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ABSTRACT

Metamorphic testing is a well-known approach to tackle the oracle problem in
software testing. This technique requires source test cases that serve as seeds for
the generation of follow-up test cases. Systematic design of test cases is crucial for
the test quality. Thus, source test case generation strategy can make a big impact
on the fault detection effectiveness of metamorphic testing. Most of the previous
studies on metamorphic testing have used either random test data or existing test
cases as source test cases. There has been limited research done on systematic
source test case generation for metamorphic testing. This thesis explores innovative
methods for enhancing the effectiveness of Metamorphic Testing through systematic
generation of source test cases. It addresses the challenge of testing complex software
systems, including numerical programs and machine learning applications, where
traditional testing methods are limited by the absence of a reliable oracle. By
focusing on structural, mutation coverage criteria, and characteristics of machine
learning datasets, the research introduces strategies to generate source test cases
that are more effective in fault detection compared to random test case generation.
The proposed techniques include leveraging structural and mutation coverage for
numerical programs and aligning random values with machine learning properties
for supervised classifier applications. These techniques are integrated into the
METTester tool, automating the process and potentially reducing testing costs by
minimizing the test suite without sacrificing quality. The thesis demonstrates that
tailored source test case generation can significantly improve the fault detection
capabilities of Metamorphic Testing, offering substantial benefits in terms of cost
efficiency and reliability in software testing.



1

CHAPTER ONE

INTRODUCTION

Software testing is an integral part of the Software Development Life Cycle.

It is a costly activity, yet essential to detect faults. More than 50% of software

development costs often account for software testing [3]. Therefore, there is a

certain benefit in reducing the total cost and improving the effectiveness of software

testing by automating the process. The test case generation process is one of the

intellectually demanding tasks in software testing. Automation of test case generation

is a challenging task because it has a strong impact on the effectiveness and efficiency

of the software testing process. A great amount of research effort has been performed

on automated test case generation. As a result, a significant number of automated

test case generation techniques have been investigated and proposed [36].

Carlos et al. [63] proposed a novel random test case generation approach. They

utilized the feedback obtained during the execution of incrementally constructed

test inputs, which are evaluated against predefined contracts and filters to assess

their usefulness. This feedback-directed technique not only generates a suite of

unit tests for assessing code contract adherence and identifying potential errors

but also demonstrates superior performance in coverage and error detection when

compared to both systematic and traditional undirected random test generation

methods. Experimental validation on various data structures and large software

libraries reveals the method’s efficiency in uncovering previously undetected errors,

thereby outperforming existing techniques like model checking and undirected random

generation in terms of efficiency and effectiveness. Pietro et al. [11] proposed an
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improved symbolic execution-based test case generation approach that overcomes

limitations such as complex data structures and non-linear expressions, leading to

invalid inputs, unidentified infeasible traces, and false alarms faced by traditional

symbolic execution. This approach combined executable preconditions and invariant

design tailored to the lazy initialization algorithm, along with rewrite rules within the

symbolic executor for simplifying inverse relationships. Nikolai et al. [84] designed

a tool called Pex for .NET programs that leverages dynamic symbolic execution to

automatically generate a compact test suite with high code coverage. It monitors

execution traces to understand program behavior and employs a constraint solver

to find new test inputs that explore different behaviors within the program. In a

notable case study on a well-tested component of the .NET runtime, Pex successfully

identified errors, including a critical issue, demonstrating its efficiency in uncovering

hidden bugs.

However, all these test case generation approaches are suitable for relatively

less complicated software applications. However, complex systems such as scientific

software or machine learning applications have an underlying common problem called

oracle problem. An oracle is used to check whether the output produced for a given

test input is correct [87]. Metamorphic Testing (MT) is a technique proposed to

alleviate the oracle problem of software under test (SUT) [19]. The main idea is

that most of the time it is easier to predict relations between outputs of a program,

than understanding its input-output behavior. For example, consider a program

that computes the average of a list of real numbers. It is hard to correctly predict

the observed output when the input list has millions of real numbers. So, we can

not validate whether the returned average is correct. But, we can permute the

list of real numbers and check if the returned output matches with the previous

output (considering some roundoff error tolerance). If the outputs do not match,
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then there is a ’bug’ (fault) in the program. This type of property is called a

metamorphic relation (MR), which is a necessary property of the SUT and specifies a

relationship between multiple inputs and their outputs [21]. MT has been successful

in finding bugs in systems across various domains. MT has been successfully applied

to detecting previously unknown faults in different domains such as web services,

computer graphics, simulation and modeling, and embedded systems etc. [78].

To date, work done on improving the fault detection effectiveness of MT has

mainly focused on developing quality MRs. However, developing such MRs is a labor-

intensive task that requires the involvement of domain experts. Another, avenue to

improve the fault detection effectiveness of MT, which has not been explored so far,

is to systematically generate the source test cases. Most of the previous studies in

MT have used randomly generated test cases or existing test cases as source test

cases when conducting MT [8,20,38,79,94]. Our work shows that the effectiveness of

MT can be improved by systematically generating the source test cases [76]. Such a

systematic approach can also reduce the size of the test suite which will reduce the

testing cost. This thesis aims to develop methods to systematically generate source

test cases to improve the fault detection effectiveness of MT.

1.1 Problem Decomposition

In this section, we discuss the problem statement and knowledge questions (KQ)

addressed by this thesis. Figure 1.1 depicts the practical problem and knowledge

questions.

To address the stated problem of finding a better test case generation approach than

random test case generation, we selected two scientific software application domains

i.e., numerical programs and supervised classifier algorithms where the random test

case generation approach was applied to test the applications [79]. We analyzed
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Figure 1.1: Problem Decomposition
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five KQs to find an answer to our stated problem. KQ1 to KQ3 address numerical

programs and KQ4 and KQ5 address supervised classifier algorithms.

For KQ1 (Are coverage-based test cases better at fault finding than randomly generated

test cases? ), we decomposed our knowledge question into four research questions

(RQs):

RQ1: Which source test case generation technique(s) is/are most effective for

MT in terms of fault detection?

RQ2: Can the best performing source test case generation techniques be

combined to increase the fault finding effectiveness of MT?

RQ3: Does the fault detection effectiveness of an individual MR change with

the source test generation method?

RQ4: How does the source test suite size differ for each source test generation

technique?

The results of this study helped confirm that coverage-based test case generation

approaches have better fault-finding effectiveness than random test case generation

approaches in MT of numerical programs. However, since the quality of the MRs

also has an impact on the effectiveness of MT, in KQ2 (How much impact do MRs

have on fault finding effectiveness of MT? ), we focus on finding impactful MRs. We

decompose this knowledge question into the following three RQs:

RQ1: Can MRs be utilized to improve the fault detection effectiveness of

automatically generated test cases?

RQ2: How do the improved automatically generated test cases compare with

test suites created by developers in terms of fault detection effectiveness?
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RQ3: How does the effectiveness of the MRs vary compared to automatically

generated test cases?

Although coverage-based test cases have better fault-finding effectiveness, there can

be test cases that overlap and cover the same lines of code to detect faults. This

increases the time and budget of testing. In KQ3 ( What are the effective ways of

minimizing coverage-based test suites? ), we answered the following three RQs which

help reduce the time and budget of MT.

RQ1: Which Mutant reduction technique is best suited for detecting faults in

MT?

RQ2: Which coverage-based test suites have better fault-finding effectiveness?

RQ3: Can test suite minimization techniques reduce the cost of executing a test

suite and what is their effect on the fault detection effectiveness of a test suite?

After studying subject program 1: numerical programs, we move on to subject

program 2: supervised classifier algorithms. To find a better test case generation

approach than random test case generation, first, we answered KQ4 (How can we

identify impactful MRs based on fault finding effectiveness? ). To test supervised

classifier algorithms using MT, identifying MRs plays an important role [96]. We

answered this question by decomposing it into the following three RQs:

RQ1: How does the fault detection rate of MRs vary as the number of mutants

increases?

RQ2: Does the fault detection rate of MRs change with varying the data set

size in the source test cases?

RQ3: Does the fault detection effectiveness vary with the mutation engine used

to generate the mutants?
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To answer KQ5 (Are MR property based test cases better at fault finding than randomly

generated test cases? ), we use the properties of impactful MRs, developed a test case

generation approach, and answered the following three following RQs:

RQ1: Is the MRSyn approach more effective for MT than a random approach

in terms of fault detection capability?

RQ2: Does the use of MRs have any influence on enhancing the effectiveness of

fault finding in MT?

RQ3: Can test suite minimization techniques reduce the cost of executing a test

suite?

1.2 Contributions of the Dissertation

The contributions outlined in the text aim to evolve the generation of source

test cases by leveraging structural, mutation coverage criteria, and characteristics

of machine learning datasets. These methodologies are not only innovative but

also tailored to address specific domains such as numerical programs and supervised

machine learning classifier applications.

1. Utilize structural and mutation coverage criteria to generate source test cases

for MRs. This proposed technique can be used to generate source test cases for

testing numerical programs. Source test cases will be generated based on three

coverage criteria: line, branch, and weak mutation.

2. Utilize characteristics of the machine learning (ML) dataset to generate source

test cases. This proposed technique can be used to generate source test cases for

testing supervised ML classifier applications. The basic idea is to generate some
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random values and align those in the dataset according to some ML properties.

Our main goal is to test the correctness functionality of ML.

3. Integrate these two source case generation techniques into the METTester: a

Metamorphic Testing tool, to automate the source test case generation. This is a

significant leap towards automating the process of source test case generation.

The automation aspect is crucial for scalability and for enabling continuous

testing practices, particularly in agile and DevOps environments.

The hypothesized benefits of this proposed technique over random test case

generation highlight its potential to transform the testing landscape significantly:

1. By minimizing the number of source test cases needed without compromising on

the quality of testing, this technique can lead to substantial cost savings. This

reduction is achieved through identifying effective test cases that target critical

areas of the code and application functionality, thereby eliminating redundant

or less effective tests.

2. The precision in generating test cases tailored to uncover faults in specific

domains (i.e. numerical programs and ML applications) enhances the likelihood

of detecting errors. This precision, combined with the comprehensive coverage

criteria, ensures a wide array of potential faults are tested, increasing the overall

effectiveness of the testing process.

3. By providing concrete insights into the significant MRs concerning fault

detection capabilities, this approach not only aids in the immediate goal of

testing but also contributes to the broader knowledge base regarding effective

testing strategies. This understanding can guide the development of future

testing techniques and the refinement of existing methodologies.
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1.3 Overview of the Dissertation

The rest of the thesis is structured as follows. Chapter 2 describes the basics

of Metamorphic testing, source test case generation strategies, Mutation testing and

test case reduction strategies, and scientific application domains as subject programs

in this thesis. Chapter 3 discusses the related works that contributed to the test

case generation for MT. Chapter 4 presents a coverage-based source test generation

approach and its effectiveness in testing numerical programs using MT. Chapter 5

discusses the impact of MRs’ identification to improve the effectiveness of source

test cases to test numerical programs. Chapter 6 presents the effectiveness of the

test suite minimization technique in MT for testing numerical programs. Chapter

7 discusses the importance of identifying good MRs for MT to test supervised

algorithms. Chapter 8 presents a test case generation and minimization approach

to test machine learning applications. Chapter 9 summarises all contributions and

findings as the conclusions of this thesis.
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CHAPTER TWO

BACKGROUND

In this chapter, we provided some background on MT, source test case generation

approaches, Mutation Testing approaches, and scientific application domains used in

this research.

2.1 Metamorphic Testing

Following is the typical process used for applying MT:

1. Identify MRs from the specification of the SUT. An MR R(x1, x2, ..., xn, f(x1),

f(x2), ..., f(xn)) is a necessary property of the SUT and is specified over the

inputs x1, x2, ..., xn and their corresponding outputs f(x1), f(x2), ..., f(xn).

2. Generate the source test inputs x1, x2, ..., xk and execute them on the SUT.

3. (a) Construct the follow-up test inputs xk+1, xk+2, ..., xn by applying a trans-

formation specified by R to x1, x2, ..., xk, f(x1), f(x2), ..., f(xk).

(b) Execute the follow-up test cases.

4. Verify whetherR is satisfied with the obtained x1, x2, ..., xn, f(x1), f(x2), ..., f(xn)

by executing the SUT. If R is not satisfied the MR has revealed a fault in the

SUT.

Identification of MRs is typically done based on the knowledge of the subject

program (step 1). Several works have been done towards automating the MR

identification [47]. Any test case generation technique can be applied to generate

source test cases (step 2). Special case [94] and random testing [51] techniques have
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Source	Test	Case
Matrix	a	=	

0.0,14.2,0.0,4.0,
0.0,5.0,10.0,0.0,
0.0,3.0,0.0,2.3,
11.0,7.0,0.0,1.0

Follow-up	Test	Case
Matrix	a	=	

1.0,14.2,0.0,4.0,
0.0,6.0,10.0,0.0,
0.0,3.0,1.0,2.3,
11.0,7.0,0.0,2.0

MR	-	Addition	With
Identity	Matrix

Program	Under	Test	
Matrix.java

matrix	=	a.Transpose()

Output	of	Source	Test	Case
matrix		=	

0.0,0.0,0.0,11.0,
14.2,5.0,3.0,7.0,
0.0,10.0,0.0,0.0,
4.0,0.0,2.3,1.0

Output	of	Follow-
up	Test	Case
matrix	=	

1.0,0.0,0.0,11.0,
14.2,6.0,3.0,7.0,
0.0,10.0,1.0,0.0,
4.0,0.0,2.3,2.0

MR	-	Addition	With	Identity
Output	of	Follow-up	TC	>=

Output	of	Source	TC

Figure 2.1: Illustration of Metamorphic Testing.

been used to generate source test cases. Further, previous studies have shown that

using coverage-based test inputs as source inputs would improve the fault detection

effectiveness of MT compared to random test inputs [76]. As shown in the above

process, since MT checks the relationship between inputs and outputs of a test

program, we can use this technique when the expected results of individual test inputs

are unknown. The following example is a sample of MT process. In figure 2.1, a Java

method Transpose from Matrix.java class is used to show how source and follow-

up test cases perform with a program under test (PUT). The Transpose method

transposes a matrix and returns the transposed matrix. Source test case, a =

{(0.0, 14.2, 0.0, 4.0), (0.0, 5.0, 10.0, 0.0), (0.0, 3.0, 0.0, 2.0), (11.0, 7.0, 0.0, 1.0)} is devel-

oper generated and tested on the Transpose method. The output for this source test

case is matrix = {(0.0, 0.0, 0.0, 11.0), (14.2, 5.0, 3.0, 7.0), (0.0, 10.0, 0.0, 0.0), (4.0, 0.0,

2.3, 1.0)}. For this program, when an identity matrix is added to the input, the

output should increase. This will be used as an MR to conduct MT on this PUT.

An identity matrix of size 4 is added to this matrix to create a follow-up test case

a
′
= {(1.0, 14.2, 0.0, 4.0), (0.0, 6.0, 10.0, 0.0), (0.0, 3.0, 1.0, 2.3), (11.0, 7.0, 0.0, 2.0)} and
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then execute on the PUT. The output for this follow-up test case is matrix =

{(1.0, 0.0, 0.0, 11.0), (14.2, 6.0, 3.0, 7.0), (0.0, 10.0, 1.0, 0.0), (4.0, 0.0, 2.3, 2.0)}. To sat-

isfy this MR the follow-up test output should be greater than the source output.

We calculate the sum of elements of the matrices from source and follow-up outputs

which is 57.5 and 61.5 respectively. In this MT example, 61.5 is greater than 57.5

then the considered MR is satisfied for this given source and follow-up test cases.

Previous studies have consistently shown that [53, 66, 82, 97] MT has many

advantages. First and foremost, MT provides a test result verification mechanism

during the absence of an oracle. The test results are verified against a set of MRs

instead of an oracle. Besides, most MRs are simple in concept, so it is convenient to

verify test results by using some simple scripts automatically.

2.2 Source Test Case Generation

In MT, source test cases serve as seeds for the generation of follow-up test cases.

Source test cases can be generated using any traditional testing techniques. In most

of the MT approaches, researchers either use random testing or existing test suites

for the source test case generation. My research goal is to find test case generation

techniques that have better fault detection effectiveness.

2.2.1 Random Test Case Generation

Random testing (RT) selects test cases randomly from all possible input values.

This is the poorest technique of all, according to Myers [59]. He argued that a

collection of randomly selected test cases had little chance of being optimal, or

close to optimal, in terms of the probability of detecting the most errors. He

advised that the tester should select test cases more intelligently than RT. On the

other hand, compared to other techniques, the automated implementation of RT is
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much more cost-effective because it is computationally inexpensive. Based on this

advantage, Duran and Wiorkowski [34] were interested in investigating RT further.

They conducted a study to compare the effectiveness of RT and path-coverage testing

in the context of analyzing software reliability. They found a surprising result where

RT could sometimes be better. Based on the study in [34], Duran and Nafos [33]

conducted an empirical study of the fault-finding capabilities of RT. They showed

that RT could find errors in a reasonably high proportion of time.

In 57% of the studies with MT, RT has been applied as a source test case

generation technique [78]. This is a popular source test case generation technique

because of its cost-effective and straightforward approach. Another reason for using

RT is that MT was considered a black box testing technique. But, in this study, my

target is to explore the possibility of using this testing technique as white box testing.

In addition, the new approach also has to be more effective in detecting faults than

RT.

2.2.2 Search Based Test Case Generation

The application of metaheuristic search techniques for the automatic generation

of test cases has been of rapid interest to many researchers in recent years. In industry,

test case selection is generally a manual process, and the responsibility of which

usually falls on the tester. However, this manual process is too costly, complicated,

and laborious. The automation process in this area has been limited. Exhaustive

enumeration of a program’s input is infeasible for any reasonably sized program, yet

random methods are unreliable and unlikely to exercise “deeper” software features

that are not exercised by mere chance.

Previous efforts have been limited by the size and complexity of the software

involved and the basic fact that, in general, test data generation is an undecidable
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problem. The application of metaheuristic search techniques to test data generation

is a possibility that offers much promise for these problems. Metaheuristic search

techniques are high-level frameworks that utilize heuristics to find solutions to

combinatorial problems at a reasonable computational cost. Such a problem may have

been classified as NP-complete or NP-hard, or be a problem for which a polynomial

time algorithm is known to exist but is not practical. They are not standalone

algorithms in it of themselves, but rather strategies ready for adaptation to specific

problems. For test data generation, this involves the transformation of test criteria

into objective functions. Objective functions compare and contrast solutions of the

search concerning the overall search goal. Using this information, the search is

directed into potentially promising areas of the search space.

Search-based software test data generation is just one example of search-based

software engineering [25, 41]. To date, metaheuristic search techniques have been

applied to automate test data generation in the following areas:

• the coverage of specific program structures, as part of a structural, or white-box

testing strategies;

• the exercising of some specific program feature, as described by a specification;

• attempting to automatically disprove certain grey-box properties regarding the

operation of a piece of software, for example trying to stimulate error conditions,

or falsify assertions relating to the software’s safety;

• to verify non-functional properties, for example, the worst-case execution time

of a segment of code.

Three search-based test data generation techniques proposed by EvoSuite [36]

have been used as a source test case generation technique for MT in our numerical



15

program testing. These techniques are briefly explained below:

2.2.2.1 Line Coverage In-Line coverage [74], to cover each statement of source

code, each basic code block in a method must be reached (except comments). In

traditional search-based testing techniques, this reachability would be expressed by an

association of branch distance [54] and approach level. The branch distance measures

how different a predicate (a decision-making point) is from evaluation to an expected

target result. For example, given a predicate a == 7 and an execution with value a

= 5, the branch distance to the predicate value true would be |5 − 7| = 2, whereas

execution with value a = 6 is closer to being true with a branch distance of |6−7| = 1.

Branch distance can be estimated by applying a set of standard rules [50, 54]. The

approach-level with regards to the control dependencies measures how distant a sole

execution and the target statements.

2.2.2.2 Branch Coverage Many popular tools have implemented in practice the

idea of branch coverage [74], even though this practical approach may not always

match the more theoretical interpretation of covering all edges of a program’s control

flow. Branch coverage is often measured by maximizing the number of branches of

conditional statements that are executed by a test suite. Thus, to satisfy a unit test

suite for each of the branch statements, there is at least one test case that satisfies

the branch predicate to false and at least one test case satisfies the branch predicate

to true. In branch coverage, the fitness value is measured by calculating the closeness

of the test suite to cover all the branches of a PUT.

2.2.2.3 Weak Mutation Coverage To generate test cases in test generation tools,

it is preferred to satisfy the constraints or conditions rather than developers’ preferred

boundary cases. Small code modification is applied to the PUT in WM testing.
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Then, the test generation tools are forced to generate such values that can distinguish

between the original and the mutant. In mutation testing, a test case is considered

to be ”killed” when the execution result of the mutant version is different than the

original version of the PUT. The WM criteria are satisfied when at least one test case

from the unit test suite reaches the infection state of the mutant. To measure the

fitness value of the WM [74], it is required to calculate infection distance concerning

a set of mutation operators.

