dbscan.

[2] John H.McDonald http://www.biostathandbook.com/small.html, last accessed: 04 Oct
2022.

[3] Python Software Foundation. MutPy 0.4.0. https://pypi.python.org/pypi/MutPy/0.4.0.
[Online; accessed 04 Oct 2022].

[4] udacity, “Udacity challenge”, 2017. [online] Available at: https://
github.com/udacity/self-driving-car [Accessed 04 Oct 2022] .

[5] WEKA, “Weka 3: Data mining software in java”. [online] Available at:
https://www.cs.waikato.ac.nz/ml/weka/ [Accessed 04 Oct 2022].

[6] World Health Organization. (2021), https://www.who.int/news-room/fact-
sheets/detail/pneumonia.

[7] ISO/IEC 25010:2011 Systems and software engineering — Systems and software Quality
Requirements and Evaluation SQuaRE) — System and software quality models. 2011.

[8] Basant Agarwal and Namita Mittal. Text classification using machine learning methods-
a survey. In Proceedings of the Second International Conference on Soft Computing for
Problem Solving (SocProS 2012), December 28-30, 2012, pages 701–709. Springer, 2014.

[9] Berlian Al Kindhi, Tri Arief Sardjono, Mauridhi Hery Purnomo, and Gijbertus Jacob
Verkerke. Hybrid K-means, fuzzy C-means, and hierarchical clustering for DNA
hepatitis C virus trend mutation analysis. Expert systems with applications, 121:373–
381, 2019.

[10] Ashraf Tahseen Ali, Hasanen S Abdullah, and Mohammad N Fadhil. Voice recognition
system using machine learning techniques. Materials Today: Proceedings, 2021.

[11] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[12] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. Software
engineering for machine learning: A case study. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pages 291–300. IEEE, 2019.

[13] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th international conference on
Software engineering, pages 402–411, 2005.

153

[14] Florian Auer and Michael Felderer. Addressing data quality problems with metamorphic
data relations. In 2019 IEEE/ACM 4th International Workshop on Metamorphic
Testing (MET), pages 76–83. IEEE, 2019.

[15] Victor R Basili. Software modeling and measurement: the Goal/Question/Metric
paradigm. Technical report, 1992.

[16] Azzedine Boukerche and Jiahao Wang. Machine Learning-based traffic prediction
models for Intelligent Transportation Systems. Computer Networks, 181:107530, 2020.

[17] Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and
Darren Cofer. Input prioritization for testing neural networks. In 2019 IEEE
International Conference On Artificial Intelligence Testing (AITest), pages 63–70.
IEEE, 2019.

[18] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question metric
approach. Encyclopedia of software engineering, pages 528–532, 1994.

[19] Sai Yeshwanth Chaganti, Ipseeta Nanda, Koteswara Rao Pandi, Tavva GNRSN
Prudhvith, and Niraj Kumar. Image Classification using SVM and CNN. In
2020 International Conference on Computer Science, Engineering and Applications
(ICCSEA), pages 1–5. IEEE, 2020.

[20] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a new
approach for generating next test cases. Technical Report HKUST-CS98-01, Department
of Computer Science, Hong Kong University of Science and Technology, Hong Kong,
1998.

[21] Junhua Ding, Xiaojun Kang, and Xin-Hua Hu. Validating a deep learning framework by
metamorphic testing. In 2017 IEEE/ACM 2nd International Workshop on Metamorphic
Testing (MET), pages 28–34. IEEE, 2017.

[22] Anurag Dwarakanath, Manish Ahuja, Sanjay Podder, Silja Vinu, Arijit Naskar, and
MV Koushik. Metamorphic testing of a deep learning based forecaster. In 2019
IEEE/ACM 4th International Workshop on Metamorphic Testing (MET), pages 40–
47. IEEE, 2019.

[23] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M Rao, RP Ja-
gadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. Identifying implementation
bugs in machine learning based image classifiers using metamorphic testing. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 118–128, 2018.

[24] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In kdd,
volume 96, pages 226–231, 1996.

154

[25] Mohamed Amine Ferrag, Leandros Maglaras, Sotiris Moschoyiannis, and Helge Janicke.
Deep learning for cyber security intrusion detection: Approaches, datasets, and
comparative study. Journal of Information Security and Applications, 50:102419, 2020.

[26] Thiago S Guzella and Walmir M Caminhas. A review of machine learning approaches
to spam filtering. Expert Systems with Applications, 36(7):10206–10222, 2009.

[27] John A Hartigan and Manchek A Wong. Algorithm AS 136: A k-means clustering
algorithm. Journal of the royal statistical society. series c (applied statistics), 28(1):100–
108, 1979.

[28] Alex Hern. Facebook translates ‘good morning’ into ‘attack them’, leading to arrest.
the Guardian, 24, 2017.

[29] Phan Duy Hung, Nguyen Thi Thuy Lien, and Nguyen Duc Ngoc. Customer
segmentation using hierarchical agglomerative clustering. In Proceedings of the 2019
2nd International Conference on Information Science and Systems, pages 33–37, 2019.

[30] Habiba A Ibrahim, Ahmad Taher Azar, Zahra Fathy Ibrahim, and Hossam Hassan
Ammar. A hybrid deep learning based autonomous vehicle navigation and obstacles
avoidance. In The International Conference on Artificial Intelligence and Computer
Vision, pages 296–307. Springer, 2020.

[31] Amit Kumar Jaiswal, Prayag Tiwari, Sachin Kumar, Deepak Gupta, Ashish Khanna,
and Joel JPC Rodrigues. Identifying pneumonia in chest X-rays: A deep learning
approach. Measurement, 145:511–518, 2019.

[32] Darryl C Jarman, Zhi Quan Zhou, and Tsong Yueh Chen. Metamorphic testing for
Adobe data analytics software. In 2017 IEEE/ACM 2nd International Workshop on
Metamorphic Testing (MET), pages 21–27. IEEE, 2017.

[33] Minghua Jia, Xiaodong Wang, Yue Xu, Zhanqi Cui, and Ruilin Xie. Testing Machine
Learning Classifiers based on Compositional Metamorphic Relations. International
Journal of Performability Engineering, 16(1), 2020.

[34] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2010.

[35] Mingyue Jiang, Tsong Yueh Chen, Fei-Ching Kuo, Dave Towey, and Zuohua Ding. A
metamorphic testing approach for supporting program repair without the need for a
test oracle. Journal of systems and software, 126:127–140, 2017.

[36] Zeeshan Khan, Muhammad Zakira, Wushour Slamu, and Nady Slam. A study of neural
machine translation from Chinese to Urdu. Journal of Autonomous Intelligence, 2(4):29–
36, 2020.

155

[37] John C Knight and Nancy G Leveson. An experimental evaluation of the assumption
of independence in multiversion programming. IEEE Transactions on software
engineering, (1):96–109, 1986.

[38] Fumihiro Kumeno. Sofware engneering challenges for machine learning applications: A
literature review. Intelligent Decision Technologies, 13(4):463–476, 2019.

[39] Hiroshi Kuwajima, Hirotoshi Yasuoka, and Toshihiro Nakae. Engineering problems in
machine learning systems. Machine Learning, 109(5):1103–1126, 2020.

[40] Fred Lambert. Understanding the fatal tesla accident on autopilot and the nhtsa probe.
Electrek, July, 1, 2016.

[41] Matthew Lavine. The early clinical X-ray in the United States: patient experiences and
public perceptions. Journal of the history of medicine and allied sciences, 67(4):587–625,
2012.

[42] Zheng Li, Zhanqi Cui, Jianbin Liu, Liwei Zheng, and Xiulei Liu. Testing Neural Network
Classifiers Based on Metamorphic Relations. In 2019 6th International Conference on
Dependable Systems and Their Applications (DSA), pages 389–394. IEEE, 2020.

[43] Huai Liu, Iman I Yusuf, Heinz W Schmidt, and Tsong Yueh Chen. Metamorphic
fault tolerance: An automated and systematic methodology for fault tolerance in the
absence of test oracle. In Companion Proceedings of the 36th International Conference
on Software Engineering, pages 420–423, 2014.

[44] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-granularity testing criteria for
deep learning systems. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pages 120–131, 2018.

[45] Silverio Mart́ınez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert,
Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. Software Engineering for
AI-Based Systems: A Survey. arXiv preprint arXiv:2105.01984, 2021.

[46] Satoshi Masuda, Kohichi Ono, Toshiaki Yasue, and Nobuhiro Hosokawa. A survey
of software quality for machine learning applications. In 2018 IEEE International
conference on software testing, verification and validation workshops (ICSTW), pages
279–284. IEEE, 2018.

[47] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

[48] Diogo Moreira, Ana Paula Furtado, and Sidney Nogueira. Testing acoustic scene
classifiers using Metamorphic Relations. In 2020 IEEE International Conference On
Artificial Intelligence Testing (AITest), pages 47–54. IEEE, 2020.

156

[49] Mriganka Nath and Chandrajit Choudhury. Automatic detection of pneumonia from
chest X-Rays using deep learning. In International Conference on Machine Learning,
Image Processing, Network Security and Data Sciences, pages 175–182. Springer, 2020.

[50] Molouk Mishmast Nehi, Zahra Fakhrpoor, and Mohammad R Moosavi. Defects in The
Next Release; Software Defect Prediction Based on Source Code Versions. In Electrical
Engineering (ICEE), Iranian Conference on, pages 1589–1594. IEEE, 2018.