2.3 Mutation Testing

Mutation testing [29] has been used to evaluate the fault detection effectiveness

of the automated test case generation approaches. Mutation testing is a fault-

based testing technique that measures the effectiveness of test cases of SUT. Many

experiments suggest that mutants are a proxy to the real faults for comparing testing

techniques [4]. Briefly, the technique performs as follows. First, mutants are created

by simply seeding faults in a program. By applying syntactic changes to its source

code, new faulty versions of the original programs are generated. Each syntactic

change is determined by an operator called a mutation operator. Test cases are then

executed for the faulty and original versions of the program and checked whether they

produce different responses. If the response of the mutant is different from the original

program, then we say the mutant has been killed, and the test case has the ability to

detect faults effectively for that program. Otherwise, the mutant remains alive. When

a mutant is syntactically different but semantically identical to the original then it

is referred to as an equivalent mutant. There are four common equivalent mutant

situations: the mutant cannot be triggered, the mutant is generated from dead code,

the mutant only alters the internal states, and the mutant only improves speed. The

percentage of killed mutants concerning the total number of non-equivalent mutants
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provides an adequacy measurement of the test suite, which is called the mutation

score.

2.3.1 Mutant Reduction Strategies

Selecting representative subsets from a given set of mutants is the principal aim

of mutant reduction strategies. This technique will practically reduce the application

cost of mutation testing which will lead to a reduction in the total software testing

cost. Two mutation reduction techniques have been proven more effective in recent

studies [64]. But to my knowledge there is no mutation reduction techniques have

been applied to evaluate the fault-finding effectiveness of source test case generation

techniques in MT. Our claim in this proposal is that applying mutation reduction

techniques to find a better test case generation approach is cost-effective in terms

of time and budget. We will conduct an empirical study to find a better mutation

reduction technique for our test case generation approach.

2.3.1.1 Random Sampling Technique A major portion of the mutation testing

demands is influenced by the generation and execution of the candidate set of

mutants. By considering a small sample of mutants, a significant cost reduction

can be achieved. Empirical studies have shown that a selection of 10% of mutants

results in a 16% loss of the fault detection ability of the produced test sets compared

to full mutation testing [93]. In our proposal, we will follow the first-order mutation

testing strategies [65]. In this process, we will select x% (random x%) portion of the

initial mutant set, where x = 10, 20, 30, 40, 50, and 60. In the empirical study, we will

find out which random % of selected mutants can better represent the total mutant

set.
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2.3.1.2 Operator Based Mutant Selection Since mutant operators generate

different numbers of mutant programs, Offutt et al. proposed N−selective mutation

theory where N is # of mutant operators [61]. In their experiment, they divided

the mutant operators into three general categories based on the syntactic elements

that they modify. Three categories are Replacement-of-operand operators (replace

each operand in a program with each other legal operand), Expression modification

operators (modify expressions by replacing operators and inserting new operators),

and Statement modification operators (modify entire statements). Their experiments

suggest that Expression modification operators with less number of mutants than the

total mutant set can be effective and the execution time is also linear.

2.4 Scientific Applications

I am focusing on improving the fault detection effectiveness of test case

generation techniques for two separate scientific application domains, numerical

programs and ML applications in my doctoral research proposal.

2.4.1 Numerical Applications

Numerical programs are vital to our daily lives. They have been used not

only in various theoretical disciplines but also in engineering and medical practices

including mission-critical and safety-critical applications. Unfortunately, despite the

importance of the quality of numerical packages, we are far from doing a good job [67].

Like other testing contexts, we usually assume that we can verify the actual

outputs of numerical software against some expected results. We call the mechanism

of checking the correctness of the test output as a test oracle [10, 37]. Developers of

numerical software generally adopt the following mechanisms as test oracles:
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1. Comparing with analytical solutions, simulation results, tabulated values, or

hand-calculations [37].

2. Verifying with standard mathematical libraries or reference software pack-

ages [15].

Test oracles, however, may not be available in every program. This is the so-

called oracle problem. This is especially the case for numerical software. Because

of truncation errors (due to truncating an infinite series into a finite series),

rounding errors (due to the digital representation of floating-point numbers) and the

propagation of errors in the computing process, numerical computation introduces

unwarranted errors that will affect the final results. Thus, we cannot find exact

solutions to numerical problems. Instead, we can aim at bounding the errors of

numerical solutions so that they satisfy given precision requirements. With the efforts

of mathematicians, by applying special techniques, we can assure the precision of some

numerical functions, such as elementary functions [26]. It is, however, very difficult

to analyze the errors in complex numerical computation [42,72].

There are reputable mathematical libraries, such as IMSL 1 and NAG 2, which

have matured through intensive testing and real-life applications. In fact, some

popular numerical libraries have been refined gradually because of errors identified

throughout the operational lives of the programs. We can compare some of the results

of our numerical software with these libraries or similar reference software, but how

do we handle other results that may involve special features not available in standard

libraries? By the same argument, tabulated values and analytical solutions may not

be available in every application.

1http://www.vni.com/ products/imsl
2https://www.nag.com/content/nag-library
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2.4.2 Machine Learning Applications

Many fields in scientific computing applications, such as computational biology,

bioinformatics, etc. - depend on supervised ML algorithms to provide important core

functionality to support solutions. For instance, over fifty real-world computational

applications use support vector machines for classification [1]. As these types of

applications are becoming part of our daily lives, ensuring their quality becomes even

more important [55]. In such applications, formal proofs of the underlying algorithm

do not always guarantee that it implements that algorithm correctly. Therefore,

software testing is imperative to ensure the quality of these systems.

Quality assurance of such applications presents a challenge because conventional

software testing processes do not always apply: in particular, it is difficult to detect

subtle errors, faults, defects, or anomalies in many applications in these domains.

After all, there is no reliable “test oracle” to indicate what the correct output should

be for arbitrary input. The general class of software systems with no reliable test

oracle available is sometimes known as “non-testable programs” [87]. Many of these

applications fall into a category of software that Weyuker describes as “Programs

which were written in order to determine the answer in the first place. There would

be no need to write such programs if the correct answer were known” [87].

The majority of the research effort in the domain of ML focuses on building more

accurate models that can better achieve the goal of automated learning from the real

world. However, to date, very little work has been done on assuring the correctness

of the software applications that perform ML operations [70,71,85]. Formal proofs of

an algorithm’s optimal quality do not guarantee that an application implements or

uses the algorithm correctly, and thus software testing is necessary.
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CHAPTER THREE

RELATED WORK

Most contributions on MT use either randomly generated test data or existing

developer test suites for the generation of source test cases. Not much research

has been done on the automatic generation of source test cases for MT. A testing

approach called Automated Metamorphic Testing has been proposed by Gotlieb and

Botella [38]. They translated the code into an equivalent constraint logic program

and tried to find test cases that violated the MRs. The fault detection effectiveness

of RT has been compared with ”special values” as source test cases for MT by Chen

et al. [20]. Special values are one type of input where the output is well-known for a

particular method. But randomly generated test cases are more effective than those

test cases that are derived from ”special values” for MT [94]. Manually generated test

suites have also been compared with the RT for MT [79]. Their experimental results

showed that randomly generated test suites are more effective in detecting faults than

manually designed test suites. They also observed from their results that combining

RT with manually written tests provides better fault detection ability than RT only.

A genetic algorithm approach has been proposed by Batra and Sengupta [9] to

generate test cases maximizing the paths traversed in the PUT for MT. The same

problem has been resolved by partitioning the input domain of the PUT into multiple

equivalence classes for MT [16]. They applied an algorithm that would generate test

cases by covering those equivalence classes. They were able to generate source and

follow-up test cases that provide a high fault detection rate. Symbolic Execution was

used to construct MRs and generate their corresponding source test cases by Dong

and Zhang [32]. At first, the program paths were analyzed to generate symbolic
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inputs, and then, these symbolic inputs were used to construct MRs. Finally, source

test cases were generated by replacing the symbolic inputs with real values.

Adaptive Random Testing (ART) has been applied over the RT to find the

fault detection effectiveness of source test case generation on MT [8]. Barus et al.’s

empirical study showed that ART outperforms RT in enhancing the effectiveness

of MT. Another automated test case generation technique called dynamic symbolic

execution (DSE) has been applied to generate the source test cases for MT [2]. Alatawi

et al.’s study showed that DSE improves the coverage and fault detection rate of MT

compared to RT using significantly smaller test suites.

Murphy et al. generated data with repeating values, missing values, or

categorical data for testing two ML ranking applications [57]. They had generated

large data sets by controlling the properties and randomness of the data. Their data

generation tool was proven to be simple and reliable compared to the real-world data.

Breck et al. used synthetic training data that adhere to schema constraints to trigger

the hidden assumptions in the code that do not agree with the constraints [12]. They

identified the data bugs while deploying the system on TFX (an end-to-end machine-

learning platform at Google). They also investigated the skew in training data and

new data. Perturbed Model Validation (PMV) combines MR and data mutation to

detect overfitting [99]. Zhang et al. used synthetic data with known distributions to

test overfitting.
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4.3 Abstract

Metamorphic testing is a well known approach to tackle the oracle problem in

software testing. This technique requires the use of source test cases that serve as seeds

for the generation of follow-up test cases. Systematic design of test cases is crucial

for the test quality. Thus, source test case generation strategy can make a big impact

on the fault detection effectiveness of metamorphic testing. Most of the previous

studies on metamorphic testing have used either random test data or existing test

cases as source test cases. There has been limited research done on systematic source

test case generation for metamorphic testing. This paper provides a comprehensive

evaluation on the impact of source test case generation techniques on the fault finding

effectiveness of metamorphic testing. We evaluated the effectiveness of line coverage,

branch coverage, weak mutation and random test generation strategies for source

test case generation. The experiments are conducted with 77 methods from 4 open

source code repositories. Our results show that by systematically creating source

test cases, we can significantly increase the fault finding effectiveness of metamorphic

testing. Further, in this paper we introduce a simple metamorphic testing tool called

”METtester” that we use to conduct metamorphic testing on these methods.
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4.4 Introduction

A test oracle [86] is a mechanism to detect the correctness of the outcomes of

a program. The oracle problem [7] can occur when there is no oracle present for the

program or it is practically infeasible to develop an oracle to verify the correctness

of the computed outputs. This test oracle problem is quite frequent especially with

scientific software and is one of the most challenging problems in software testing.

Metamorphic testing (MT) technique was proposed to alleviate this oracle problem

[17]. MT uses properties from the program under test to define metamorphic relations

(MRs). A MR specifies how the outputs should change according to a specific change

made into the source input. Thus, from existing test cases (named as source test

cases) MRs are used to generate new test cases (named as follow-up test cases).

Then the set of source and follow-up test cases are executed on the program under

test and the outputs are checked according to the corresponding MRs. The program

under test can be considered as faulty if a MR is violated.

Effectiveness of MT in detecting faults depends on the quality of MRs.

Additionally the effectiveness of MT should also rely on the source test cases.

Effectiveness of metamorphic testing can be improved by systematically generating

the source test cases. Such a systematic approach can reduce the size of the test

suite and could be more cost effective. Most of the previous studies in MT have used

randomly generated test cases as source test data for metamorphic testing. In this

study we investigated the effectiveness of line, branch coverage, weak mutation, and

random testing for creating source test cases for MT.

Our experimental results show that test cases satisfying weak mutation coverage

provide the best fault finding effectiveness. We also have found that combining one

or more systematic source test case generation technique(s) may increase the fault
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detection ability of MT.

4.5 Background

MT is a property based testing approach which aims to alleviate the oracle

problem. But the effectiveness of MT not only depends on the quality of MRs but

also on the source test cases. In this section we briefly discussed MT and source test

generation techniques, line, branch coverage and weak mutation.

4.5.1 Metamorphic Testing

Source test cases are used in MT [17] to generate follow-up test cases using a set

of MRs identified for the program under test (PUT). MRs [22] are identified based

on the properties of the problem domain like the attribute of the algorithm used. We

can create source test cases using techniques like random testing, structural testing

or search based testing. Follow-up test cases are generated by applying the input

transformation specified by the MRs. After executing the source and follow-up test

cases on the PUT we can check if there is a change in the output that matches the

MR, if not the MR is considered as violated. Violation of MR during testing indicates

fault in the PUT. Since MT checks the relationship between inputs and outputs of a

test program, we can use this technique when the expected result of a test program

is not known.

For example, in figure 4.1, a Java method add values is used to show how source

and follow-up test cases work with a PUT. The add values method sum up all the

array element passed as argument. Source test case, t = {3, 43, 1, 54} is randomly

generated and tested on add values. The output for this test case is 101. For this

program, when a constant c is added to the input, the output should increase. This

will be used as a MR to conduct MT on this PUT. A constant value 2 is added
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Figure 4.1: Test source and follow-up inputs on PUT.

to this array to create a follow-up test case t
′
= {5, 45, 3, 56} and then run on the

PUT. The output for this follow-up test case is 109. To satisfy this Addition MR the

follow-up test output should be greater than the source output. In this MT example,

the considered MR is satisfied for this given source and follow-up test cases.

4.5.2 Source Test Case Generation

To generate source test cases we have used the EvoSuite [36] tool. EvoSuite

is a test generation tool that automatically produces test cases targeting a higher

code coverage. EvoSuite uses an evolutionary search approach that evolves whole

test suites with respect to an entire coverage criterion at the same time. In this

paper we generated source test cases based on line, branch coverage , weak mutation

and random testing. Below we briefly describe the systematic approaches used by

EvoSuite to generate them.

4.5.2.1 Line Coverage In line coverage [74], to cover each line of source code, we

need to make sure that each basic code block in a method is reached. In traditional

search-based testing, this reachability would be expressed by a combination of

branch distance [54] and approach-level. The approach-level measures how distant

an individual execution and the target statement are in terms of the control
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dependencies. The branch distance estimates how distant a predicate (a decision

making point) is from evaluation to a desired target result. For example, given a

predicate x==6 and an execution with value x = 4, the branch distance to the

predicate valuing true would be |4 − 6| = 2, whereas execution with value x=5 is

closer to being true with a branch distance of |5 − 6| = 1. Branch distance can be

measured by applying a set of standard rules [50,54].

In addition to test case generation, if reformation is a test suite to execute

all statements then the approach level is not important, as all statements will be

executed by the similar test suite. Hence, we only need to inspect the branch

distances of all the branches that are related to the control dependencies of any

of the statements in that class. There is a control dependency for some statements

for each conditional statement in the code. It is required that the branch of the

statement leading to the dependent code is executed. Hence, by executing all the

tests in a test suite the line coverage fitness value can be calculated. The minimum

branch distances dmin(b, Suite) are calculated for each executed statement among all

observed executions to every branch b in the collection of control dependent branches

BCD. Thus, the line coverage fitness function is defined as [74]:

fLC(Suite) = v(|NCLs| − |CoveredLines|) +
∑

b∈BCD

v(dmin(b, Suite))

Where NCLs are the set of all statements in the class under test (CUT), CoveredLines

are the total set of covered statements which are executed by each test case in the

test suite, and v(x) is a normalizing function in [0,1] (e.g. v(x) = x
(x+1)

) [5].

4.5.2.2 Branch Coverage The idea of covering branches is well accepted in

practice and implemented in popular tools, even though the practical rationale of
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branch coverage may not always match the more theoretical interpretation of covering

all edges of a program’s control flow. Branch coverage is often defined as maximizing

the number of branches of conditional statements that are executed by a test suite.

Thus, a unit test suite is considered as satisfied if and only if its at least one test case

satisfies the branch predicate to true and at least one test case satisfies the branch

predicate to false.

The fitness value for the branch coverage is calculated based on a criteria which

is how close a test suite is to covering all branches of the CUT. The fitness value of

a test suite is calculated by executing all of its test cases, keeping trail of the branch

distances d(b, Suite) for each of the branch in the CUT. Then [74]:

fBC(Suite) =
∑
b∈B

v(d(b, Suite))

To optimize the branch coverage the following distance is calculated, where dmin(b, Suite)

is the minimal branch distance of branch b on all executions for the test suite [74]:

d(b, Suite) =



0 if the branch has been covered,

v(dmin(b, Suite)) if the predicate has been

executed at least twice,

1 otherwise,

Here it is needed to cover the true and false evaluation of a predicate, so that a

predicate must be executed at least twice by a test suite. If the predicate is executed

only once, then in theory the searching could oscillate between true and false.
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4.5.2.3 Weak Mutation Test case generation tools prefer to generate values that

satisfy the constraints or conditions, rather than developers preferred values like

boundary cases. In weak mutation a small code modification is applied to the CUT

and then force the test generation tool to generate such values that can distinguish

between the original and the mutant. If the execution of a test case on the mutant

leads to a different state than the execution on the CUT than a mutant is considered

to be ”killed” in the weak mutation. A test suite satisfies the weak mutation criterion

if and only if at least one test case kill each mutant for the CUT.

Infection distance is measured with respect to a set of mutation operator which

guides to calculate the fitness value for the weak mutation criterion. Here inference

of a minimal infection distance function dmin(µ, Suite) exists and define [74]:

dw(µ, Suite) =


1 if mutant µ was not reached,

v(dmin(µ, Suite)) if mutant µ was reached.

This results in the following fitness function for weak mutation [74]:

fWM(Suite) =
∑
µ∈Mc

dw(µ, Suite)

Where Mc is the set of all mutants generated for the CUT.

4.6 Evaluation Method

We conducted a set of experiments to answer the following research questions:

• RQ1: Which source test case generation technique(s) is/are most

effective for MT in terms of fault detection?
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• RQ2: Can the best performing source test case generation technique

be combined to increase the fault finding effectiveness of MT?

• RQ3: Does the fault detection effectiveness of an individual MR

change with the source test generation method?

• RQ4: How does the source test suite size differ for each source test

generation technique?

4.6.1 Code Corpus

We built a code corpus containing 77 functions that take numerical inputs and

produce numerical outputs . We obtained these functions from the following open

source projects:

• The Colt Project1: A set of open source libraries written for high-performance

scientific and technical computing in Java.

• Apache Mahout2: A machine learning library written in Java.

• Apache Commons Mathematics Library3: A library of lightweight and

self-contained mathematics and statistics components written in the Java.

We list these functions in Table 4.1. Functions in the code corpus perform various

calculations using sets of numbers such as calculating statistics (e.g. average, standard

deviation and kurtosis), calculating distances (e.g. Manhattan and Tanimoto) and

searching/sorting. Lines of code of these functions varied between 4 and 52, and the

number of input parameters for each function varied between 1 and 4.

1http://acs.lbl.gov/software/colt/
2https://mahout.apache.org/
3http://commons.apache.org/proper/commons-math/
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Table 4.1: All methods with mutants kill rates and test suite size for each source test
case generation technique

Branch weak mutation Line Random

Method name Killrate

(%)

#

of

Test

Cases

Killrate

(%)

#

of

Test

Cases

Killrate

(%)

#

of

Test

Cases

Killrate

(%)

#

of

Test

Cases

add values 63.63 1 63.63 1 54.54 1 30 10

array calc1 33.33 1 33.33 1 46.15 1 52.10 10

array copy 56.00 1 64.00 1 64.00 1 0.00 10

average 38.10 1 73.80 1 42.86 1 28.20 10

bubble 51.40 1 44.95 3 36.69 1 16.90 10

cnt zeroes 41.00 1 51.30 2 38.46 1 0.00 10

count k 31.80 1 36.36 2 34.09 1 50.00 10

count non zeroes 41.00 1 48.71 2 51.28 1 22.20 10

dot product 63.00 1 60.87 1 56.52 1 22.20 10

elementwise max 46.30 2 68.51 3 83.33 2 0.00 10

elementwise min 44.40 1 55.56 1 55.56 1 0.00 10

find euc dist 80.10 1 76.39 1 79.17 1 50 10

find magnitude 52.10 1 75.00 1 52.10 1 8.69 10

find max 70.80 1 50.00 1 50.00 1 70.90 10

find max2 64.10 1 71.84 2 67.96 1 98.40 10

find median 48.70 2 98.93 3 41.71 2 53.10 10

find min 40.40 1 61.70 1 57.45 1 83.80 10

geometric mean 51.20 1 53.66 1 95.12 1 65.40 10
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hamming dist 40.90 1 84.09 3 59.09 2 15.90 10

insertion sort 43.60 1 42.55 2 37.23 1 32.65 10

manhattan dist 53.30 1 61.36 2 53.30 1 0.00 10

mean absolute

error

37.50 1 41.07 2 39.29 1 0.00 10

selection sort 41.30 1 41.30 2 39.40 1 21.60 10

sequential search 37.20 2 25.58 3 30.23 2 37.50 10

set min val 51.20 2 58.14 2 30.23 1 100 10

shell sort 43.70 1 42.51 1 43.11 1 0.00 10

variance 26.10 1 39.86 1 30.40 1 25.70 10

weighted average 86.10 1 56.94 1 86.10 1 21.20 10

manhattan

Distance

48.89 1 77.78 2 22.22 1 9.10 10

chebyshevDistance 39.08 2 43.68 5 35.63 2 2.00 10

tanimotoDistance 30.21 2 32.97 5 44.50 2 5.60 10

errorRate 61.04 3 58.44 2 58.44 2 0.00 10

sum 50.00 1 77.78 1 50.00 1 35.30 10

distance1 53.33 1 80.00 1 53.33 1 14.8 10

distanceInf 46.67 1 46.67 1 46.67 1 14.8 10

ebeadd 92.68 2 100.00 3 100.00 2 15.8 10

ebedivide 100.00 2 100.00 5 100.00 2 26.8 10

ebemultiply 100.00 2 100.00 3 92.68 2 15 10

safeNorm 14.78 1 98.63 5 97.08 4 0.8 10

scale 48.72 1 58.97 3 53.85 1 47.8 10
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entropy 88.42 1 88.42 2 88.42 1 42.9 10

g 93.55 2 95.16 2 93.55 1 20.9 10

calculateAbsolute

Differences

60.98 1 60.98 1 60.98 1 0 10

evaluateHoners 46.03 1 79.37 1 47.62 1 80.4 10

evaluateInternal 95.25 1 93.47 2 95.55 1 90.6 10

evaluateNewton 80.00 1 65.71 1 64.29 1 76.8 10

meanDifference 40.00 1 80.00 1 40.00 1 40 10

equals 22.50 3 27.50 4 21.25 3 100 10

chiSquare 96.41 2 96.41 2 96.41 2 65.6 10

partition 43.26 5 95.81 5 28.84 3 88.1 10

evaluateWeighted

Product

30.61 2 40.82 2 42.86 2 2 10

autoCorrelation 25.20 2 93.50 2 43.09 1 79.40 10

covariance 24.84 1 23.57 1 23.57 1 86.70 10

durbinWatson 0.00 0 33.77 1 0.00 0 14.10 10

harmonicMean 74.00 1 74.00 1 76.00 1 42.50 10

kurtosis 93.84 1 93.84 1 97.16 1 34.80 10

lag1 99.55 1 32.70 1 89.55 1 33.70 10

max 51.72 1 56.90 1 51.72 1 96.60 10

meanDeviation 54.39 1 33.33 1 28.07 1 78.30 10

min 67.41 1 81.03 2 70.69 1 96.60 10

polevl 94.23 2 88.46 1 88.46 2 45.50 10

pooledMean 36.43 1 34.88 1 34.88 1 19.30 10
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pooledVariance 43.08 1 47.83 1 47.83 1 31.10 10

power 53.33 1 53.33 1 53.33 1 15.80 10

product 50.00 1 50.00 1 50.00 1 94.70 10

quantile 40.13 2 40.76 2 32.48 2 40.00 10

sampleKurtosis 93.86 1 93.86 1 92.98 1 85.10 10

sampleSkew 89.47 1 89.47 1 97.37 1 89.50 10

sampleVariance 75.31 1 75.31 1 12.35 1 71.20 10

skew 93.88 1 93.88 1 93.88 1 48.80 10

square 47.37 1 47.37 1 57.89 1 5.30 10

standardize 89.26 1 89.26 1 91.95 1 77.60 10

sumOfLogarithms 75.00 1 68.75 1 68.75 1 21.90 10

sumOfPowerOf

Deviations

68.75 1 52.08 1 75.00 1 64.90 10

weightedMean 77.46 1 77.46 1 77.46 1 65.00 10

weightedRMS 86.96 1 86.96 1 86.96 1 43.30 10

winsorizedMean 33.00 1 37.93 1 34.48 1 0.00 10

4.6.2 METtester

METtester [68] is a simple tool that we are developing to automate the MT

process on a given Java program. This tool allows users to specify MRs and source

test cases through a simple XML file. METtester transforms the source test cases

according to the specified MRs and conducts MT on the given program. Figure 4.2

shows the high level architecture of the tool. Below we describe the important

components of the tool:
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Figure 4.2: METtester architecture.