[51] S Shajun Nisha and M Nagoor Meeral. Applications of deep learning in biomedical
engineering. In Handbook of Deep Learning in Biomedical Engineering, pages 245–270.
Elsevier, 2021.

[52] A Ohnsman. Lidar maker velodyne ‘baffled’ by self-driving uber’s failure to avoid
pedestrian. Forbes, March, 2018.

[53] Alireza Osareh and Bita Shadgar. Machine learning techniques to diagnose breast
cancer. In 2010 5th international symposium on health informatics and bioinformatics,
pages 114–120. IEEE, 2010.

[54] Hyejin Park, Taaha Waseem, Wen Qi Teo, Ying Hwei Low, Mei Kuan Lim, and
Chun Yong Chong. Robustness Evaluation of Stacked Generative Adversarial Networks
using Metamorphic Testing. In 2021 IEEE/ACM 6th International Workshop on
Metamorphic Testing (MET), pages 1–8. IEEE, 2021.

[55] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in Python. the Journal of machine
Learning research, 12:2825–2830, 2011.

[56] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore: Automated
whitebox testing of deep learning systems. In proceedings of the 26th Symposium on
Operating Systems Principles, pages 1–18, 2017.

[57] C Lakshmi Prabha and N Shivakumar. Software defect prediction using machine
learning techniques. In 2020 4th International Conference on Trends in Electronics
and Informatics (ICOEI)(48184), pages 728–733. IEEE, 2020.

[58] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony
Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al. Chexnet:
Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint
arXiv:1711.05225, 2017.

[59] Fred Ramsey and Daniel Schafer. The statistical sleuth: a course in methods of data
analysis. Cengage Learning, 2012.

157

[60] Faqeer ur Rehman and Clemente Izurieta. Statistical Metamorphic Testing of Neural
Network Based Intrusion Detection Systems. In 2021 IEEE International Conference
on Cyber Security and Resilience (CSR), pages 20–26, 2021.

[61] Faqeer Ur Rehman and Clemente Izurieta. An Approach For Verifying And Validating
Clustering Based Anomaly Detection Systems Using Metamorphic Testing. In 2022
IEEE International Conference On Artificial Intelligence Testing (AITest), pages 12–
18. IEEE, 2022.

[62] Faqeer Ur Rehman and Clemente Izurieta. MT4UML: Metamorphic Testing for
Unsupervised Machine Learning. In 2022 9th Swiss Conference on Data Science (SDS),
pages 26–32. IEEE, 2022.

[63] Yazhou Ren, Kangrong Hu, Xinyi Dai, Lili Pan, Steven CH Hoi, and Zenglin Xu. Semi-
supervised deep embedded clustering. Neurocomputing, 325:121–130, 2019.

[64] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[65] Sebastião HN Santos, Beatriz Nogueira Carvalho da Silveira, Stevão A Andrade, Márcio
Delamaro, and Simone RS Souza. An experimental study on applying metamorphic
testing in machine learning applications. In Proceedings of the 5th Brazilian Symposium
on Systematic and Automated Software Testing, pages 98–106, 2020.

[66] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison.
Hidden technical debt in machine learning systems. Advances in neural information
processing systems, 28:2503–2511, 2015.

[67] Tanvi Sethi et al. Improved approach for software defect prediction using artificial neural
networks. In 2016 5th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions)(ICRITO), pages 480–485. IEEE, 2016.

[68] Salahuddin Shaikh, Liu Changan, Maaz Rasheed Malik, and Muhammad Asghar Khan.
Software Defect-Prone Classification using Machine Learning: A Virtual Classification
Study between LibSVM & LibLinear. In 2019 13th International Conference on
Mathematics, Actuarial Science, Computer Science and Statistics (MACS), pages 1–
6. IEEE, 2019.

[69] Krishna Pal Sharma et al. A Four-Stage dynamic approach for Software Defect
Prediction. In 2021 2nd International Conference on Secure Cyber Computing and
Communications (ICSCCC), pages 541–545. IEEE, 2021.

[70] A SIGKDD. sigkdd test of time award, https://www.kdd.org/News/view/2014-sigkdd-
test-of-time-award, 2014.

158

[71] Ben H Smith and Laurie Williams. An empirical evaluation of the MuJava mutation
operators. In Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION (TAICPART-MUTATION 2007), pages 193–202. IEEE, 2007.

[72] Liqun Sun and Zhi Quan Zhou. Metamorphic testing for machine translations: MT4MT.
In 2018 25th Australasian Software Engineering Conference (ASWEC), pages 96–100.
IEEE, 2018.

[73] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study of
bugs in machine learning systems. In 2012 IEEE 23rd International Symposium on
Software Reliability Engineering, pages 271–280. IEEE, 2012v.