• XML input file: User will provide information (Figure 4.3) regarding method

names to test, source test inputs, MRs, and the number of test cases to run.

• XML file parsing: Xmlparser class in our tool will parse information from the

.xml file and process those. Then that information will be sent to the Follow-up

test case generation module.

• Follow-up test Case Generation: In this module follow-up test cases are

generated based on the provided MRs and the source test cases.

• Execute Source & Follow-up test cases on the PUT: After generation

of the follow-up test cases METtester will run both the source and follow-up

test cases individually into the system programs and return outputs from the

programs.

• Compare Source & Follow-up test results: After getting the test results

from the test program METtester will compare those results with the MR
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operators mentioned in the xml file. If it satisfies the MR property then the

class will flag the test case as ”Pass”. If it fails to satisfy the MR property class

will flag it as ”Fail” which means there is fault in the program.

Figure 4.3: An example of the XML input given to METtester.

4.6.3 Experimental Setup

For the 77 methods described in Table 4.2 we generated a total of 7446 mutated

versions using the µJava mutation tool [52]. We used the following six metamorphic

relations that were used in previous studies to test these functions [48]. Suppose our

source test case is X = {x1, x2, x3, ..., xn} where xi ≥ 0, 0 ≤ i ≤ n. Let source and

follow-up outputs be O(X) and O(Y ) respectively:

• MR - Addition: add a positive constant C to the source test case and the

follow-up test case will be Y = {x1 + C, x2 + C, x3 + C, ..., xn + C}. Then

O(Y ) ≥ O(X).

• MR - Multiplication: multiply the source test case by a positive constant C

and the follow-up test case will be Y = {x1 ∗C, x2 ∗C, x3 ∗C, ..., xn ∗C}. Then

O(Y ) ≥ O(X).

• MR - Shuffle: randomly permute the elements in the source test case. The

follow-up test case can be Y = {x3, x1, xn, ..., x2}. Then O(Y ) = O(X).
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• MR - Inclusive: include a new element xn+1 ≥ 0 to the source test case and the

follow-up test case will be Y = {x1, x2, x3, ..., xn, xn+1}. Then O(Y ) ≥ O(X).

• MR - Exclusive: exclude an existing element from the source test case and

the follow-up test case will be Y = {x1, x2, x3, ..., xn−1}. Then O(Y ) ≤ O(X).

• MR - Invertive: take the inverse of each element of source test case. Then

the follow-up test case will be Y = {1/x1, 1/x2, 1/x3, ..., 1/xn}. Then O(Y ) ≤

O(X).

For each of the methods, we used EvoSuite [36] described in section 2.2 to

generate test cases targeting line, branch and weak mutation coverage. We used the

generated test cases as the source test cases to conduct MT on the methods using the

MRs described using METtester. Further, we randomly generated 10 test cases for

each method to use as source test cases, to be used as the baseline.

Table 4.2: Total number of methods having the highest mutants kill rate for each
source test generation techniques.

Total Methods Weak mutation Line Branch Random

77 41 26 29 13

4.7 Results and Discussion

4.7.1 Effectiveness of the Source Test Case Generation Techniques

Figure 4.4 shows the overall mutant killing rates for the four source test

generation techniques. Among all test case generation techniques, weak mutation

performed best by killing 68.7% mutants. Random tests killed 41.5% of the mutants.

Table 4.2 lists the number of methods that reported the highest mutant kill rates
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for each type of test generation technique. For some methods, several source test

generation techniques gave the same best performance.Therefore, Figure 4.5 shows

a Venn diagram of all the possible logical relations between the best performing

source test generation techniques for the set of methods. Weak mutation based test

generation technique reported the highest kill rate in 41 (53%) methods, whereas

random testing reported the highest kill rate only in 13 (17%) methods. Therefore

these results suggest that weak mutation based source test case generation is more

effective in detecting faults with MT.

Figure 4.4: Total % of mutants killed by each source test suite generation technique.

4.7.2 Fault Finding Effectiveness of Combined Source Test Cases

To observe whether combining source test case generation techniques will achieve

a higher fault detection rate, we combined the best performing source test generation

technique, weak mutation, with the other source test generation techniques. Table

4.3 shows the total percentage of mutants killed with each combined test suite.

Combination of weak mutation and random test cases has the greater percentage of

mutants kill rate (74.91) than combination of line (72.87) and branch (74.6) separately
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Figure 4.5: Venn Diagram for all the combinations of source test suites that performed
best for each individual methods.

with weak mutation. If we combine all of the three strategies it slightly increases the

total percentage of killed mutants (75.98) but there are few things to be considered,

like combined test suite size.

Table 4.3: Total % of mutants killed after combining weak mutation, line, branch
coverage, and random testing

Weak Mutation

+Line(%)

Weak Mutation

+ Branch(%)

Weak Mutation

+ Line +

Branch(%)

Weak Mutation

+ Random(%)

72.87 74.6 75.98 74.91

4.7.3 Fault Finding Effectiveness of Individual MRs

To see how each source test case generation technique performs with individual

MRs, Figure 4.6 illustrates the percentage of mutants killed by all six MRs separately

using weak mutation, line, branch coverage and random test suites. Weak mutation

has the highest percentage of killed mutants in all the six MRs. Specifically with
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Figure 4.6: % of mutants killed by all six MRs using 4 test suite strategies (Branch,
Line Coverage, Weak Mutation and Random)

multiplication and invertive MRs, the weak mutation test suite surpasses others

on mutants’ killing rate. But line coverage based test suites were similar to weak

mutation on killing mutants with addition, shuffle, inclusive and exclusive MRs. For

exclusive MR, all the test suites performed almost similarly.

4.7.4 Impact of Source Test Suite Size

Table 4.4 compares the coverage criteria in terms of the total number of tests

generated, their average and median test suite size of the individual methods. In

addition, in columns Smaller, Equal, and Larger we compare whether the size of

the weak mutation test suites are smaller, equal or larger than those produced by

other source test case generation techniques. And p-value column shows the p-value

computed using the paired t-test between weak mutation - line and weak mutation

-branch. We are not comparing random test suites here, because we intentionally

generated 10 random test cases for each method. Weak Mutation leads to larger test

suites than branch and line coverage and on average, number of test cases produced
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Table 4.4: Average test suites size for weak mutation, line coverage, branch coverage
and random

Test

Suites

Total

Number

of Test

Cases

Average

Size

Median

size

Std

Dev

Smaller Equal Larger p-

value

Weak

mutation

135 1.75 1 1.13 - - - -

Line 97 1.26 1 0.67 1 45 31 3.102e-

07

branch 99 1.29 1 0.59 2 49 26 1.375e-

05

Random 770 10 10 0 77 0 0 -

for weak mutation are larger than those produced for branch and line coverage. The

total number of test cases are also relatively larger for weak mutation compared to

line and branch coverage.

4.8 Threats to Validity

Threats to internal validity may result from the way empirical study was carried

out. EvoSuite and our experimental setup have been carefully tested, although testing

can not definitely prove the absence of defects.

Threats to construct validity may occur because of the third party tools we have

used. The EvoSuite tool has been used to generate source test cases for line, branch

and weak mutation test generation techniques. Further, we used the µJava mutation
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tool to create mutants for our experiment. To minimize these threats we verified

that the results produced by these tools are correct by manually inspecting randomly

selected outputs produced by each tool.

Threats to external validity were minimized by using the 77 methods was

employed as case study, which is collected from 4 different open source project classes.

This provides high confidence in the possibility to generalize our results to other open

source software. We only used the EvoSuite tool to generate test cases for our major

experiment. But we also used the JCUTE [80] tool to generate branch coverage based

test suites for our initial case study and also observed similar results.

4.9 Related Work

Most contributions on MT use either random generated test data or existing test

suites for the generation of source test cases. Not much research has been done on

systematic generation of source test cases for MT. Gotlieb and Botella [38] presented

an approach called Automated Metamorphic Testing where they translated the code

into an equivalent constraint logic program and tried to find test cases that violates

the MRs. Chen et al. [20] compared the effectiveness of random testing and ”special

values” as source test cases for MT. Special values are inputs where the output is

well known for a particular method. Wu et al. [94] proved that random test cases are

more effective than those test cases that are derived from ”special values”. Segura

et al. [79] also compared the effectiveness of random testing with manually generated

test suites for MT. Their results showed that randomly generated test suites are more

effective in detecting faults than manually designed test suites. They also observed

that combining random testing with manual tests provides better fault detection

ability than random testing only.

Batra and Sengupta [9] proposed genetic algorithm to generate test cases
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maximizing the paths traversed in the program under test for MT. Chen et al. [16] also

addressed the same problem from a different prospective. They proposed partitioning

the input domain of the PUT into multiple equivalence classes for MT. They proposed

an algorithm which will generate test cases which will cover those equivalence classes.

They were able to generate test cases that provide high fault detection rate. Symbolic

Execution was used to construct MRs and their corresponding source test cases by

Dong and Zhang [32]. Program paths were first analyzed to generate symbolic inputs

and then, these symbolic inputs were used to construct MRs. In the final step, source

test cases were generated by replacing the symbolic inputs with real values.

Barus et al. [8] applied the Adaptive Random Testing (ART) over the random

testing (RT) to find the effectiveness of source test case generation on MT. Their

results showed that ART outperforms RT on enhancing the effectiveness of MT.

Alatawi et al. [2] used the automated test input generation technique called dynamic

symbolic execution (DSE) to generate the source test inputs for metamorphic testing.

Their results showed that DSE improves the coverage and fault detection rate of

metamorphic testing compared to random testing using significantly smaller test

suites. Compared to them, in this work, we evaluate the effectiveness of four

commonly used coverage criteria for automated source test case generation.

4.10 Conclusions & Future Work

In this study we empirically evaluated the fault finding effectiveness of four

different source test case generation strategies for MT: line, branch, weak mutation

and random.

Our results show that weak mutation coverage based test generation can be

an effective source test case generation technique for MT than the other techniques.

Our results also show that the fault finding effectiveness of MT can be improved
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by combining source tests generated for weak mutation coverage with randomly

generated source test cases.

Further, in this paper we introduce a MT tool called ”METtester.” We plan

to incorporate the investigated automated source test generation techniques into

this tool. We also plan to extend the current case study to larger code bases and

experiment with more source test generation techniques such as adaptive random

test generation and data flow based test generation. Further, we plan to analyze the

impact of the coverage of follow up test cases in our future research.
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5.3 Abstract

Automated test case generation has helped to reduce the cost of testing.

However, developing effective test oracles for these automatically generated test cases

still remains a challenge. Metamorphic testing (MT) has become a well-known

software testing approach over the years. This testing technique can effectively

alleviate the oracle problem faced when testing using metamorphic relations (MRs)

to determine whether a test case is passed or failed. In this work, we conduct an

empirical study on an open source linear algebra library to evaluate whether MRs

can be utilized to improve the fault detection effectiveness of automatically generated

test cases. Our experiment suggests that MRs can help to improve the fault detection

effectiveness of automatically generated test cases.
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5.4 Introduction

Software testing is an integral part of software development life cycle. Typically,

testing is a costly activity yet it is essential to detect faults. As a means of reducing

this cost, there has been lot of work done on automated test case generation, including

the development of publicly available tools [36]. Automatically generated test suites

have certain advantages over manually written test cases, in particular, saving human

labor and time. Some work has shown that it is more effective to use test cases that

are generated based on some coverage criteria rather than randomly generated test

cases [62]. The main focus of automated test generation work thus far has been to

develop efficient methods to generate test inputs to achieve a certain target such as

coverage. However, there has been relatively less attention paid on utilizing effective

test oracles that can improve the fault detection effectiveness of these automatically

generated test cases. A test oracle is used to check whether the output produced for a

given test case is correct or not [88]. In fact, due to the automated nature of generating

test inputs, defining the oracles for these test inputs is a hard problem. Thus, many of

the automatically generated test cases would contain trivial oracles, such as the assert

statements that we will discuss later. This reduces the fault detection effectiveness

of these test cases.

For example, consider the matrix Power function shown in Listing 5.4 that

returns a new matrix which is the nth power of the current matrix. Figure 5.1(Left)

shows a test case generated by Evosuite [36](a test case generation tool) for this

function. This test case can cover 90% statements of the Power function from the

Matrix class. Lines 13 to 21 are the assertions generated by Evosuite that serves as

the oracles for this test case. It is easy to note that these assert statements only check

for trivial properties of the output such as the the number of rows and columns of
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the output matrix is not zero. Thus, these assertions do not check the accuracy of

the underlying calculation, which is computing the nth power of a matrix.

1public Matrix power ( int n) {
2 i f (n < 0) {
3 f a i l ("The␣exponent␣should␣be␣positive:␣"

4 + n + "." ) ;

5 }
6

7 Matrix r e s u l t = blankOfShape ( rows , rows ) ;

8 Matrix that = this ;

9

10 for ( int i = 0 ; i < rows ; i++) {
11 r e s u l t . s e t ( i , i , 1 . 0 ) ;

12 }
13

14 while (n > 0) {
15 i f (n % 2 == 1) {
16 r e s u l t = r e s u l t . mul t ip ly ( that ) ;

17 }
18

19 n /= 2 ;

20 that = that . mul t ip ly ( that ) ;

21 }
22

23 return r e s u l t ;

24 }

Listing 5.1: Power function from La4j Matrix class

Metamorphic Testing (MT) is a technique proposed to alleviate the oracle problem

of software under test (SUT) [19]. This is based on the idea that most of the time

it is easier to develop relations between multiple inputs and outputs of a program

than specifying the values of individual outputs. For example, consider a program

that computes the average of a list of real numbers. It is hard to correctly predict

the observed output when the input list has millions of real numbers. However, we

can permute the list of real numbers and check if the returned output matches the
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1@Test ( timeout = 4000)

2public void t e s t 042 ( ) throws

Throwable {
3 MockRandom mockRandom0 = new

MockRandom( ) ;

4 as se r tNotNul l (mockRandom0) ;

5

6 DenseMatrix denseMatrix0 =

7 DenseMatrix . randomSymmetric

(0 , mockRandom0) ;

8 a s s e r tEqua l s (0 , denseMatrix0

. columns ( ) ) ;

9 a s s e r tEqua l s (0 , denseMatrix0

. rows ( ) ) ;

10 as se r tNotNul l ( denseMatrix0 ) ;

11

12 Matrix matrix0 =

denseMatrix0 . power (1293) ;

13 assertNotSame ( denseMatrix0 ,

matrix0 ) ;

14 assertNotSame (matrix0 ,

denseMatrix0 ) ;

15 a s s e r tEqua l s (0 , denseMatrix0

. columns ( ) ) ;

16 a s s e r tEqua l s (0 , denseMatrix0

. rows ( ) ) ;

17 a s s e r tEqua l s (0 , matrix0 . rows

( ) ) ;

18 a s s e r tEqua l s (0 , matrix0 .

columns ( ) ) ;

19 asse r tTrue ( matrix0 . equa l s ( (

Object )

20 denseMatrix0 ) ) ;

21 as se r tNotNul l ( matrix0 ) ;

22 }

1@Test ( timeout = 4000)

2public void t e s t 042 ( ) throws

Throwable {
3 MockRandom mockRandom0 = new

MockRandom( ) ;

4 as se r tNotNul l (mockRandom0) ;

5

6 DenseMatrix denseMatrix0 =

7 DenseMatrix . randomSymmetric (0 ,

mockRandom0) ;

8 a s s e r tEqua l s (0 , denseMatrix0 .

columns ( ) ) ;

9 a s s e r tEqua l s (0 , denseMatrix0 .

rows ( ) ) ;

10 as se r tNotNul l ( denseMatrix0 ) ;

11

12 Matrix matrix0 = denseMatrix0 .

power (1293) ;

13

14 //Matrix Mu l t i p l i c a t i o n − MR

15 Matrix matrix1 =

16 denseMatrix0 . mult ip ly (

denseMatrix0 ) ;

17 matrix1 = matrix1 . power (1293) ;

18 asse r tTrue ( matrix0 . equa l s ( (

Object ) matrix1 ) ) ;

19 }

Figure 5.1: (Left) EvoSuite generated test case , (Right) Modified test case with MR
in MT
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previous output. If the outputs do not match, then there is a fault in the program.

The property that specifies when the elements of the inputs are randomly permuted

the output should remain the same is called a MR, which is a necessary property of

the SUT and specifies a relationship between multiple inputs and their outputs [21].

In this work, we investigate whether we can utilize MRs to improve the fault

detection effectiveness of automatically generated test cases. MRs provide an effective

method to overcome the oracle problem in automatically generated test cases and

verify the underlying calculations. For example, following is an Matrix Multiplication

MR that should be satisfied by the program in Listing 5.4. The expected property of

this MR is multiplying the input matrix with another matrix having same size and

the expected return will be equal to the return of the input matrix. To incorporate

the checking of this MR we modified the test case in Figure 5.1 (Right) as follows:

1. We multiplied the source test case matrix (denseMatrix0) with the same matrix

(denseMatrix0) to generate the follow-up test case matrix (matrix1). (In line

15-16)

2. Next, we executed the follow-up test case matrix with the subject program

(Power function). (In line 17)

3. Finally using the assertTrue JUnit assertion function we were comparing the

output of source test case (matrix0) with the output of the follow-up test case

(matrix1). Then we expected the resultant matrix from these two test cases are

equal. (In line 18)

In this paper, we present the results of an empirical study conducted to evaluate the

effectiveness of utilizing MRs with automatically generated test inputs. To this end,

we generated coverage based test suites (line, branch, weak mutation coverage) using

EvoSuite for several open-source software systems that implement matrix calculations



54

and utilized MRs to augment these automatically generated test cases. Our results

show that MRs can help to increase the effectiveness of automatically generated

test suites and rare cases would have the similar fault detection effectiveness as the

developer written test suites.

Source	Test	Case
Matrix	a	=	

0.0,14.2,0.0,4.0,
0.0,5.0,10.0,0.0,
0.0,3.0,0.0,2.3,
11.0,7.0,0.0,1.0

Follow-up	Test	Case
Matrix	a	=	

1.0,14.2,0.0,4.0,
0.0,6.0,10.0,0.0,
0.0,3.0,1.0,2.3,
11.0,7.0,0.0,2.0

MR	-	Addition	With
Identity	Matrix

Program	Under	Test	
Matrix.java

matrix	=	a.Transpose()

Output	of	Source	Test	Case
matrix		=	

0.0,0.0,0.0,11.0,
14.2,5.0,3.0,7.0,
0.0,10.0,0.0,0.0,
4.0,0.0,2.3,1.0

Output	of	Follow-
up	Test	Case
matrix	=	

1.0,0.0,0.0,11.0,
14.2,6.0,3.0,7.0,
0.0,10.0,1.0,0.0,
4.0,0.0,2.3,2.0

MR	-	Addition	With	Identity
Output	of	Follow-up	TC	>=

Output	of	Source	TC

Figure 5.2: Illustration of Metamorphic Testing

5.5 Background

5.5.1 Metamorphic Testing

Following is the typical process used for applying MT:

1. Identify MRs from the specification of the SUT. An MR

R(x1, x2, ..., xn, f(x1), f(x2), ..., f(xn)) is a necessary property of the SUT and

is specified over the inputs x1, x2, ..., xn and their corresponding outputs

f(x1), f(x2), ..., f(xn).

2. Generate the source test inputs x1, x2, ..., xk and execute them on the SUT.

3. Construct the follow-up test inputs xk+1, xk+2, ..., xn by applying transformation

specified by R to x1, x2, ..., xk, f(x1), f(x2), ..., f(xk) and execute them.
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4. Verify whetherR is satisfied with the obtained x1, x2, ..., xn, f(x1), f(x2), ..., f(xn)

by executing the SUT. If R is not satisfied then MR has revealed a fault in the

SUT.

Step 1 (Identification of MRs), is typically done based on the knowledge of the

program. Recently there have been several work done towards automating the MR

identification [23, 47, 83]. In step 2 (Generation of source test cases), any test case

generation technique can be applied. Previous studies have used special case [94] and

random testing [51] techniques to generate source test cases. Further, previous studies

have shown that using coverage-based test inputs as source inputs would improve the

fault detection effectiveness of MT compared to random test inputs [76]. As shown

in the above process, since MT checks the relationship between inputs and outputs

of a test program, we can use this technique when the expected results of individual

test inputs are unknown.

The following example is a sample of MT process. In Figure 5.2, a Java method

Transpose from Matrix.java class is used to show how source and follow-up test cases

perform with a PUT. The Transpose method transposes a matrix and returns the

transposed matrix. Source test case, a = {(0.0, 14.2, 0.0, 4.0), (0.0, 5.0, 10.0, 0.0), (0.0,

3.0, 0.0, 2.0), (11.0, 7.0, 0.0, 1.0)} is developer generated and tested on Transpose

method. The output for this source test case is matrix = {(0.0, 0.0, 0.0, 11.0), (14.2,

5.0, 3.0, 7.0), (0.0, 10.0, 0.0, 0.0), (4.0, 0.0, 2.3, 1.0)}. For this program, when an iden-

tity matrix is added to the input, the output should increase. This will be used as a

MR to conduct MT on this PUT. An identity matrix of size 4 is added to this matrix to

create a follow-up test case a
′
= {(1.0, 14.2, 0.0, 4.0), (0.0, 6.0, 10.0, 0.0), (0.0, 3.0, 1.0,

2.3), (11.0, 7.0, 0.0, 2.0)} and then execute on the PUT. The output for this follow-up

test case is matrix = {(1.0, 0.0, 0.0, 11.0), (14.2, 6.0, 3.0, 7.0), (0.0, 10.0, 1.0, 0.0), (4.0,

0.0, 2.3, 2.0)}. To satisfy this MR the follow-up test output should be greater than
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the source output. We calculate the sum of elements of the matrices from source and

follow-up outputs which is 57.5 and 61.5 respectively. In this MT example, 61.5 is

greater than 57.5. Hence, the considered MR is satisfied for this given source and

follow-up test cases.

Previous studies [53,66,82,97] have consistently shown that metamorphic testing

has many advantages. First and foremost, MT provides a test result verification

mechanism in the absence of an oracle. The test results are verified against a set

of MRs instead of an oracle. Besides, most MRs are simple in concepts, so it is

convenient to verify test results by using some simple scripts automatically.

5.5.2 Automated Test Case Generation

In this work, we used EvoSuite [36] as the automated test case generation tool.

It automatically produces test cases targeting a high coverage such as line, branch,

and weak Mutation coverage. EvoSuite uses an evolutionary search approach that

evolves whole test suites with respect to an entire coverage criterion at the same time.

5.6 Empirical Evaluation

5.6.1 Research Questions

We conducted a set of experiments to answer the following research questions:

1. RQ1: Can MRs be utilized to improve the fault detection effective-

ness of automatically generated test cases?

2. RQ2: How does the improved automatically generated test cases

compare with test suites created by developers in terms of fault

detection effectiveness?
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3. RQ3: How does the effectiveness of the MRs vary compared to

automatically generated test cases?

5.6.2 Subject Programs

In this experiment we used four classes from la4j1 (version 0.6.0) open-source

Java library. la4j is a linear algebra library that provides matrix and vector

implementations and algorithms, was one of the software packages used for evaluating

the performance of automated testing tools [36]. We used the following Java classes

from la4j in this study:

• Matrix.java: This class has methods to perform matrix operations. We picked

20 methods to conduct our experiment on them. The description of these 20

methods is available in this GitHub repository2.

• LeastSquaresSolver.java: This solver method is the least squares approxi-

mation of linear functions to data. In this algorithm for approximation of Ax

= b equation QR decomposition have been applied.

• ForwardBackSubstitutionSolver.java: This class represents the process of

solving a system of linear algebraic equations using Forward Back Substitution

method. This algorithm used to solve LUx = b , where L is lower triangular

with units on the diagonal and U (= DV) is upper triangular. And b a given

vector 3.

• SquareRootSolver.java:This class represents Square Root method for solving

linear systems 4. This algorithm solves the matrix equation Au = g. for u,

1http://la4j.org/
2https://github.com/ps073006/ConfRepo
3https://algowiki-project.org/en/Forward substitution
4http://mathworld.wolfram.com/SquareRootMethod.html
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with A a p×p symmetric matrix and g a given vector.

5.6.3 MR Identification

We developed the following 10 MRs for testing the functions in the Matrix.java

class. Not all these MRs are satisfied by each of these functions. Total list of

these functions and the specific MRs satisfied by them can be found in this GitHub

repository4. (In all cases we assume that Matrix A comprises only non-negative

numbers).

• MR1 - Scalar Addition: Let A be the initial input matrix to a program

P , and b be a positive scalar. Let A′ be the follow-up input matrix where

A′ = ∀i, j ∈ b + Ai,j. Let the output of P for A be O (i.e. P (A) = O) and

P (A′) = O′. Then the expected output relation is
∑

i,j O
′ ≥

∑
i,j O.

• MR2 - Addition With Identity Matrix: Let A be the initial input matrix

to a program P , and I be an identity matrix. Let A′ be the follow-up input

matrix where A′ = ∀i, j ∈ Ii,j +Ai,j. Let P (A) = O and P (A′) = O′. Then the

expected output relation is
∑

i,j O
′ ≥

∑
i,j O.

• MR3 - Scalar Multiplication: Let A be the initial input matrix to a program

P , and b be a positive scalar. Let A′ be the follow-up input matrix where

A′ = ∀i, j ∈ b.Ai,j. Let P (A) = O and P (A′) = O′. Then the expected output

relation is
∑

i,j O
′ ≥

∑
i,j O.

• MR4 - Multiplication With Identity Matrix: Let A be the initial input

matrix to a program P , and I be an identity matrix. Let A′ be the follow-up

input matrix where A′ = ∀i, j ∈ Ii,j.Ai,j. Let P (A) = O and P (A′) = O′. Then

the expected output relation is
∑

i,j O
′ =

∑
i,j O.
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• MR5 - Transpose: Let A be the initial input matrix to a program P . Let A′

be the follow-up input matrix where A′ = ∀i, j ∈ AT
i,j = Aj,i. Let P (A) = O

and P (A′) = O′. Then the expected output relation is
∑

i,j O
′ =

∑
i,j O.

• MR6 - Matrix Addition: Let A be the initial input matrix to a program P .

Let A′ be the follow-up input matrix where A′ = ∀i, j ∈ Ai,j +Ai,j. Let P (A) =

O and P (A′) = O′. Then the expected output relation is
∑

i,j O
′ ≥

∑
i,j O.

• MR7 - Matrix Multiplication: Let A be the initial input matrix to a

program P . Let A′ be the follow-up input matrix where A′ = ∀i, j ∈ Ai,j.Ai,j.

Let P (A) = O and P (A′) = O′. Then the expected output relation is∑
i,j O

′ ≥
∑

i,j O.

• MR8 - Permute Column: Let A be the initial input matrix to a program

P with j = 1, 2, 3, .., n columns. Let A′ be the follow-up input matrix after

permuting the column positions of A. Let P (A) = O and P (A′) = O′. Then

the expected output relation is
∑

i,j O
′ =

∑
i,j O.

• MR9 - Permute Row: Let A be the initial input matrix to a program P with

i = 1, 2, 3, .., n rows. Let A′ be the follow-up input matrix after permuting the

row positions of A. Let P (A) = O and P (A′) = O′. Then the expected output

relation is
∑

i,j O
′ =

∑
i,j O.

• MR10 - Permute Element: Let A be the initial input matrix to a program

P with j = 1, 2, 3, .., n columns and i = 1, 2, 3, .., n rows. Rows and columns

have to be same size. Let A′ be the follow-up input matrix after permuting Ai,n

element with An,j element. Let P (A) = O and P (A′) = O′. Then the expected

output relation is
∑

i,j O
′ =

∑
i,j O.
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We also identified 6 MRs for 3 solver classes. In these 3 classes one matrix and

one vector value acted as parameters for the source test case. The particular method

we were testing in these 3 classes is Solve method. These 6 MRs are explained below:

• MR11 - Multiplication: Let A be the input matrix and v be a input vector

to a program P . Their source test execution output is vector P (A, v) = O.

After multiplying a positive scalar constant b with both, the follow-up matrix

will be A′ = ∀i, j ∈ b.Ai,j and vector v′ = ∀i ∈ b.vi. And their follow-up output

is vector P (A′, v′) = O′. Then, expected output relation is
∑

i,j O
′ =

∑
i,j O.

• MR12 - Permute Row Element: Let A be the input matrix with i =

1, 2, 3, .., n rows and v be a input vector with i = 1, 2, 3, .., n elements to a

program P . Their test execution output is vector P (A, v) = O. The follow-

up matrix will be A′ after permuting the row positions and vector v′ after

permuting elements. Then, their executed test output is vector P (A′, v′) = O′.

And expected output relation is
∑

i,j O
′ =

∑
i,j O.

• MR13 - Matrix Vector Addition: Let A be a input matrix with i =

1, 2, 3, .., n rows and v be a input vector with i = 1, 2, 3, .., n elements to a

program P . Their test execution output is vector P (A, v) = O. The follow-up

matrix will be A′ = ∀i, j ∈ Ai,j + Ai,j and vector v′ = ∀i ∈ vi + vi. Their

executed test output is vector P (A′, v′) = O′. Then, expected output relation

is
∑

i,j O
′ =

∑
i,j O.

• MR14 - Multiplication With Transpose Matrix: Let A be a input matrix

with i = 1, 2, 3, .., n rows and v be a input vector with i = 1, 2, 3, .., n elements to

a program P . Their test execution output is vector P (A, v) = O. The follow-

up matrix will be A′ = ∀i, j ∈ AT
i,j.Ai,j and vector v′ = ∀i ∈ AT

i,j.vi. Their
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executed test output is vector P (A′, v′) = O′. Then, expected output relation

is
∑

i,j O
′ =

∑
i,j O.

• MR15 - Multiplication With Identity Matrix: Let A be a input matrix

with i = 1, 2, 3, .., n rows and v be a input vector with i = 1, 2, 3, .., n elements

to a program P . Their test execution output is vector P (A, v) = O. The follow-

up matrix will be A′ = ∀i, j ∈ Ii,j.Ai,j with an identity matrix I. and vector

v′ = v. And their executed test output is vector P (A′, v′) = O′. Then, expected

output relation is
∑

i,j O
′ =

∑
i,j O.

• MR16 - Multiplication With Negative: Let A be a input matrix and

v be a input vector to a program P . Their test execution output is vector

P (A, v) = O. For follow-up test input, we multiply a negative constant b to

both and the follow-up matrix will be A′ = ∀i, j ∈ b.Ai,j and v′ = ∀i ∈ b.vi.

And their executed test output is vector P (A′, v′) = O′. Then, expected output

relation is
∑

i,j O
′ =

∑
i,j O.

5.6.4 Automated Test Case Generation

For each of the classes as mentioned above, we used EvoSuite [36] commandline

tool to generate test cases targeting line, branch, and weak mutation coverage. In

this experiment, we used EvoSuite 1.0.6v. In commandline, for assertion strategy

parameter we have used all available strategies (e.g. Mutation, Unit). A test assertion

is a predicate which compares some aspects of the observed behavior of a function

against the expected behavior. Some types of test assertions are related to arrays

and standard container classes. We ran each coverage criterion (e.g., line, branch,

and weak mutation) separately using the criterion parameter. Based on the coverage

criterion EvoSuite generated separate .java files with all the JUnit test cases. We ran

the generated JUnit test cases with the original programs, which generate a pass/fail
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report of test cases. From that report, we removed test cases, which were checking

Undeclared exceptions e.g. NullPointerException, IllegalArgumentException. It is

not feasible to apply MT for those test cases since they were throwing exceptions. In

Table 5.1 we have listed our test suite sizes separately for all classes. EvoSuite column

has the total test suite generated by line, branch, and weak mutation coverage.

Table 5.1: Classes with Evosuite test suite & developer test suite

Class name Evosuite Developer

Matrix.java 37 40

LeastSquaresSolver.java 4 11

ForwardBackSubstitutionSolver.java 8 7

SquareRootSolver.java 5 6

5.6.5 Utilizing MRs to Modify Automatically Generated Test Cases

1. To generate the follow-up test cases we modified the automatically generated

test case based on each MR. We modified the Evosuite generated .java files

with follow-up test cases ( Fig 5.1(Right)). This follow-up test case insertion

process was manually completed. ( line 15-17)

2. We also added new assert statement to compare the source and follow-up test

outputs.(line 18)

3. We executed those source and follow-up test cases on the original programs and

verified the MR properties. If any MR property did not hold for any test input,

we excluded that MR for that particular input.
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5.6.6 Evaluation Approach

We used mutation testing to measure the fault detection effectiveness of the

automatically generated test cases and the test cases enhanced with MRs. Mutation

Testing [29] is a fault-based testing technique that measures the effectiveness of test

cases and many experiments suggest that mutants act as a proxy to real faults for

comparing testing techniques [4]. Briefly, the technique performs as follows. First,

mutants are created by simply seeding faults in a program. By applying syntactic

changes to its source code, new faulty versions of the original programs are generated.

Each syntactic change is determined by a operator called a mutation operator. Test

cases are then executed for the faulty and original versions of the program and checked

whether they produce different responses. If the test output of the mutant is different

from the original program, then we say the mutant is killed. Otherwise, the mutant

remains alive. When a mutant is syntactically different but semantically identical

to the original program then it is referred to as an equivalent mutant. There are 4

common equivalent mutant situations: the mutant cannot be triggered, the mutant is

generated from dead code, the mutant only alters the internal states, and the mutant

only improves speed. To detect the original program and the mutated programs are

equivalent is undecidable [14]. The percentage of killed mutants with respect to the

total number of non-equivalent mutants provides an adequacy measurement of the

test suite, which is called themutation score. There is another adequacy measurement

metric used to measure the efficiency of MRs, called fault detection ratio [94]. In MT,

fault detection ratio is calculated by the ratio of the test case that detects a fault by

an MR and the total number of Metamorphic tests generated from source test cases.
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Table 5.2: Classes with MRs and mutants generation results

Class name Lines of

Code

#Mutants #of

remaining

Mutants

# of

MRs

Matrix.java 2210 884 363 11

LeastSquaresSolver.java 95 89 39 6

ForwardBackSubstitutionSolver.java 95 92 39 6

SquareRootSolver.java 106 55 32 6

In our evaluation, we used PIT5 tool to systematically generate 1120 mutants

for the programs described in Section 5.6.2. In Table 5.2, we list the total number of

mutants generated by the PIT tool for each class. Due to the high number of mutants,

identifying equivalent mutant manually was not practical. Thus, we used the following

filtering approach to identify mutants to be used in the experiment: we executed the

EvoSuite generated test suites and developer test suites on the generated mutants

and filtered out the mutants that caused compilation errors, run-time exceptions. We

also filtered out any mutants that were passing both coverage based and developer

test suites. Column two in Table 5.2, lists the number of remaining mutants used in

the experiment after the filtering process. Thus the mutation score is calculated by

the ratio of the killed mutants to the remaining total mutants after filtering. Our full

evaluation approach with source code repository is available in GitHub6.

5https://pitest.org/
6https://github.com/ps073006/matrixmt
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5.7 Results and Discussions

Below we discuss the results of our experiments and provide answers to our

research questions:

1. Effectiveness of MR over the automatically generated test suites:
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Figure 5.3: Mutation score of 4 classes for auto generated test suites (Evosuite(E))
and Developer test suites (D) and Metamorphic Testing, SRS = SquareRootSolver,
LSS = LeastSquaresSolver, FBSS = ForwardBackSubstitutionSolver

Figure 5.3 shows the mutation score of automatically generated test suites by EvoSuite

(columns denoted by E) and Developer generated test suites 7 (columns denoted

by D). We also show the increase of mutation score achieved by these test suites

after augmenting the corresponding test cases with applicable MRs as described in

Section 5.6.5. EvoSuite columns show the combined mutation scores of the test suites

generated by all the three strategies (line, branch, and weak mutation), and for MT

7https://github.com/vkostyukov/la4j
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the combined mutation scores of all the MRs are used. From Evosuite columns, we see

a significant increases in mutation score when augmented with MRs, but for Matrix

class, the increase of mutation score is relatively low compared to the other three

classes. Note that the MR lists are different for Matrix class than the other 3 classes.

The fault detection effectiveness of MT is determined by the MRs used for testing as

well as the source test cases used to execute those MRs. Thus, further investigation

is required to determine the exact reason for the reduction of fault detection in the

Matrix class.

2. Effectiveness of improved automatically generated test suites

compared to the developer written test suites: From Figure 5.3, there was

no additional mutant killed by the test cases augmented by MRs with the developer

test suites, except for the matrix class. Further, MR augmented test cases from matrix

class only killed 6.07% additional mutants. Thus, MRs did not help to improve the

fault detection effectiveness of developer test suites as they did with automatically

generated test suites.

Developer test suites (Table 5.1) are generated based on the knowledge of the

specification and often developers try to cover majority of the branches and utilize

boundary cases to generate test cases. Therefore, it is not surprising that fault

detection effectiveness did not improve with the MR augmentation. However, since

our goal is to improve the effectiveness of automatically generated test suites using

MT, we use this developer test suite as a benchmark of our experiments. From Figure

5.3, except for SquareRootSolver class, the mutation score of the MR augmented

automatically generated test cases are significantly close to the mutation score of the

developer test suite. This evidence suggests that MRs can be utilized to improve the

fault detection effectiveness of automatically generated test suites up to a level that

closely matches the fault detection effectiveness of developer test suites.
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(a) ForwardBackSubstitutionSolver.
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(b) LeastSquaresSolver.
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(c) SquareRootSolver.

Figure 5.4: Fault Detection Ratio of AGTS (Automatically Generated Test Suites)
and MR augmented test suites for 3 classes.
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3. Fault detection effectiveness of the MRs compared to automatically

generated test suites: Figure 5.4 shows the box plots of fault detection ratio of

the automatically generated test suites and MR augmented test suites (the specific

MR used for augmentation is listed as the label header) for the 3 solver classes. The

box plots show that majority of the MR augmented test suites either outperform

or perform equally compared to the automatically generated test suites. For

SquareRootSolver and ForwardBackSubstitutionSolver class, MR11, MR13, MR15,

MR16 test suites have median fault detection ratio over 0.6 which is twice as

automatically generated test suites (∼ 0.3). The box plots for the LeastSquaresSolver

class show that there are lots of outliers for both the automatically generated test

suites and MR augmented test suites. For this class, MR11, MR13, MR14, MR15

have similar median fault detection ratio (0.5) as the automatically generated test

suites. Size of the outliers suggest that the performance of MR augmented test suites

or automatically generated test cases are not consistent in the LeastSquaresSolver

class.

For SquareRootSolver and ForwardBackSubstitutionSolver class, we can see that

MR12 is not supported for both classes. From the above experimental outcome, we

can deduce that majority of the MR augmented test suites have the ability to kill

more mutants compared to automatically generated test cases.

5.8 Threats to Validity

Threats to internal validity may result from the way the empirical study was

carried out. EvoSuite and our experimental setup have been carefully tested, although

testing can not prove the absence of defects. Construction of MRs can still be error

prone since we have manually identified and verified the MRs against the programs.

Threats to construct validity may occur because of the third-party tools we have
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used. The EvoSuite tool has been used to generate source test cases for line, branch,

and weak mutation test generation techniques. Further, we used the PIT mutation

tool to create mutants for our experiment. To minimize these threats, we verified

that the results produced by these tools are correct by manually inspecting randomly

selected outputs produced by each tool.

Threats to external validity were minimized by using the 4 classes as case studies,

which was performing different matrix operations. This provides high confidence in

the possibility of generalizing our results to other open-source softwares. We only

used the EvoSuite tool to generate test cases for our major experiment.