[74] Yuchi Tian., Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing
of deep-neural-network-driven autonomous cars. In Proceedings of the 40th international
conference on software engineering, pages 303–314, 2018.

[75] Ashitosh Tilve, Shrameet Nayak, Saurabh Vernekar, Dhanashri Turi, Pratiksha R
Shetgaonkar, and Shailendra Aswale. Pneumonia detection using deep learning
approaches. In 2020 International Conference on Emerging Trends in Information
Technology and Engineering (ic-ETITE), pages 1–8. IEEE, 2020.

[76] Faqeer ur Rehman and Clemente Izurieta. A Hybridized Approach for Testing Neural
Network Based Intrusion Detection Systems. In 2021 International Conference on Smart
Applications, Communications and Networking (SmartNets), pages 1–8. IEEE, 2021.

[77] Faqeer ur Rehman and Clemente Izurieta. Testing Deep Learning Systems: A Statistical
Metamorphic Approach. In IEEE Transactions on Software Engineering. IEEE, 2022
(Under Review).

[78] Dejan Varmedja, Mirjana Karanovic, Srdjan Sladojevic, Marko Arsenovic, and Andras
Anderla. Credit card fraud detection-machine learning methods. In 2019 18th
International Symposium INFOTEH-JAHORINA (INFOTEH), pages 1–5. IEEE, 2019.

[79] Shuai Wang and Zhendong Su. Metamorphic testing for object detection systems. arXiv
preprint arXiv:1912.12162, 2019.

[80] Elaine J Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465–
470, 1982.

[81] Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and
techniques with Java implementations. Acm Sigmod Record, 31(1):76–77, 2002.

[82] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders
Wesslén. Experimentation in software engineering. Springer Science & Business Media,
2012.

159

[83] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. Testing and validating machine learning classifiers by metamorphic
testing. Journal of Systems and Software, 84(4):544–558, 2011.

[84] Xiaoyuan Xie, Zhiyi Zhang, Tsong Yueh Chen, Yang Liu, Pak-Lok Poon, and
Baowen Xu. METTLE: a METamorphic testing approach to assessing and validating
unsupervised machine LEarning systems. IEEE Transactions on Reliability, 69(4):1293–
1322, 2020.

[85] Sen Yang, Dave Towey, and Zhi Quan Zhou. Metamorphic exploration of an
unsupervised clustering program. In 2019 IEEE/ACM 4th International Workshop on
Metamorphic Testing (MET), pages 48–54. IEEE, 2019.

[86] Long Zhang, Xuechao Sun, Yong Li, and Zhenyu Zhang. A noise-sensitivity-
analysis-based test prioritization technique for deep neural networks. arXiv preprint
arXiv:1901.00054, 2019.

[87] M Zhang, Y Zhang, L Zhang, C Liu, and S Khurshid. DeepRoad: GAN-based
metamorphic autonomous driving system. Research Gate Publication, 2018.

[88] Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming
Zhang, and Cong Liu. Deepbillboard: Systematic physical-world testing of autonomous
driving systems. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pages 347–358. IEEE, 2020.

[89] Zhi Quan Zhou and Liqun Sun. Metamorphic testing of driverless cars. Communications
of the ACM, 62(3):61–67, 2019.

[90] Chris Ziegler. A google self-driving car caused a crash for the first time. The Verge,
2016.

	Titlepage
	Copyright
	Dedication
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Chapter 2 — Background & Related Work
	Background
	Related Work

	Chapter 3 — Research Objectives
	Motivation
	GQM

	Chapter 4 — Statistical Metamorphic Testing of Neural Network Based Intrusion Detection Systems
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Proposed Approach
	Empirical Results
	Conclusion

	Chapter 5 — Testing Deep Learning Systems: A Statistical Metamorphic Approach
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Approach To Identify Implementation Bugs in DNN-based Applications
	Empirical Results
	Conclusion

	Chapter 6 — A Hybridized Approach for Testing Neural Network Based Intrusion Detection Systems
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Motivation To Use Probability Vectors / Scores
	Proposed Approach
	Experimentation and Evaluation
	Threats To Validity
	Conclusion And Future Work

	Chapter 7 — MT4UML: Metamorphic Testing for Unsupervised Machine Learning
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Our Approach
	Experimentation and Evaluation
	Conclusion And Future Work

	Chapter 8 — An Approach For Verifying And Validating Clustering Based Anomaly Detection Systems Using Metamorphic Testing
	Contribution of Authors and Co-Authors
	Manuscript Information Page
	Abstract
	Introduction
	Related Work
	Our Approach
	Experimentation and Evaluation
	Threats To Validity
	Conclusion And Future Work

	Chapter 9 — Conclusion and Future Work
	Conclusion
	Future Work

	References Cited