5.9 Related Work

Most contributions on MT use either randomly generated test data or existing

developer test suites for the generation of source test cases. Not much research has

been done on automatically generation of source test cases for MT. Gotlieb and

Botella [38] presented an approach called Automated Metamorphic Testing. Using

this technique, they translated the code into an equivalent constraint logic program

and tried to find test cases that violate the MRs. Chen et al. [20] compared

the fault detection effectiveness of random testing and ”special values” as source

test cases for MT. Special values are one type of inputs where the output is well

known for a particular method. But Wu et al. [94] proved that randomly generated

test cases are more effective than those test cases that are derived from ”special

values” for MT. Segura et al. [79] also compared the fault detection effectiveness

of random testing with manually generated test suites for MT. Their experimental

results showed that randomly generated test suites are more effective in detecting

faults than manually designed test suites. They also observed from their results that

combining random testing with manually written tests provides better fault detection
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ability than random testing only.

Batra and Sengupta [9] proposed a genetic algorithm approach to generate test

cases maximizing the paths traversed in the PUT for MT. Chen et al. [16] also

resolved the same problem from a different perspective. They proposed partitioning

the input domain of the PUT into multiple equivalence classes for MT. They applied

an algorithm that will generate test cases by covering those equivalence classes.

They were able to generate source and follow-up test cases that provide a high fault

detection rate. Symbolic Execution was used to construct MRs and generate their

corresponding source test cases by Dong and Zhang [32]. At first, the program paths

were analyzed to generate symbolic inputs, and then, these symbolic inputs were

used to construct MRs. Finally, source test cases were generated by replacing the

symbolic inputs with real values. Saha et al. [76] applied a coverage-based testing

technique to generate test cases for MT. They compared their results with randomly

generated test cases, and it outperforms the effectiveness of randomly generated test

suite. Compared to their research, in this work, we evaluate the improvement of

the fault detection effectiveness of MRs over the automatically generated test suites,

specifically 3 commonly used coverage criteria (Line, Branch, and Weak Mutation).

5.10 Conclusion and Future Work

In this study, we empirically evaluated whether the fault detection effectiveness

of automatically generated test suites can be improved using MRs. Our results show

that augmenting automatically generated test cases with MRs can improve their fault

detection capability since they provide a method to improve upon the trivial oracles

used in these test cases. Our case study also shows that once the automatically

generated test cases are augmented with MRs, their fault detection effectiveness is

comparable to the developer test suites. This empirical study results also suggest
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that identifying strong MRs is also important, which will help to increase the fault

detection capability of automatically generated test suite where it fails to perform

efficiently.

In the future we will extend this experiment with other automatic test case

generation techniques like Adaptive Random Testing. To fully automate MR

augmentation of automatically generated test cases, our plan is to integrate the

MR identification approach [47] with source test case generation process. Finally,

we will implement this automated test case generation process to publicly available

METTester [68] tool (A Metamorphic Testing tool to test scientific applications).
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6.3 Abstract

Metamorphic testing is a technique that uses metamorphic relations (i.e.,

necessary properties of the software under test), to construct new test cases (i.e.,

follow-up test cases), from existing test cases (i.e., source test cases). Metamorphic

testing allows for the verification of testing results without the need of test oracles

(a mechanism to detect the correctness of the outcomes of a program), and it

has been widely used in many application domains to detect real-world faults.

Numerous investigations have been conducted to further improve the effectiveness

of metamorphic testing. Recent studies have emerged suggesting a new research

direction on the generation and selection of source test cases that are effective in

fault detection. Herein, we present two important findings: i) a mutant reduction

strategy that is applied to increase the testing efficiency of source test cases, and ii) a

test suite minimization technique to help reduce the testing costs without trading off

fault-finding effectiveness. To validate our results, an empirical study was conducted

to demonstrate the increase in efficiency and fault-finding effectiveness of source test

cases. The results from the experiment provide evidence to support our claims.
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6.4 Introduction

Metamorphic Testing (MT) is a technique used to alleviate the oracle problem

of software under test (SUT) [19]. A test oracle is a mechanism used to detect the

correctness of the outcomes of a program [87]. In most cases of software behavior, it is

easier to predict relationships between the elements of the output of a program, than

to characterize the precise output given some input. For example, consider a program

that computes the average of a list of real numbers. It is hard to correctly predict the

observed output when the input has infinite possibilities. Thus, using this approach,

we cannot validate whether the returned average is correct. However, we can permute

the list of real numbers used in the input, and check to see if the returned output

matches the output from the original test. If the outputs do not match, then there is a

potential ’bug’ (fault) in the program. This type of property is called a metamorphic

relation (MR), a necessary property of the SUT that specifies a relationship between

multiple test inputs and their outputs [21]. Thus, from existing test cases (i.e., source

test cases) MRs are used to generate new test cases (i.e., follow-up test cases). The

set of source and follow-up test cases are then executed on the SUT and the outputs

are checked according to the corresponding MRs. The SUT can be considered faulty

if an MR is violated.

MT has been successful in finding bugs in systems across various domains and has

been successfully applied to detecting previously unknown faults in different domains

such as web services, computer graphics, simulation and modeling, embedded systems

etc. [78]. To date, work done on improving the fault detection effectiveness of MT

has mainly focused on developing quality MRs [78]. However, developing such MRs

is a labor-intensive task that requires the involvement of domain experts. Another,

avenue to improve the fault detection effectiveness of MT, which has not, to our
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knowledge, been explored thus far, is to systematically generate the source test cases.

In fact, most of the previous studies in MT have used randomly generated test cases

or existing test cases as source test cases when conducting MT [8,20,38,79,94]. Our

previous work showed that the effectiveness of MT can be improved by systematically

generating the source test cases based on some coverage criteria such as line, branch,

and weak mutation (WM) [76]. But, it is sub-optimal to use a combination of all the

coverage-based techniques to test numerical programs. A problem arises because test

cases generated based on separate coverage criteria can be redundant, which means

that there can be test case overlaps with the same code coverage as well as the same

mutant killing rate making this approach inefficient.

In our research, we selected numerical programs as our target SUT since this

domain has been relatively unexplored in the MT research [78]. The goal of this

research is to select efficient and effective coverage-based test suites. To achieve

this goal, we have divided our approach into two parts. First, we perform mutation

analysis using a reduced set of mutants. Mutation analysis is necessary since we

will apply it as our performance measurement metric to measure the fault-finding

effectiveness of our test suites. This approach reduces the time and budget of the

entire testing process. Second, we select the best coverage-based test suites among

line, branch, and WM based on their cost-effectiveness and fault-finding effectiveness.

In this way, we find the set of test suites with better efficiency and similar fault-finding

effectiveness.

6.5 Background

MT is a testing technique that aims to alleviate the oracle problem. However,

the effectiveness of MT not only depends on the quality of MRs but also on source

test cases. In this section, we discuss MT and source test case generation techniques.
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Specifically, we discuss line, branch, and WM coverage.

6.5.1 Metamorphic Testing

Source test cases are used in MT to generate follow-up test cases using a set

of MRs identified for the program under test (PUT) [17]. MRs are identified based

on the properties of the problem domain, such that said properties uniquely identify

some expected behavior of the problem [22]. For example, there exist some unique

characteristics of weather systems that help testers to find the correct MRs. We

can create source test cases using techniques like random testing [20], structural

testing [31], or search-based testing [76]. Follow-up test cases are generated by

applying the input transformation specified by the MRs. After executing the source

and follow-up test cases on the PUT we can check to see if the MR was violated. The

violation of the MR during testing indicates fault in the PUT. Since MT checks that

the relationships between the inputs and outputs of a test program are maintained

under the conditions of an MR, we can use this technique when the expected result of a

test program is unknown. For example, in figure 6.1, a Java method add values is used

to illustrate how source and follow-up test cases work within a PUT. The add values

method aggregates the array elements passed as an argument. The source test case,

t = {3, 43, 1, 54} is randomly generated and tested on add values. The output of this

test case is 101. In this program, we would expect that when a constant c is added

to every element in the input collection, the output should increase accordingly. This

expected behavior is used to generate an MR to conduct MT on this PUT. A constant

value 2 is added to each element in the collection to create a follow-up test case

t
′
= {5, 45, 3, 56} that is then run on the PUT. The output of the follow-up test case

is 109. To satisfy this Addition MR, the follow-up test output should be greater than

the source output. In this MT example, the Addition MR is satisfied for the given
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public static int add_values(int[] a)
{

int sum =0;
for(int i=0;i<a.length;i++){

sum += a[i];
}
return sum;

}

a[4]={3,43,1,54}

a[4]={5,45,3,56}
sum=109

sum=101

Add c=2 to
each element

of a

Source Test Case

Follow-up Test Case

Source Output

Follow-up Output

Figure 6.1: Test source and follow-up inputs on PUT.

source and follow-up test cases.

6.5.2 Coverage-based Test Case Generation

In this work, we used EvoSuite as the automated test case generation tool [36].

EvoSuite automatically generates test cases with coverage criteria e.g. line, branch,

and WM approaches. EvoSuite uses an evolutionary search approach that simultane-

ously evolves test suites with respect to an entire coverage criterion. Below, we briefly

describe the systematic approaches used by EvoSuite to generate coverage-based test

suites.

6.5.2.1 Line Coverage In Line coverage, to cover each statement of source code,

it is required that each basic code block in a method is reached (except comments) [74].

In traditional search-based testing techniques, this reachability would be expressed

by an association of branch distance and approach-level [54]. The branch distance

measures how different a predicate (i.e., a decision-making point) is from evaluation

to an expected target result. For example, given a predicate, a == 7 and an execution

where the value of a = 5, the branch distance to the predicate evaluating to true would

be |5 − 7| = 2, whereas execution where the value of a = 6 is closer to being true

with a branch distance of |6− 7| = 1. Branch distance can be estimated by applying
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a set of standard rules [50, 54]. The approach level measures the closest point of a

given execution to the target node. If any test suite executes all the statements of a

method, then the approach level will be 0, which means it will become insignificant.

6.5.2.2 Branch Coverage Many popular tools have implemented in practice the

idea of branch coverage, even though this practical approach may not always match

the more theoretical interpretation of covering all edges of a program’s control flow [36,

74,80]. Branch coverage is often measured by maximizing the number of branches of

conditional statements that are executed by a test suite. Thus, to satisfy a unit test

suite for each of the branch statements, there is at least one test case that satisfies

the branch predicate to false and at least one test case that satisfies the branch

predicate to true. In branch coverage, the fitness function of a test suite is to cover

all the branches in a method. This value is measured by calculating the closeness

with which a test suite covers all the branches of a PUT.

6.5.2.3 WM When generating test cases from test generation tools, the preferred

practice is to satisfy the constraints or conditions (i.e. in WM when a test case reaches

the mutated statement of a method) rather than a developer’s preferred boundary

cases [36]. In WM testing, small code modifications are applied to the PUT. Then,

the test generation tools are forced to generate values that can distinguish between

the original test case and the mutant test case. In mutation testing, a test case is

considered ”killed” when the execution result of the mutant version is different than

the original version of the PUT. The WM criteria are satisfied when at least one test

case from the unit test suite reaches the infection state of the mutant. To measure

the fitness value of the WM, it is required to calculate the infection distance with

respect to a set of mutation operators [74].
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6.6 Mutation Testing

Mutation testing has been used to evaluate the fault detection effectiveness of

the automated test case generation approaches [29]. Mutation testing is a fault-based

testing technique that measures the effectiveness of the test cases of the SUT. Many

experiments suggest the usage of mutants as a proxy to real faults when comparing

testing techniques [4]. Briefly, the testing technique follows these steps: First, mutants

are created by simply seeding faults into a program. By applying syntactic changes to

the original source code, new faulty versions of the original programs are generated.

Each syntactic change is determined by an operator called a mutation operator. Test

cases are then executed for the faulty and the original versions of the program and

checked to see whether they produce different responses. If the response of the mutant

is different from the original program, then we say that the mutant has been killed,

and the test case is deemed to have the ability to detect faults effectively for that

program. Otherwise, the mutant remains alive. When a mutant is syntactically

different but semantically identical to the original program, it is referred to as an

equivalent mutant. There are four common equivalent mutant situations: the mutant

cannot be triggered, the mutant is generated from dead code, the mutant only alters

the internal states of a program, and the mutant only improves the speed of execution

of a program. The percentage of killed mutants to the total number of non-equivalent

mutants provides an adequacy measurement of the test suite, which is called the

mutation score.

6.7 Test Suite Minimization Approach

As systems evolve, their test suites are modified to accommodate new function-

ality. It is possible that redundant test cases (i.e., test cases for components that
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are already covered by other existing test cases) are introduced as test suites grow.

Test suite minimization techniques address this problem by seeking to permanently

remove redundant test cases in a test suite. The goal is to create a more efficient test

suite, that is, smaller in size but effective at finding faults. The minimization process

is typically accomplished without the knowledge of the changes in the new version of

the program [92].

Our goal for this research is to select efficient and effective coverage-based test

suites. To achieve this goal, we divided our approach into two parts. In the first part,

we performed mutation analysis using a reduced set of mutants. Mutation analysis

is necessary because we apply it as our performance measurement metric to assess

the fault-finding effectiveness of our test suites. This approach saves the time and

budget of the entire testing process. In the second part, we selected the best test

suites among line, branch, and WM coverage based on their cost and fault-finding

effectiveness. This allowed us to find reduced test suites with better efficiency and

similar effectiveness.

6.7.1 Mutants Reduction Approach

Selecting representative subsets from a given set of mutants is the principal

aim of mutant reduction strategies. This technique reduces the application cost of

mutation testing which leads to reductions in the total cost of software testing. Recent

studies have shown two mutation reduction techniques that have proven to be highly

effective [64]. But to the best of our knowledge, there are no mutation reduction

techniques that have been applied to evaluate the fault-finding effectiveness of source

test case generation techniques in MT. We claim that applying mutation reduction

techniques to find better test case generation approaches is cost-effective in terms of

time and budget. Thus, our goal is to find a better mutation reduction technique for
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our test case generation approach.

6.7.1.1 Random Sampling Technique A major portion of the mutation testing

demands is influenced by the generation and execution of the candidate set of mutants.

By considering a small sample of mutants, a significant cost reduction can be achieved.

Empirical studies have shown that a selection of 10% of mutants results in a 16% loss

in the fault detection ability of the produced test sets when compared to full mutation

testing [93]. In this study, we followed first-order mutation testing strategies [65] and

selected a random x% portion of the initial mutants set, where x = 10, 20, 30, 40, 50,

and 60. Our target was to find out which random % of selected mutants is a better

representative of the total mutants set.

6.7.1.2 Operator Based Mutant Selection Since mutant operators generate

different numbers of mutant programs, Offutt et al. proposed N−selective mutation

theory, where N is # of mutant operators [61]. In their experiment, they divided

the mutant operators into three general categories based on the syntactic elements

that they modify. The three categories are Replacement-of-operand operators (i.e.,

replace each operand in a program with each other legal operand), Expression

modification operators (i.e., modify expressions by replacing operators and inserting

new operators), and Statement modification operators (i.e., modify entire statements).

Their experiments suggest that Expression modification operators with a smaller

number of mutants than the total mutant set can be effective and the execution

time is also shown to be linear. In this study, we applied Expression modification

operators as mutants set to do the mutation analysis.
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6.7.2 Effective Test Suites Selection

In preliminary work, we showed that coverage-based test cases have better

fault detection effectiveness than randomly generated test cases [76]. However, it

is not feasible to use all of the coverage-based techniques together to test numerical

programs. This is because the process is time-consuming and test cases are repetitive

regarding code coverage. Further, the fault detection effectiveness of test suites can

vary based on the methods used. Therefore, we need an effective approach to help

select better test suites when approaching SUT.

Mutation testing has been proven to be an effective approach to assessing the

fault detection effectiveness of test case generation techniques. In our approach, we

run mutation testing on the SUT and applied the test cases generated by the coverage-

based test case generation techniques. After that, we measured the mutation score for

each of the techniques. The test case generation technique with the highest mutation

score was selected as a source test suite to test SUT.

6.8 Empirical Evaluation

This section describes the design of the empirical evaluation approach: the

research questions we will answer for our experiments, the description of the subject

programs selected for the evaluation, description of the identified MRs for the subject

programs and the evaluation process of the case study.

6.8.1 Research Questions

• RQ1: Which Mutant reduction technique is best suited for detecting

faults in MT?

• RQ2: Which coverage-based test suites have better fault-finding
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effectiveness?

• RQ3: Can test suite minimization techniques reduce the cost of

executing a test suite and what is their effect on the fault detection

effectiveness of a test suite?

6.8.2 Subject Programs

We built a code corpus containing 96 methods that take numerical inputs and

produce numerical outputs. We obtained these functions from the following open-

source projects:

• The Colt Project1: A set of open source libraries written for high-performance

scientific and technical computing in Java.

• Apache Mahout2: A machine learning library written in Java.

• Apache Commons Mathematics Library3: A library of lightweight and

self-contained mathematics and statistics components written in Java.

• Matrix.java: This class has methods that perform matrix operations. We

selected 20 methods randomly from the class and conducted our experiment

on them. The description of these 20 methods is available in this GitHub

repository4.

Functions in the code corpus perform various calculations using sets of numbers such

as calculating statistics (e.g., average, standard deviation, and kurtosis), calculating

distances (e.g., Manhattan and Tanimoto), and searching/sorting. The total number

1http://acs.lbl.gov/software/colt/
2https://mahout.apache.org/
3http://commons.apache.org/proper/commons-math/
4https://github.com/ps073006/ConfRepo
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of lines of code for these functions varied between 4 and 52, and the number of input

parameters for each function varied between 1 and 4.

6.8.3 MR Identification

We selected all six MRs that were used in previous studies to test methods from

the first 3 projects mentioned in section 6.8.2 [76]. Suppose our source test case is

X = {x1, x2, x3, ..., xn} where xi ≥ 0, 0 ≤ i ≤ n. Let source and follow-up outputs be

O(X) and O(Y ) respectively:

• Addition: add a positive constant C to the source test case yielding the follow-

up test case Y = {x1 + C, x2 + C, x3 + C, ..., xn + C}. Then O(Y ) ≥ O(X).

• Multiplication: multiply the source test case by a positive constant C yielding

the follow-up test case Y = {x1∗C, x2∗C, x3∗C, ..., xn∗C}. Then O(Y ) ≥ O(X).

• Shuffle: randomly permute the elements in the source test case. The follow-up

test case can then be Y = {x3, x1, xn, ..., x2}. Then O(Y ) = O(X).

• Inclusive: include a new element xn+1 ≥ 0 in the source test case yielding the

follow-up test case Y = {x1, x2, x3, ..., xn, xn+1}. Then O(Y ) ≥ O(X).

• Exclusive: exclude an existing element from the source test case yielding the

follow-up test case Y = {x1, x2, x3, ..., xn−1}. Then O(Y ) ≤ O(X).

• Inversion: take the inverse of each element of the source test case. Then

the follow-up test case will be Y = {1/x1, 1/x2, 1/x3, ..., 1/xn}. Then O(Y ) ≤

O(X).

We identified and developed the following ten MRs for testing the functions in

the Matrix.java class. We have verified if the MRs satisfies each of the methods from

the class and found out not all these MRs are satisfied by each of these methods.
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The entire list of methods and the specific MRs satisfied by them can be found in

this GitHub repository4. In all cases, we assume that Matrix A comprises only non-

negative numbers.

• Scalar Addition: Let A be the initial input matrix to a program P , and b be a

positive scalar. Let A′ be the follow-up input matrix where A′ = ∀i, j ∈ b+Ai,j.

Let the output of P for A be O (i.e. P (A) = O) and P (A′) = O′. Then the

expected output relation is
∑

i,j O
′ ≥

∑
i,j O.

• Addition With Identity Matrix: Let A be the initial input matrix to a

program P , and I be an identity matrix. Let A′ be the follow-up input matrix

where A′ = ∀i, j ∈ Ii,j + Ai,j. Let P (A) = O and P (A′) = O′. Then the

expected output relation is
∑

i,j O
′ ≥

∑
i,j O.

• Scalar Multiplication: Let A be the initial input matrix to a program P , and

b be a positive scalar. Let A′ be the follow-up input matrix where A′ = ∀i, j ∈

b.Ai,j. Let P (A) = O and P (A′) = O′. Then the expected output relation is∑
i,j O

′ ≥
∑

i,j O.

• Multiplication With Identity Matrix: Let A be the initial input matrix

to a program P , and I be an identity matrix. Let A′ be the follow-up input

matrix where A′ = ∀i, j ∈ Ii,j.Ai,j. Let P (A) = O and P (A′) = O′. Then the

expected output relation is
∑

i,j O
′ =

∑
i,j O.

• Transpose: Let A be the initial input matrix to a program P . Let A′ be the

follow-up input matrix where A′ = ∀i, j ∈ AT
i,j = Aj,i. Let P (A) = O and

P (A′) = O′. Then the expected output relation is
∑

i,j O
′ =

∑
i,j O.

• Matrix Addition: Let A be the initial input matrix to a program P . Let A′

be the follow-up input matrix where A′ = ∀i, j ∈ Ai,j +Ai,j. Let P (A) = O and
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P (A′) = O′. Then the expected output relation is
∑

i,j O
′ ≥

∑
i,j O.

• Matrix Multiplication: Let A be the initial input matrix to a program P .

Let A′ be the follow-up input matrix where A′ = ∀i, j ∈ Ai,j.Ai,j. Let P (A) = O

and P (A′) = O′. Then the expected output relation is
∑

i,j O
′ ≥

∑
i,j O.

• Column Permutation: Let A be the initial input matrix to a program P with

j = 1, 2, 3, .., n columns. Let A′ be the follow-up input matrix after permuting

the column positions of A. Let P (A) = O and P (A′) = O′. Then the expected

output relation is
∑

i,j O
′ =

∑
i,j O.

• Row Permutation: Let A be the initial input matrix to a program P with

i = 1, 2, 3, .., n rows. Let A′ be the follow-up input matrix after permuting the

row positions of A. Let P (A) = O and P (A′) = O′. Then the expected output

relation is
∑

i,j O
′ =

∑
i,j O.

• Element Permutation: Let A be the initial input matrix to a program P

with j = 1, 2, 3, .., n columns and i = 1, 2, 3, .., n rows. Rows and columns have

to be same size. Let A′ be the follow-up input matrix after permuting Ai,n

element with An,j element. Let P (A) = O and P (A′) = O′. Then the expected

output relation is
∑

i,j O
′ =

∑
i,j O.

6.8.4 Evaluation Approach

In our evaluation, we applied the µJava5, and PIT6 tools to systematically

generate mutants for our subject programs. For the 96 methods from the five open-

source java projects, we generated a total of 8330 mutated versions using the mutation

tools. Mutant distributions for the five classes are shown in Table 6.1. We ran

5https://github.com/jeffoffutt/muJava
6https://pitest.org/
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mutation testing on the five classes and exclude the mutants that cause compilation

errors, runtime exceptions, and equivalent mutants. We also manually verified all the

MRs for each subject programs.

Table 6.1: Individual classes from five open source projects. We show counts of
Methods, MRs and mutants

Class name # Methods # Mutants # MRs

MethodsCollection2.java 28 1875 6

MethodsFromMahout.java 5 409 6

MethodsFromApacheMath.java 18 2248 6

MethodsFromColt.java 25 2914 6

Matrix.java 20 884 11

6.9 Results and Discussions

Below we discuss the results of our experiments and provide answers to our

research questions:

RQ1. Which Mutant reduction technique is best suited for detecting

faults in MT? Figure 6.2 displays the average mutation scores (in %) per mutant

reduction strategies for each class from SUT. The columns of Table 6.2 “Total

Mutants” and “Selected Mutants” allow us to derive the mutant reduction percentage

shown in the third column. We excluded Matrix.java class while analyzing the answer

of RQ1 because we utilized the PIT tool to generate mutants for this class and this

tool does not provide the mutant operators’ names. So, we could not distinguish

expression modification operators from the mutants set. The most interesting aspect

of the figure 6.2 is that the operator-based mutation strategy always detects more
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Figure 6.2: Average mutation scores of mutation testing strategies. Mutation testing
was done by the following strategies: total mutants set, operator based set, Random
10%, Random 20%, Random 30%, Random 40%, Random 50%, and Random 60%.
The average mutation score was calculated by averaging the mutation scores of all
the methods from each of the classes.

faults than any other strategy and in the majority of cases this situation is statistically

significant (p-value<0.05) (pairwise T-test results are available here7). Although

testing with total mutants set (7446 mutants) has a comparatively high mutation

score than randomly selected mutants set, but it is not as high as the operator-

based mutation strategy. Mutation strategies where randomly selected mutants are

generated (ranging from 10% to 60%) have comparatively low mutation scores.

Table 6.2 shows the savings obtained using the operator-based mutation strategy

in terms of the number of mutants. The column “Percentage Saved” was computed by

subtracting the number of ”Selected Mutants” from the number of ”Total Mutants”

7https://github.com/ps073006/ConfRepo
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Table 6.2: Savings obtained by operator based mutant reduction approach

Class name Total

Mutants

Selected

Mutants

Percentage

Saved

MethodsCollection2.java 1875 818 56.37

MethodsFromMahout.java 409 163 60.15

MethodsFromApacheMath.java 2248 723 67.84

MethodsFromColt.java 2914 994 65.89

Total 7446 2698 63.77

and dividing the difference by the number of ”Total Mutants.” The operator-based

mutation strategy sets save anywhere between 56% to 67% of the total mutants that

are generated across the subject programs. The expression modification operators

(e.g., AORB, AORS, LOR, ROR, AOIU, COI, LOI) from the µJava tool are used for

the operator-based mutation strategy.

RQ2. Which coverage-based test suites have better fault-finding

effectiveness? Figure 6.3 shows the average mutation scores of the coverage-based

test suites (Line, Branch, and WM) generated for the MT to test the five subject

programs. To answer this RQ we combined the mutation scores of MT (source &

follow-up test cases) for each subject programs.

The most interesting aspect of the figure is that WM-based test suites always

detect more faults than any other test suites and in the majority of the subject

programs. These results are statistically significant (p-value<0.05)(pairwise T-test

results are available here8). However, in MethodsfromColt.java class, the difference

in mutation scores is really small between the branch and WM test suites. RQ3.

8https://github.com/ps073006/ConfRepo
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Figure 6.3: Comparison of average mutation scores of coverage based test suites, e.g.
Line, Branch, and Weak Mutation. The average mutation score was calculated by
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Can test suite minimization techniques reduce the cost of executing a test

suite and what is their effect on the fault detection effectiveness of a test

suite? Table 6.3 reports the percentage reduction in test suite size for each of

the five subject classes for the combined test suite of line, branch, and WM as well

as WM coverage criteria separately. The results show that test suite minimization

can significantly reduce the size of a test suite. The results also show that the WM

coverage criteria yield a larger reduction in test suite size (53.13–65.43%). Results

show that there is little variation in the reduction in test suite size, which means the

performance of the WM test suites is linear across the subject programs.
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Table 6.3: Cost effectiveness of test suite minimization technique for MT based on
test suite size

Total Test Suite Size

Class Name Combined Weak

Mutation

%

Reduced

MethodsCollection2.java 111 47 57.66

MethodsFromMahout.java 32 15 53.13

MethodsFromApacheMath.java 104 44 57.69

MethodsFromColt.java 81 28 65.43

Matrix.java 37 14 62.16

Table 6.4 reports the percentage reduction in fault detection effectiveness and

code coverage of the WM coverage criteria. Minimized test suites of the WM coverage

criteria perform well overall (1.44-14.14%) with fault detection effectiveness reduction

as compared to the combined test suites. Also, the performance remains the same (0%

reduction) for the code coverage with the minimized test suites of the WM coverage

criteria as compared to the combined test suites.

Minimized test suites with WM can produce significant reductions in test suite

size, resulting in significant savings in test execution costs. When using WM coverage

criteria as a source test case generation technique for MT, test suite minimization

causes an average reduction in fault detection effectiveness that is less than 9%. This

makes the approach potentially useful in practice when testing time is limited and

the system is not critical.
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Table 6.4: Percentage reduction on fault detection and code coverage after applying
test suite minimization technique in MT

A: Percentage reduction on code coverage

Code Coverage

Class Name Combined WM % Reduced

MethodsCollection2.java 99.7 99.7 0

MethodsFromMahout.java 99.32 99.32 0

MethodsFromApacheMath.java 98.4 98.4 0

MethodsFromColt.java 99.16 99.16 0

Matrix.java 97.49 97.49 0

B: Percentage reduction on fault detection

Fault Detection (Mutation score %)

Class Name Combined WM % Reduced

MethodsCollection2.java 64.21 57.49 10.47

MethodsFromMahout.java 54.28 46.94 13.52

MethodsFromApacheMath.java 89.41 88.12 1.44

MethodsFromColt.java 76.25 65.47 14.14

Matrix.java 53.71 51.67 3.8
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6.10 Threats to Validity

We have followed Wohlin et al. guidelines while discussing the threats to the

validity of our empirical study [91].

Threats to internal validity cause and effects may result from the way in which

the empirical study was carried out. To increase our confidence in the experimental

setup and mitigate this threat, we ran our experiments 10 times with the same setup.

Threats to construct validity may occur because of the third-party tools we have

used. The EvoSuite tool was used to generate source test cases for line, branch, and

WM test generation techniques. Further, we used the µJava and PIT mutation tool

to create mutants for our experiment. To minimize these threats we verified that the

results produced by these tools are correct by manually inspecting randomly selected

outputs produced by each tool.

Threats to external validity were minimized by using the 96 methods from

5 different open-source project classes. This provides high confidence that the

generalization of our results to other open-source software is appropriate. We only

used the EvoSuite tool to generate test cases for our major experiment. But we also

used the JCUTE 9 tool to generate branch coverage-based test suites for our initial

case study and also observed similar results [80].

6.11 Conclusion

This paper presented an empirical study on the effects of test suite minimization

on MT. Also, we present a hybrid approach to the reduced mutants set finding and the

reduction in fault-finding effectiveness problems on numerical programs. The study

9https://github.com/osl/jcute
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used open source java projects which have been applied in previous studies, and test

suites created using a systematic state-of-the-art approach. The mutated version of

the code can be comparable with real-world faults.

The study showed that an operator-based mutant reduction technique can

significantly reduce the mutant set size for mutation testing. This technique also keeps

the mutation score comparable to the original mutant set. Practically this approach

helps to reduce the total testing costs. However, we still need to perform industrial

case studies to continue to scale the solutions presented in this work. Industrial case

studies are still required to increase the power of these results.

The results also revealed that using minimized test suites with WM coverage

criteria for MT provides a trade-off between the reduction in execution cost

(53.13–65.43%) and the reduction in fault finding effectiveness (1.44–14.14%) that

might be suitable in certain contexts in non-critical systems, where testing time and

resources are limited.

Surprisingly, to date, there are no case studies that report on the impact of

test suite minimization on fault detection effectiveness for MT. But, there were few

case studies reported on test case prioritization for MT. This empirical study is the

elemental step in this direction. Our future goal is to apply our proposed approach

on real fault based programs such as Defects4J 10.

10https://github.com/rjust/defects4j
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7.3 Abstract

In machine learning, supervised classifiers are used to obtain predictions for

unlabeled data by inferring prediction functions using labeled data. Supervised

classifiers are widely applied in domains such as computational biology, computational

physics and healthcare to make critical decisions. However, it is often hard to test

supervised classifiers since the expected answers are unknown. This is commonly

known as the oracle problem and metamorphic testing (MT) has been used to test

such programs. In MT, metamorphic relations (MRs) are developed from intrinsic

characteristics of the software under test (SUT). These MRs are used to generate

test data and to verify the correctness of the test results without the presence of

a test oracle. Effectiveness of MT heavily depends on the MRs used for testing.

In this paper we have conducted an extensive empirical study to evaluate the fault

detection effectiveness of MRs that have been used in multiple previous studies to test

supervised classifiers. Our study uses a total of 709 reachable mutants generated by

multiple mutation engines and uses data sets with varying characteristics to test the

SUT. Our results reveal that only 14.8% of these mutants are detected using the MRs

and that the fault detection effectiveness of these MRs do not scale with the increased

number of mutants when compared to what was reported in previous studies.
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7.4 Introduction

Supervised classifiers are widely used for making predictions in diverse domains.

For instance, over fifty real world computational applications use support vector

machines for classification [1]. As these types of applications are becoming part

of our daily life, ensuring their quality becomes even more important [55]. In such

applications, formal proofs of the underlying algorithm does not always guarantee

that it implements that algorithm correctly. Therefore, software testing is imperative

to assure the quality of these systems.

Often, conventional software testing approaches may not be feasible for assuring

the quality of supervised classifiers because of the absence of a test oracle that

determines the correctness of produced test outputs. This class of software

applications is often referred to as “non-testable programs” [87]. Further, usually

supervised classifiers are not 100% accurate. Thus, an incorrect prediction does

not necessarily mean that there is a fault in the program. These characteristics

of supervised classifiers make it hard to detect subtle faults in these applications.

To date, limited work has been done on systematic testing of software systems

that incorporate machine learning. Among them, metamorphic testing (MT) has been

used widely for testing software applications that uses supervised machine learning

algorithms [30, 35, 58, 96]. MT uses metamorphic relations (MRs) for testing the

software under test (SUT), where MRs act as partial oracle [21, 24]. A MR specifies

how the outputs should change according to a specific change made to the input.

Thus, from existing test cases (named as source test cases) MRs are used to generate

new test cases (named as follow-up test cases). If the changes found between the

outputs of the source and follow-up test cases are not as expected according to the

MR, then there is a defect in the SUT. Thus, using MRs we can address the oracle
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problem presented by supervised machine learning classifiers.

Several previous studies have defined MRs for testing supervised classifiers. Xie

et al. proposed a set of MRs based on user expectations to validate supervised

classifiers [96]. Dwarakanath et al. developed MRs for two image classifiers that are

based on support vector machines and deep learning [35]. Ding et al. developed three

levels of MRs to test and validate a deep learning framework [30]. The evaluations

conducted in these studies to measure the fault detection effectiveness of the developed

MRs is fairly limited due to the number of mutants used. For example Xie et al. used

24 mutants and Dwarakanath et al. used 22 mutants in total. These numbers are

significantly low especially considering the number of classes and the number of lines

of source code involved with these SUTs.

To overcome this limitation, in this paper, we report the findings of a large

scale experiment that we conducted to evaluate the fault detection effectiveness of

MRs developed for supervised classifiers. In this experiment we used a total of 709

reachable mutants (i.e. the mutated statement in the mutant was executed with the

test cases) that were generated for a real world supervised classifier implementation

from Weka [89]. Our results show a significant reduction of the fault detection

effectiveness with the increased number of mutants.

Rest of the paper organized as follows: Section 7.5 describes the background of

this work, including an overview of supervised machine learning and the k-Nearest

Neighbors algorithm, which is used as the SUT in this study. Section 7.6 discusses

more about MT and the MRs used for testing. In Section 7.7 we discuss the details

of our experimental approach and mutation analysis. Section 7.8 presents the results

and their analysis. Section 7.9 identifies the related work and Section 7.10 contains

our conclusions and future work.
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7.5 Background

7.5.1 Supervised Machine Learning Classifiers

Supervised classification is the task of deducing a function from labeled training

data such that it can be used to predict unknown labels on test data. Training

data can be represented by two vectors of size k. One vector is the training samples

S =< s0, s1, ..., sk−1 > and the other one is the class labels C =< c0, c1, .., ck−1 >

where, ci is the class label for si. Each sample si has m features from which the

prediction function will be learned. Class labels are a finite set and each class label

ci is an element of it, i.e. c ∈ L =< l0, l1, ..., ln−1 >, where n is the number of class

labels [96].

Supervised machine learning applications execute in two phases: the training

phase and testing phase. In the training phase, a set of training samples are used

by a supervised classification algorithm to learn a prediction function. To develop

the prediction function, the supervised learning algorithm would analyze how the

attributes relate to the class label. In the testing phase, the prediction function is

applied to unseen data known as the test set, where the class labels are unknown.

The application attempts to predict the class label for each instance in the test set

using the learned prediction function [96]. Some of the commonly used supervised

classification algorithms are K-Nearest Neighbors [28], Naive Bayes [73] and Support

Vector Machine [1].

7.5.2 K-Nearest Neighbors

This study uses an open-source implementation of the K-Nearest Neighbors

(kNN) algorithm as the SUT. kNN is particularly chosen due to its popularity in

the machine learning community and is used in domains such as recommendation
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systems, semantic searching and anomaly detection etc. Further, Xie et al. used

kNN in their study and using the same algorithm would allow us to do a comparison

with their results [96]. However, the MT approach discussed here should be applicable

to other supervised learning algorithm implementations.

In kNN, for a sample training set S, each sample set has m attributes,<

att0, att1, ..., attm−1 >, and also n classes,< lo, l1, ..., ln−1 >. The sample test

data is ts,< a0, a1, ..., am−1 >. kNN computes the distance between each sample

training set and the test case. Euclidean distance metric is one of the most popular

approach to measure distance. For sample si ∈ S, the value for each attribute is

< sa0, sa1, ..., sam−1 >. And the euclidean distance formula is:

dist(si, ts) =

√√√√m−1∑
j

(saj − aj)
2

Once the distance is calculated, kNN selects the k nearest training samples for

the test data after sorting all the distances. These k samples from the training set

are considered as the k-nearest neighbors of the test case. Then, kNN calculates the

proportion of each label in the selected k-nearest neighbors. The class label with the

highest proportion is predicted as the label for the test data.

7.6 Metamorphic Testing for Supervised Classifiers

Often, programs exhibit properties such that if the test input is changed in a

way that the new output can be predicted based on the original output. In MT, such

properties (known as MRs) are used as partial oracles to conduct testing [17, 22]. In

practice one can easily apply MT. As the first step, it is necessary to identify MRs

that can relate multiple pairs of the inputs and outputs of the SUT.

Then, source test cases are generated using techniques like random testing,
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Table 7.1: Sample data set

@attribute pictures numeric

@attribute paragraphs numeric

@attribute files numeric

@attribute files2 numeric

@attribute profit {0,1,2,3,4}

@data

45,3,16,38,0

15,87,89,46,4

59,77,94,11,0

86,89,94,15,2

80,28,94,11,4

23,12,47,41,1

94,15,22,15,0

95,26,97,76,3

50,90,0,72,2

33,46,47,95,0

@attribute pictures numeric

@attribute paragraphs numeric

@attribute files numeric

@attribute files2 numeric

@attribute profit {0,1,2,3,4}

@data

6,40,8,89,0
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structural testing or search based testing and the corresponding follow-up test cases

are constructed based on the MRs. In our previous studies we investigated how the

fault detection effectiveness of MT varies with various source test case generation

techniques such as different structural coverage based approaches and our results

show that coverage based source test case generation outperforms randomly generated

source test cases [76]. After executing the source and the follow-up test cases on the

SUT we can check if there is a change in the output that matches the MR, if not the

MR is considered as violated. Violation of a MR during testing indicates faults in the

SUT. Since MT checks relationship between inputs and outputs of a test program, we

can use this technique when the expected result of individual test output is unknown.

For example, Consistence with affine transformation MR described in Sec-

tion 7.6.1 can be used to test a kNN classifier. Source test case for kNN can be

randomly generated (see Table 7.1 for an example - training data on the left and test

data on the right). After executing this source test case, the output will be the class

label predicted for that test case which is 0 for this example. To generate follow-

up test case, we apply the input transformation described in the above MR, where

an arbitrary affine transformation function is applied to the attributes of both the

training data and test data. After executing the follow-up test case the output is 0

which is the predicted class label for the transformed test data. To satisfy this MR

both the source and follow-up test case outputs should be same. Therefore, in this

example, the considered MR is satisfied for the given source and follow-up test cases.

7.6.1 Identified MRs for Testing KNN

Murphy et al. [58] suggested six MRs (additive, multiplicative, permutative,

invertive, inclusive and exclusive) that can be applied to machine learning applications

including both supervised and unsupervised ML. Xie et al. developed a set of MRs
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based on the user expectations of supervised classifiers [96]. In our study, we mainly

use the MRs developed by Xie et al. to test kNN. Some variations of the same MRs

are used in some recent studies as well [35]. Below we provide a brief description of

these MRs (formal definitions can be found in [96]).

MR1: Consistence with affine transformation. If we apply some affine

transformation function, f(x) = kx + b, (k ̸= 0), to every value x in some subset of

features in the training and testing data, and then create a new model using this

data, the predictions made by the model should be unchanged.

MR2: Permutation of the attribute. If we permute the order of the

attributes, or features, of all the samples in the training and testing data, the result

of the predictions of the test data should not change.

MR3: Addition of uninformative attributes. If we add some new feature

that is equally associated with all classes, the predictions of the test data should not

be changed.

MR4: Consistence with re-prediction. Suppose we predict some test case

t as class li. If we append t to our training data and re-create the model, t should

still be classified as class li.

MR5: Additional training sample. Suppose we predict some test case t as

class li. If we duplicate all samples of class li in our training data and re-classify our

test data, t should still be classified as li. More generally, every test case predicted

as class li should still be predicted as class li with the duplicated samples.

MR6: Addition of classes by re-labeling samples. For some test cases not

of class li, we switch the class label from x to x∗. Then every test case predicted as

class li should still be predicted as class li with the re-labeled samples.

MR7: Permutation of class labels. If we permute the order of the class

labels with some random permutation p(li) where li is a class label, all test cases



106

which were predicted as li should now be predicted as p(li).

MR8: Addition of informative attribute. If we add some new feature that

is strongly associated with one class, li, then for every prediction that was class li,

the prediction with this new attribute should also be class li.

MR9: Addition of classes by duplicating samples. Suppose we duplicate

every class except for n, and give them all a new class. For example, if we originally

had class labels of 1, 2, 3, and 4, then we would create class labels of 1, 1*, 2, 2*, 3,

4, 4*. Then every test case predicted as class li (class 3 in this example) should still

be predicted as class li with the duplicated samples.

MR10: Removal of classes. If we remove some class li, the remaining

predictions should remain unchanged.

MR11: Removal of samples. If we remove samples that have not been

predicted as class li, then all cases which were predicted as li should remain

unchanged.

When using these MRs for testing kNN, it is important to select the appropriate

value for k (i.e. number of nearest neighbours) such that the MR becomes a necessary

property for kNN. Table 7.2 shows the k values used with each MR for verification of

kNN [96].

7.7 Experimental Study

The goal of this experimental study is to conduct an in-depth evaluation of the

fault detection effectiveness of the MRs listed in Section 7.6.1. We used the kNN

implementation in Weka 3.5.7 as the SUT [89].

7.7.1 Research Questions

We conducted a set of experiments to answer the following research questions:



107

Table 7.2: Metamorphic relations for kNN used in mutation analysis

k=3

MR1 Consistence with affine transformation

MR2 Permutation of the attribute

MR3 Addition of uninformative attributes

MR4 Consistence with re-prediction

MR5 Additional training sample

MR6 Addition of classes by re-labeling samples

k=1

MR7 Permutation of class labels

MR8 Addition of informative attribute

MR9 Addition of classes by duplicating samples

MR10 Removal of classes

MR11 Removal of samples

1. How does the fault detection rate of MRs vary as the number of

mutants increase? As we mentioned above the fault detection effectiveness of

these MRs were measured using a limited set of mutants in previous studies [96].

But it is important to use a reasonable number of mutants to evaluate the fault

detection effectiveness using the mutation killing rate. Therefore we increase

the number of mutants significantly and measure the killing rate.

2. Does the fault detection rate of MRs change with varying the data

set size in the source test cases? There are two major components in MT

that determines its fault detection effectiveness: the MRs and the source test

cases. We examined whether varying the data set size of the source test case

can effect the mutant killing rate for a given MR.

3. Does the fault detection effectiveness vary with the mutation engine
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used to generate the mutants? As we discussed above the underlying

process used by MuJava and Major for generating mutants is different. The

purpose of this research question is to see whether that one category of mutants

are hard to kill than the other.

7.7.2 Source and Follow-up Test Cases

In an individual source test case there is a training set and a test set. Similar

to Xie et al. [96], we used a random approach to generate these source test cases.

In each training and test set, there are four numerical attributes that are named

as: {pictures, paragraphs, files, files2}. The class label profit can have five values

{0, 1, 2, 3, 4}. The value of each attribute is randomly selected and ranges within

[0, 100]. The value of the class labels are also selected randomly. The training set

size ranges within [10, 200]. Table 7.1 shows a sample source test case, with the

training data set on the left and test data set on the right.

We transform the source test cases to obtain the corresponding follow-up test

cases according to the MRs described in Section 7.6.1. Multiple source and follow-up

test case pairs are generated for each MR by varying the number of samples in the

training data set as well as the size of source test case.

We executed all the source and follow-up test case pairs on the original kNN

implementation and validated the outputs against each MR before proceeding to the

mutation analysis described below. The original kNN implementation did not report

any MR violations.

7.7.3 Mutation Analysis

To evaluate the fault detection effectiveness of the MRs described in Sec-

tion 7.6.1, we use a mutation engine to systematically inject defects into the SUT.

Mutation testing has been extensively used to evaluate fault detection effectiveness,
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as many experiments suggest that mutants are a proxy to the real faults for comparing

testing techniques [4]. As we mentioned above, previous studies used mutation

analysis to evaluate the fault detection effectiveness of MRs [96]. But, the number of

mutants used in the mutation analysis is quite low compared to the size of the SUT’s

used in those experiments.

In our evaluation, we applied MuJava [52] and Major [45] tools to systematically

generate mutants for kNN in Weka-3.5.7. MuJava is a powerful and automatic

mutation analysis system, which can support both method-level and class-level

mutation operators. MuJava provides various types of mutants, including inter-class,

intra-class, inter-method and intra-method level of mutants. In this experiment,

we only included the intra-method level of mutants. Major is a mutation testing

framework which manipulates the abstract syntax tree of the SUT. Similar to MuJava,

we only used the intra-method level mutant operators from the Major tool.

MuJava and Major allows users to define which parts of the source code needs

to be mutated. Since, Weka is a large scale software with about 16.4M source code

and our experiments only focuses on the functionality of the kNN classifier, we only

selected the class files which are directly related to the kNN classifier according to

its hierarchy structure. Table 7.3 shows the names of the selected class files in our

mutation analysis.

We generated all possible mutants for the 6 class files in Table 7.3. After

excluding the mutants that caused compilation errors, runtime exception as well as

equivalent mutants, we have obtained a total of 1500 mutants from the MuJava and

Major mutation tools. From those mutants we identified 609 mutants generated by

MuJava that are reachable by the test cases that we described above. From the

mutants generated by Major, we randomly selected 100 mutants that are reachable

by the test cases due to time limitations. The distribution of mutants between the
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Table 7.3: Selected files for mutation analysis

kNN

weka.classifiers.lazy.IBk.java

weka.core.Attribute.java

weka.core.neighboursearch.LinearNNSearch.java

weka.core.neighboursearch.NearestNeighbourSearch.java

weka.core.NormalizableDistance.java

weka.core.EuclideanDistance.java

two tools are described in Table 7.4.

Table 7.4: Details of mutants

Tool Name Total # of mutants generated # of mutants used

MuJava 2383 609

Major 987 100

7.8 Results and Discussions

Below we discuss the results of our experiments and provide answers to our

research questions.

1. How does the fault detection rate of MRs vary as the number

of mutants increase? Out of the 709 mutants (609 MuJava + 100 Major) used

in this experiment, only 105 (14.8%) mutants could be killed using the MRs. This

is a significant decrease in the mutation killing rate compared to what is reported

in Xie et al., where 19 out of the 24 (79%) mutants were killed by the same set of

MRs [96]. We think that the reason for this significant decrease in the mutation
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Figure 7.1: Mutant kill rate for each MR by varying mutants size.

killing rate is due to the fact that Xie et al. used a selected set of mutation operators

to generate the mutants used in their experiment and those mutants do not provide

a good representation of the potential faults in the SUT.

To further evaluate how the mutation killing rate varies when increasing the

number of mutants, we executed the MRs with mutant sets of size 100, 400 and 600

that are randomly selected from the mutants generated by the MuJava tool. We used

10 randomly generated source test cases for executing each of the MRs. Figure 7.1

shows the mutant kill rates for each MR for the three mutant sets. As, shown in

Figure 7.1, mutant kill rate for all the MRs reduced when the number of mutants

were increased. In particular, the killing rates for sizes 400 and 600 are significantly

lower compared to size 100 for MR6, MR7, and MR9.
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2. Does the fault detection rate of MRs change with varying the data

set size in the source test cases? The goal of this research question is to identify

whether fault detection effectiveness of MRs vary with the size of the data sets used

as the source test case. In this experiment, we created data sets of 18 different sizes

where the number of samples vary from 30 to 200. These data sets were executed on

100 mutants that were randomly selected from the MuJava mutants.

Figure 7.2 shows the mutant killing rate for each MR with varying number of

samples in the source test cases. It is interesting to note that mutants killing rate

is low for all the MRs across the different data sets ranging between 10% and 37%.

Only MR7 and MR9 is showing some variation in the killing rate which is 6% and

4%, respectively. On the other hand, the rest of MRs have a constant mutants killing

rate despite the difference in data set sizes used as the source test cases. In summary,

varying the size of the random sample data has no significant effect on the fault

detection effectiveness of the considered MRs. But it might be possible to increase

the fault detection effectiveness by generating test data based on some test coverage

criterion as we discussed in our previous study [76].

3. Does the fault detection effectiveness vary with the mutation engine

used to generate the mutants? In order to answer this research question, we used

mutants from MuJava and Major mutation tools. We used 10 randomly generated

sample data sets as source test cases for each MR and executed them on a set of 100

randomly selected mutants from MuJava and a set of 100 randomly selected mutants

from Major. We report the results of this evaluation in Figure 7.3.

As shown in Figure 7.3, the overall mutant killing rate on the MuJava and

Major mutants is 43.6% and 35.1%, respectively. When comparing the results at

the individual MR level, it is noticeable that there is some consistency in the killing

rate for each MR between these two tools. For example, for both tools, MR7 and
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Figure 7.2: Mutant kill rate by each MR in kNN with varying data set.

MR9 have comparatively higher mutants killing rate than the other MRs. Also it is

interesting to note that for all the MRs except MR7, killing rate of Major mutants is

higher than that of the MuJava mutants even though the overall killing rate is higher

for MuJava mutants. This indicates that the mutation killing is dominated by MR7.

In summary, overall MuJava mutants are easier to kill, while with majority of MRs

Major mutants are easier to kill.

7.9 Related Work

There has been a significant amount of work done on applying machine learning

to solve software testing problems compared to testing machine learning applications

[13]. For example, machine learning has been used to predict likely MRs for a given

programs [40,46,49,69].
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Figure 7.3: Average mutants kill rate by each MR for MuJava and Major tool.

MT has been applied to test different types of machine learning applications [58].

A case study done on real world machine learning application framework shows that

MRs can effectively detect faults [96]. A recent work [35] investigated the application

of metamorphic testing to test complex machine learning algorithms such as SVMs

with non-linear kernels and deep residual neural networks (ResNET). The technique

was able to successfully detect mutants in open-source machine learning applications.

MRs has been proven to be a core element of MT. In image processing

applications MT was used by Tahir et al. [44]. They have shown that only few

MRs that are related to specific images are more effective in detecting faults than

others. Regardless of conducting MT, MRs have been used for the augmentation of

the machine learning models [98]. Here MRs were identified based on properties of

the input data and the usage of the binary classification model. Hui et al. [43] has
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proposed a semi automated MT approach for GIS testing that used the superficial

area calculation program to illustrate the process of the testing approach. They have

developed a MR model to generate compound MRs.

Some research efforts are reported on how to identify effective MRs. Asrafi et

al. [6] have observed a correlation between the test code coverage achieved by an MR

and its fault detection effectiveness. In object oriented software testing a method

of constructing MRs based on algebraic specification has been proposed [101]. This

method provides low MRs redundancy and improves the efficiency of software testing.

µMT [81] a MR construction tool that uses data mutation to construct an input

relation and the generic mapping rule associated with each mutation operator to

construct output relation.

7.10 Conclusions and Future Work

Previous studies have developed MRs for conducting MT on supervised classi-

fiers. But, a major drawback of these studies is the limited number of mutants used

to evaluate their fault detection effectiveness. In this paper, we empirically evaluated

the fault detection effectiveness of MRs developed for supervised classifiers using a

set of 709 reachable mutants, which is a significant increase in the number of mutants

compared to what is used in the previous studies.

Our study shows that the MRs identified based on user expectations of

supervised classifiers are not as effective in detecting faults as claimed in previous

studies. Out of the 709 mutants only 14.8% of mutants could be detected using these

MRs. Our study also shows that changing the size of randomly generated data used

as source test cases does not have an effect on the fault detection effectiveness of these

MRs.

In the future, we plan to develop MRs based on specific algorithmic properties
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of commonly used supervised classifiers. We think such MRs will have higher fault

detection effectiveness compared to the ones we investigated in this study. We also

plan to investigate ways to develop more effective source test cases for this domain

using various data distributions. Further, we plan to extend this experiment to other

machine learning algorithms including deep learning algorithms.



117

CHAPTER EIGHT

MRSYN: A TEST CASE GENERATION AND MINIMIZATION APPROACH

FOR TESTING MACHINE LEARNING APPLICATIONS

8.1 Contribution of Authors and Co-Authors

Manuscript in Chapter 8

Author: Prashanta Saha

Contributions: Problem identification and proposing solution, running experiment,

manuscript writing, creating tables and figures. Primary writer

Co-Authors: Dr. Clemente Izurieta, Dr. Upulee Kanewala

Contributions: Contribution in manuscript editing/writing, provided feedback,

guidance and advice



118

8.2 Manuscript Information

Prashanta Saha, Dr. Clemente Izurieta and Dr. Upulee Kanewala

IET Software

Status of Manuscript:

Prepared for submission to a peer-reviewed journal

x Officially submitted to a peer-reviewed journal

Accepted by a peer-reviewed journal

Published in a peer-reviewed journal

Wiley Publishers



119

8.3 Abstract

Machine learning (ML) algorithms, particularly supervised classifiers, are exten-

sively employed in various domains for making predictions and decision-making tasks.

However, ensuring the correctness and reliability of these systems is challenging due to

the absence of formal proofs for their underlying algorithms. Software testing becomes

imperative to validate the quality and accuracy of supervised classifier applications.

Conventional testing techniques face limitations when testing supervised classifiers,

primarily due to the absence of a reliable test oracle and the probabilistic nature of

these models. Metamorphic Testing (MT) offers a promising approach to address

these challenges by leveraging metamorphic relations (MRs) to test the probabilistic

behavior of supervised classifiers. However, effective test case generation for MT in

the context of supervised classifiers remains a challenge. This research proposes the

MRSyn (Metamorphic Relation-based Synthetic dataset generation) approach, a

novel test case generation and minimization technique for MT. The MRSyn approach

combines the test case generation technique using important properties of supervised

classifier algorithms and test suite minimization techniques to generate a reduced set

of source test cases with enhanced fault detection capability. Empirical experiments

demonstrate the superiority of the MRSyn approach over random test case generation

in terms of fault detection capability for supervised classifiers. The results also

show a significant increase in mutation scores when MRSyn-generated test cases

are augmented with applicable MRs. This research contributes to improving the

reliability and accuracy of supervised classifiers by optimizing the testing process and

enhancing the quality assurance process for these critical applications.



120

8.4 Introduction

Machine learning (ML) algorithms, specifically supervised classifiers, commonly

employed in various domains for making predictions, play a crucial role in many real-

world applications. For instance, over fifty real-world computational applications use

support vector machines for classification [1]. However, ensuring the correctness and

reliability of these systems is challenging due to the absence of formal proofs for the

underlying algorithms. As a result, software testing becomes imperative to validate

the quality and accuracy of supervised classifier applications.

Conventional testing techniques face limitations in regard to testing supervised

classifiers. One major challenge is the absence of a reliable test oracle [88], which is

responsible for determining the correctness of the test outputs. This characteristic

makes supervised classifiers ”non-testable programs” since their correctness cannot

be easily determined. Additionally, supervised classifiers are not expected to be 100%

accurate, meaning that incorrect predictions do not necessarily indicate faults in the

program. These factors make it difficult to detect subtle faults in supervised classifier

applications.

Metamorphic Testing (MT) offers a promising approach to address the challenges

associated with testing supervised classifiers. MT leverages the idea of using

metamorphic relations (MRs) to test the probabilistic behavior of these classifiers.

MRs are properties that hold true over multiple executions of a program when specific

inputs undergo predefined transformations. By applying MT, it becomes possible

to identify faults in supervised classifiers by detecting discrepancies in the output

predictions based on the expected behavior defined by the MRs.

In the context of MT, test case generation is a critical aspect. Traditional

testing approaches, such as Random Testing [39], have been widely used for test case
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generation. However, previous studies have indicated that randomly generated source

test cases (train and test data) for testing supervised classifiers are not effective in

detecting injected faults in the program [77]. This limitation calls for the development

of more effective test case generation approaches specifically tailored to the verification

of the source code of supervised classifiers.

The goal of this research is to devise an effective test case generation approach

using MT for verifying the source code of supervised classifiers. By leveraging

MRs and their ability to capture the expected behavior of supervised classifiers, the

proposed approach aims to enhance the fault detection capability and improve the

overall quality assurance process for these applications.

Synthetic datasets can be generated as a test suite to test supervised classifiers.

scikit-learn uses critical properties of ML to generate synthetic datasets. But, not all

of these properties are critical to the validation aspect of supervised classifiers. We

have developed an effective approach for identifying and selecting the most critical

properties that will generate meaningful source test cases. Through this research,

it is anticipated that the developed test case generation approach will enable more

thorough testing of supervised classifiers, leading to improved reliability and accuracy

in their predictions. This, in turn, will enhance the trust and confidence in the

performance of supervised classifiers across various domains and applications.

Testing a large test suite can indeed be time-consuming and resource-intensive,

especially in the context of machine learning models where the test suite can consist

of a large number of test cases. To address this challenge, a test suite minimization

approach is employed, which aims to reduce the number of test cases while preserving

the effectiveness of the test suite.

The objective of a test suite minimization approach is to optimize the testing

process by identifying a subset of test cases that adequately represent the behavior
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and characteristics of the larger test suite. The goal is to reduce redundancy and

eliminate unnecessary test cases without compromising the ability to detect faults or

accurately evaluate the performance of the machine learning model.

Test suite minimization techniques typically employ various strategies to achieve

this goal. These strategies can include techniques such as prioritization, selection,

and reduction. Prioritization techniques assign priorities to test cases based on

certain criteria, such as code coverage or fault detection capability, and select the

most important test cases for execution. Selection techniques involve selecting a

subset of representative test cases that cover diverse scenarios or capture critical

aspects of the system under test. Reduction techniques aim to eliminate redundant

or overlapping test cases while preserving the overall test coverage. In this research,

we are considering only the reduction strategy as our test suite minimization

approach. In this research, we propose a novel approach called MRSyn for testing

supervised classifier models. The MRSyn approach combines test case generation

and minimization techniques within the framework of MT. The main objective is to

generate a set of source test cases that not only cover diverse scenarios but also have

a reduced number of test cases while maintaining their fault detection capability.

The MRSyn approach has the potential to significantly improve the efficiency

and effectiveness of testing supervised classifier models. By generating a reduced set

of test cases with high fault detection capability, it reduces the time and resources

required for testing while maintaining the ability to detect faults. Additionally, the

minimized test suite enhances the overall quality assurance process by focusing on

the most relevant and effective test cases.

The rest of the paper is organised as follows: Section 8.5 introduces the

background on subject programs, MT and mutation testing. Section 8.6 describes

our research goals. Section 8.7 presents our MRSyn approach. Section 8.8 shows how
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the experiments are set up. Section 8.9 summarises the empirical results and provides

discussion. Section 8.10 lists threats to validity. Section 8.11 discusses the related

work. And finally, Section 8.12 concludes our work.

Figure 8.1: Supervised classifier application workflow.

8.5 Background

8.5.1 Supervised Machine Learning Classifiers

Supervised classification is the task of deducing a function from labeled training

data such that it can be used to predict unknown labels on test data. Training

data can be represented by two vectors of size k. One vector is the training samples

S =< s0, s1, ..., sk−1 > and the other one is the class labels C =< c0, c1, .., ck−1 >

where ci is the class label for si. Each sample si has m features from which the

prediction function will be learned. Class labels are a finite set and each class label

ci is an element of it, i.e., c ∈ L =< l0, l1, ..., ln−1 >, where n is the number of class

labels [96].

Supervised machine learning applications execute in two phases: the training

phase and testing phase (Figure 8.1). In the training phase, a set of training samples

are used by a supervised classification algorithm to learn a prediction function. To

develop the prediction function, the supervised learning algorithm would analyze how

the attributes relate to the class label. In the testing phase, the prediction function
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is applied to unseen data, known as the test set, where the class labels are unknown.

The application attempts to predict the class label for each instance in the test set

using the learned prediction function [96]. In this paper, some of the commonly used

supervised classification algorithms such as K-Nearest Neighbor [27], Naive Bayes [73],

Neural Networks [60] and Support Vector Machine [1] are studied as subject programs.

K-Nearest Neighbors (kNN), In kNN, for a sample training set S, each

sample set has m attributes < att0, att1, ..., attm−1 >, and n classes,< lo, l1, ..., ln−1 >.

The sample test data is ts,< a0, a1, ..., am−1 >. kNN computes the distance between

each sample training set and the test case. Euclidean distance metric is one of the

most popular approaches to measure distance. For sample si ∈ S, the value for each

attribute is < sa0, sa1, ..., sam−1 >. And the euclidean distance formula is [96]:

dist(si, ts) =

√√√√m−1∑
j

(saj − aj)
2

Once the distance is calculated, kNN selects the k nearest training samples for the test

data after sorting all distances. These k samples from the training set are considered

as the k-nearest neighbors of the test case. Then, kNN calculates the proportion

of each label in the selected k-nearest neighbors. The class label with the highest

proportion is predicted as the label for the test data.

In Naive Bayes Classifier (NBC), suppose for a sample training set S, each

sample set has m attributes < att0, att1, ..., attm−1 >, and n classes,< lo, l1, ..., ln−1 >.

The sample test data is ts,< a0, a1, ..., am−1 >. The label of ts is called lts which is to

be predicted by NBC. The equation of calculating the probability of lts to be of class

lk [96]:

P (lts = lk|a0a1...am−1) =
p(lk)

∏
j P (aj|lts = lk)∑

i P (li)
∏

j P (aj|lts = li)
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After computing the probability for each li ∈ {l0, l1, ..., ln− 1}, NBC assigns the

highest probability label lk, as the label of the test case ts.

In Support Vector Machine (SVM), the basic idea is to maximize the

distance between two classes. Let’s consider a binary classification problem, with

a sample set z = {xi, yi}mi=1, where xi ∈ Rn and yi ∈ {−1, 1}. Then z consists of

two classes with the following sets, I = {i|yi = 1} and II = {i|yi = −1}. Let, H be

a hyperplane given by wTx + b = 0 with w ∈ Rn, ||w|| = 1, and b ∈ R. So, I and II

are separable by hyperplane H if for i = 1, ...,m, [1]

 wTxi + b > 0, ∀i ∈ I,

wTxi + b < 0, ∀i ∈ II.

In this case, yi(w
Txi + b) gives the distance between point xi and the hyperplane H.

Then the distance of each class to hyperplane H is defined as,

tI(w, b) = mini∈I{yi(wTxi + b)}, tII(w, b) = mini∈II{yi(wTxi + b)}.

The corresponding classification hyperplane is obtained by,

max||w||=1,b{tI(w, b) + tII(w, b)},

which can be equivalently posed into the well-known SVM formulation.

In Multilayer Perceptron (MLP), a perceptron is a basic unit that receives

a set of input signals {xi} and emits a signal y calculated by applying an activation

function σ to a weighted sum of its input; y = σ(
∑n

i=1wixi). An NN is a multi-layered

network of perceptrons. All these input signals {xi} are fed into perceptrons in the

hidden layer, and then all the signals from perceptrons are input to the output layer.
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Let G and H be two activation functions. Given D−dimensional vector x and M

perceptrons consisting of the hidden layer, signals K = 1, ..,R from the output layer

is mathematically defined as below, [60]

yk(W ;x) = H(
M∑
j=0

vkjG(
D∑
i=0

wjixi))

where vkj and wji are weights, which are compactly written as W .

8.5.2 Metamorphic Testing for Supervised Classifiers

Often, programs exhibit properties such that if the test input is changed, then

the new output can be predicted based on the original output. In MT, such properties

(known as MRs) are used as partial oracles to conduct testing [18]. In practice, one

can easily apply MT. As the first step, it is necessary to identify MRs that can relate

multiple pairs of the inputs and outputs of the SUT. Then, source test cases are

generated using techniques like random testing, structural testing, or search-based

testing, and the corresponding follow-up test cases are constructed based on the

MRs. In previous studies, we investigated how the fault detection effectiveness of MT

varies with various source test case generation techniques such as different structural

coverage-based approaches, and our results show that coverage-based source test case

generation outperforms randomly generated source test cases [76]. After executing

the source and follow-up test cases on the SUT we can check if there is a corresponding

change in the output that matches the MR, if not, the MR is considered violated.

Violation of an MR during testing indicates faults in the SUT. Since MT checks

the relationship between the inputs and outputs of a test program, we can use this

technique when the expected result of an individual test output is unknown.

For example, the MR1: Consistence with affine transformation MR described in
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Table 8.1 can be used to test a kNN classifier. The source test case for a kNN can be

randomly generated (see Table 8.2 for an example - training data on the left and test

data on the right). After executing this source test case, the output will be the class

label predicted for that test case, which is 0 for this example. To generate follow-up

test cases, we apply the input transformation based on MR1: Consistence with affine

transformation MR, where an arbitrary affine transformation function is applied to

the attributes of both the training data and test data. After executing the follow-up

test case, the output is 0, which is the predicted class label for the transformed test

data. To satisfy this MR, both the source and follow-up test case outputs should be

same. Therefore, in this example, the considered MR is satisfied for the given source

and follow-up test cases.

Table 8.1: MRs for supervised classifiers. The significance of ✓is that particular MR
supports the validation aspect of the supervised classifier. Validation aspect aim to
check whether the algorithms under test meet the general user expectations or not.

Metamorphic

Rela-

tions(MRs)

kNN NBC SVM MLP Description

MR1:

Consistent

with affine

transforma-

tion

✓ ✓ ✓ If we apply some affine transfor-

mation function, f(x) = kx +

b, (k ̸= 0), to every value x in some

subset of features in the training

and testing data, and then create

a new model using this data, the

predictions made by the model

should be unchanged.
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MR2: Permu-

tation of class

labels

✓ ✓ ✓ If we permute the order of the

class labels with some random

permutation p(li) where li is a

class label, all test cases which

were predicted as li should now be

predicted as p(li).

MR3:

Addition of

informative

attribute

✓ ✓ ✓ If we add some new feature that is

strongly associated with one class,

li, then for every prediction that

was class li, the prediction with

this new attribute should also be

class li.

MR4:

Addition of

uninformative

attributes

✓ ✓ ✓ If we add some new feature that is

equally associated with all classes,

the predictions of the test data

should not be changed.

MR5: Permu-

tation of the

attribute

✓ ✓ ✓ If we permute the order of the

attributes, or features, of all the

samples in the training and testing

data, the result of the predictions

of the test data should not change.
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MR6: Consis-

tence with re-

prediction

✓ ✓ Suppose we predict some test case

t as class li. If we append t to

our training data and re-create the

model, t should still be classified

as class li.

MR7: Addi-

tional training

sample

✓ ✓ ✓ Suppose we predict some test case

t as class li. If we duplicate all

samples of class li in our training

data and re-classify our test data,

t should still be classified as li.

More generally, every test case

predicted as class li should still

be predicted as class li with the

duplicated samples.

MR8: Addi-

tion of classes

by re-labeling

samples

✓ For some test cases not of class

li, we switch the class label from

x to x∗. Then every test case

predicted as class li should still be

predicted as class li with the re-

labeled samples.
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MR9: Addi-

tion of classes

by duplicating

samples

✓ Suppose we duplicate every class

except for n, and give them all

a new class. For example, if we

originally had class labels of 1, 2,

3, and 4, then we would create

class labels of 1, 1*, 2, 2*, 3, 4,

4*. Then every test case predicted

as class li (class 3 in this example)

should still be predicted as class li

with the duplicated samples.

MR10:

Removal of

classes

✓ If we remove some class li, the

remaining predictions should re-

main unchanged.

MR11:

Removal of

samples

✓ If we remove samples that have

not been predicted as class li, then

all cases which were predicted as

li should remain unchanged.

8.5.3 Mutation Testing

Mutation testing [29] is a fault-based testing technique that measures the

effectiveness of test cases associated with SUTs and has been used to evaluate the

fault detection effectiveness of automated test case generation approaches. Briefly, the

technique can be described as follows. Initially, mutants are generated by introducing

faults into a program. This is achieved through the application of syntactic changes to

the program’s source code, resulting in new faulty versions. Each syntactic alteration
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Table 8.2: Sample example of a dataset in ARFF format (Attribute-Relation File
Format). This format has header and data information. The header contains attribute
names and their data types (@attribute). The data contains the data set (@data).

Training Data Test Data

@attribute pictures numeric @attribute pictures numeric

@attribute paragraphs numeric @attribute paragraphs numeric

@attribute files numeric @attribute files numeric

@attribute files2 numeric @attribute files2 numeric

@attribute profit{0,1,2,3,4} @attribute profit{0,1,2,3,4}

@data @data

45,3,16,38,0 6,40,8,89,0

15,87,89,46,4

59,77,94,11,0

86,89,94,15,2

80,28,94,11,4

23,12,47,41,1

94,15,22,15,0

95,26,97,76,3

50,90,0,72,2

33,46,47,95,0
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is dictated by a mutation operator. Subsequently, test cases are executed for both

the original and faulty versions of the program, and their responses are compared.

If the mutant produces a different response than the original, it is considered killed,

signifying the test case’s effectiveness in detecting faults. Conversely, if the mutant’s

response is identical to the original program, it is labeled as an equivalent mutant.

Common scenarios for equivalent mutants include those that cannot be triggered, arise

from dead code, only modify internal states, or solely enhance speed. The mutation

score, calculated as the percentage of killed mutants among the total number of non-

equivalent mutants, serves as a metric for the adequacy of the test suite.

8.6 Research Goals

ML is a type of artificial intelligence technique that makes decisions or

predictions from data [56]. From the perspective of training data characteristics,

ML includes Supervised learning, Unsupervised learning, and Reinforcement learning.

Desired properties of ML programs can be classified into functional (i.e., correctness

and model relevance) and non-functional (i.e., efficiency, robustness, fairness, inter-

pretability) categories [100]. Though these properties are not strictly independent

of each other, their external manifestation of behavior is different. In this research,

the correctness property of ML system testing is targeted. Correctness measures the

fundamental functional accuracy of an ML system.

Definition (Correctness.) Let U represent the future unlabeled data and

let x be a data instance in U. Let m be the ML model that we want to test. m(x) is

the predicted label for x and c(x) is the true label. The model correctness E(m) is

the probability that m(x) and c(x) are identical [100]:

E(m) = Prx∼U [m(x) = c(x)]
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There exist multitude of challenges in systematically validating the correctness of

ML models. Consider an arbitrary ML model M that accepts an input I conforming

to the grammar G and classifies I in one of the categories {C1, C2, C3, ..., Cn}.

Firstly, without precisely knowing the correct categorization of input I, it is not

possible to validate the model M. In other words, the validation of ML models faces

the oracle problem [88] in software testing. Secondly, there has been a significant

effort in the software engineering research community to design test input generation

strategies. The insight behind such directed strategies is to uncover bugs faster.

However, to date, very little work has been done to assure the correctness of the

software applications that perform machine learning. Formal proofs of an algorithm’s

optimal quality do not guarantee that an application implements or uses the algorithm

correctly, and thus software testing is necessary. Since the oracle problem exists in

ML model testing, MT has been proven to be an effective approach to test any ML

system [95]. In MT, we require source and follow-up test cases to test any program.

There are many open-source datasets available that can be used as source test cases

to test supervised classifiers’ applications, but their effectiveness in detecting faults

is yet to be proven with MT techniques. Random test data generation [95] is another

approach that has been used to generate source test cases for MT, however, and

because of the probabilistic prediction nature of supervised classifiers, this approach

does not effectively reveal faults.

Our research goal focuses on proposing two approaches for testing supervised

ML models: test case generation and test suite minimization. Specifically:

• Test Case Generation Approach: In the context of supervised ML models,

test case generation involves creating input data and corresponding expected

outputs to evaluate the correctness and effectiveness of the models. An effective

test case generation approach aims to generate a diverse and representative set of
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test cases that cover various scenarios and edge cases. By proposing an effective

test case generation approach, we aim to improve the quality and coverage of

the test suite, leading to better evaluation and verification of supervised ML

models.

• Test Suite Minimization Approach: Testing every single test case in a large

test suite can be time-consuming and resource-intensive. Therefore, a test

suite minimization approach aims to reduce the number of test cases while

maintaining the effectiveness of the test suite. By proposing a test suite

minimization approach, we aim to optimize the testing process by reducing the

number of test cases without sacrificing the ability to detect faults or evaluate

the ML model’s performance.

Both the test case generation approach and the test suite minimization approach

contribute to improving the efficiency and effectiveness of testing supervised ML

models. These approaches can help ensure comprehensive coverage, identify potential

issues or weaknesses in the models, and provide a cost-effective testing strategy for

evaluating and verifying the correctness and performance of supervised ML models.

Table 8.3: Property parameters that help inform the generation of tuned source test
cases. These parameters are used to generate datasets in Scikit-learn package.

Properties Description

Samples This parameter represents the total number of samples

that will be generated for the data set.
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Features This parameter represents the total number of features

that will be generated for the data set. These include

informative features, redundant features, duplicate fea-

tures, and useless features.

Informative Features Each class is composed of a number of Gaussian clus-

ters, each located around the vertices of a hypercube in

a subspace of dimension. For each cluster, informative

features are drawn independently from N(0, 1) and then

randomly linearly combined within each cluster in order

to add covariance. The clusters are then placed on the

vertices of the hypercube.

Redundant Features This feature is generated as random linear combinations

of the informative features.

Repeated Features This feature is drawn randomly from the informative

and the redundant features.

Classes This parameter represents the number of classes (or

labels) of the classification problem.

n clusters per class This parameter denotes the number of clusters per class

that will hold.

weights This parameter represents the proportions of samples

assigned to each class. Based on this property the

balance of the classes will be decided.

Flip Sample This floating point parameter value will decide the

fraction of samples whose class is assigned randomly.
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Class Separator This floating point parameter represents the factor

multiplying the hypercube size. Larger values spread

out the clusters/classes and make the classification task

easier.

Hypercube This boolean value parameter has two outcomes. If

True, the clusters are put on the vertices of a hypercube.

If False, the clusters are put on the vertices of a random

polytope.

Shift Shift features by the specified value. If None, then

features are shifted by a random value drawn in the

class separator parameter.

Shuffle This feature shuffles the samples and the features.

8.7 Proposed Approach

8.7.1 Source Test Case Generation

While real-world datasets are valuable for testing the overall performance and

generalization of ML models, they do not always provide sufficient coverage of specific

scenarios or functionalities that need to be tested. Generating controlled datasets

with specific properties can offer additional control over the data and help evaluate

the behavior of ML models under different conditions.

The idea of generating random values and placing them in a dataset according to

specific parameters is a straightforward approach to creating controlled datasets. By

defining the properties or characteristics we want to test, we can generate synthetic

data that exhibits those properties. This allows us to have more control over the data

and tailor it to specific testing scenarios.
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In the context of ML, scikit-learn is a widely used Python library that provides

various functionalities for ML tasks, including dataset generation. scikit-learn

includes methods to generate datasets based on critical properties of ML algorithms.

These properties are often related to statistical distributions, class imbalances, feature

correlations, or other important characteristics of the data that can impact the

performance of ML models.

By leveraging the functionality of scikit-learn, we can generate synthetic datasets

that possess critical properties relevant to the ML algorithms being tested. This

approach enhances the reliability of testing by providing more control over the data

and allowing targeted evaluation of specific functionalities or scenarios.

Each step of the process is described as follows:

1. Centroids and Class Separation: To create clusters representing different

classes, centroids are generated for each cluster. The number of centroids is

determined by the number of classes in the dataset. By introducing some

randomness, the centroids can be slightly varied within each cluster. The

class separator parameter controls how closely the centroids are placed together,

affecting the overlap between clusters.

2. Gaussian Distribution and Informative Features: The data is generated

using a Gaussian distribution with a variance of 1. This ensures that the

data follows a normal distribution. Additionally, informative features are

incorporated into the dataset. These features contribute significantly to the

separation and distinction between different classes.

3. Splitting Data into Classes: The generated data is then split into the desired

number of classes. This is achieved by shifting portions of the data to each
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cluster. The shift in data points helps create distinct clusters corresponding to

different classes.

4. Correlations among Informative Features: Correlations among informa-

tive features are introduced by multiplying the feature matrix with a randomly

generated covariance matrix. This step ensures that the informative features

are not independent of each other, reflecting realistic scenarios where features

may exhibit correlations.

5. Redundant Features and Other Characteristics: The function further

enhances the dataset by adding redundant features. These features may have

correlations among themselves but do not break the correlations among the

informative features. Additionally, the dataset may include useless features,

repeated features, and associated weights to simulate more complex and realistic

datasets.

By utilizing the property parameters from Table 8.3, we can control the characteristics

and properties of the synthetic datasets generated. These parameters provide

flexibility in adjusting the cluster separation, overlap, feature correlations, and other

relevant characteristics, allowing us to create diverse and controlled datasets for

testing and evaluating ML algorithms. Overall, this approach enables the generation

of synthetic datasets with specific properties, providing a means to systematically

explore the behavior and performance of ML models under different conditions and

scenarios.

8.7.2 Test Suite Minimization Approach

Test suite minimization techniques are commonly used to reduce the cost

associated with executing test suites. However, it is essential to investigate whether a
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minimized source test suite maintains similar fault detection capability as the original

source test suite when applying Metamorphic Testing (MT). Our second research goal

is to reduce the software testing cost by minimizing the test suite size. Our idea is to

reduce the generated source test suite size based on their fault detection effectiveness.

We can measure the fault detection effectiveness by using the mutation score as a

metric. Additionally, instead of using a total mutant set, our plan is to use a popular

mutant reduction strategy to reduce the mutant set size. A mutant reduction strategy

technique will practically reduce the application cost of mutation testing, which will

lead to a reduction in the total software testing cost.

Offutt et al. introduced the N − selective mutation theory to address

the variability in the number of mutant programs generated by different mutant

operators [61]. In their experimental approach, they categorized mutant operators

into three groups based on the syntactic elements they affect. These categories

include Replacement-of-operand operators, which involve replacing each operand in

a program with other legal operands; Expression modification operators, focused

on modifying expressions through the replacement and insertion of operators; and

Statement modification operators, designed to alter entire statements. The findings

of their experiments indicate that Expression modification operators, even when

generating a smaller number of mutants compared to the total mutant set, can be

effective. Furthermore, they observed a linear relationship between the execution

time and the use of Expression modification operators.

With this reduced number of mutants, we will rank the mutation scores of the

respective source test cases. After that, we will pick the higher-ranked source test

cases based on a threshold level (decided by the developer/tester) for the metamorphic

testing [75].

By reducing the number of test cases in a large test suite, a test suite
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minimization approach offers several benefits. It can significantly reduce the execution

time and resource requirements, enabling faster and more efficient testing processes.

Moreover, it can facilitate the identification of critical faults or issues more quickly

by focusing on the most relevant test cases. This, in turn, allows for timely bug fixes

or performance improvements.

Table 8.4: Distribution of MRSyn datasets (# of test cases) and their characteristics

Property parame-

ters

# of Test

Cases

Characteristics

Informative Features 11 1 informative feature was used in 1 dataset,

2 informative features were used in 3

datasets and 3 informative features were

used in 7 datasets

n Clusters per class 27 1, 2 and 3 clusters per class parameters

were individually applied in 9 datasets

Class Separator 27 1, 3 and 5 class separator parameters were

individually applied in 9 datasets

Hypercube 20 Boolean values ’True’ and ’False’ of the

Hypercube parameter were equally applied

to 20 datasets

8.8 Experimental Setup

This section describes the experimental setup, three formally stated research

questions, a description of the identified MRs for the subject programs, the approaches

we took to generate source test cases, and the evaluation process of the experiment.
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8.8.1 Research Questions

We identified three research questions that will help us test the effectiveness of

the MRSyn approach over the random data generation approach.

RQ1: Is the MRSyn approach more effective for MT than a random

approach in terms of fault detection capability?

The motivation for this research question is to determine if the MRSyn approach

has better fault detection capabilities than randomly generated source test cases. To

evaluate the fault detection capability of these approaches, we create a comprehensive

set of faulty versions of our subject programs, herein referred to as mutants. We then

apply both the MRSyn approach and the random approach to the mutants’ set and

analyze their performance in terms of fault detection capabilities.

RQ2: Does the use of MRs have any influence on enhancing the

effectiveness of fault finding in MT?

The motivation behind this question stems from the potential impact of MRs in

improving the effectiveness of fault detection in MT. We analyze the mutation score

obtained from the application of MT with MRs to evaluate the impact of MRs on

the fault detection effectiveness. We compare the mutation score obtained by using

MRs to the mutation score obtained without using MRs (i.e., mutation testing with

source test cases only) to assess if there is an increase in fault detection effectiveness.

RQ3: Can test suite minimization techniques reduce the cost of

executing a test suite?

The motivation for this research question is to determine if a minimized source

test suite has similar fault detection capabilities as the original source test suite

while applying MT. We compare the fault detection capability of the original source

test suite and the minimized test suite based on the mutation score. Additionally,

we analyze the reduction in test suite size and execution time to evaluate the cost
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reduction potential.

8.8.2 MRs Identification for Supervised Classifiers

Identifying MRs is an important step in MT of ML classifiers. Murphy et

al. [57] suggested six MRs (additive, multiplicative, permutative, invertive, inclusive,

and exclusive) that can be applied to machine learning applications including both

supervised and unsupervised ML. Later, 11 MRs were identified by Xie et al. [96]

(Described in Table 8.1). These MRs were derived from the specification of a

particular algorithm under test, or from the users’ general expectations for the

classifiers. Each of the proposed MRs either targets the verification or the validation

aspect of testing the supervised classifier algorithms under test. The MRs targeting

verification aspect aims to check whether the algorithms under test adhere to the

necessary characteristics (from the implementation perspective) expected from the

algorithms, whereas the MRs targeting validation aspect aims to check whether the

algorithms under test meet the general user expectations or not. We selected MRs

for this research based on the validation aspect.

8.8.3 Generation of Source Test Cases

To conduct this experiment, we generated source test cases using two different

approaches: random generation and the MRSyn approach. We discuss each approach

and its process in detail.

Random Generation: For random generation, we used a random number

generator tool to create 85 pairs of training and testing datasets. These sets were

generated randomly, meaning the input data for the training and testing sets were

chosen without any specific pattern or criteria.

MRSyn Approach: The MRSyn approach involves the generation of source

test cases based on a set of property parameters. In this experiment, we randomly
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selected four property parameters, as described in Table 8.3, to generate 85 datasets

using the scikit-learn package in Python. The scikit-learn package provides various

functionalities for ML, including dataset generation. Each dataset generated using

the MRSyn approach is unbiased, meaning the sample sizes are equal for all class

labels. This ensures that the generated datasets are balanced and representative of

the underlying data distribution.

Table 8.2 represents a sample source test case, where the left side of the table

displays the training dataset, and the right side displays the corresponding test

dataset. These source test cases, generated through random generation and the

MRSyn approach, serve as input data for the MT.

Table 8.4 provides the distribution of the MRSyn-generated source test cases.

It lists the counts of test cases as well as the characteristics present in the generated

datasets. This information helps in understanding the distribution and characteristics

of the datasets created using the MRSyn approach.

8.8.4 Evaluation Approach

MT is a testing technique used to verify the behavior of programs when the

input undergoes certain changes or transformations. It is based on the idea that if a

program is correct, then certain relationships should hold between the outputs of the

source test case and the follow-up test case, even if the inputs are transformed.

In the context of MT, mutation analysis can be used as an evaluation technique.

After applying the Major mutation tool to generate mutants for the subject programs

(Table 8.5), the source and follow-up test suite were executed on both the original

program and its mutants. The purpose is to determine whether the mutant and the

original program produce the same outputs for the given inputs. If a mutant produces

different outputs compared to the original program, it is considered a ”killed” mutant
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Table 8.5: Details of the 4 supervised classifiers with their total lines of code and #
of mutants generated. These classifiers are from Weka tool. The class and method
names that we have used in this research are mentioned below. Total lines of code
were calculated by excluding the comments in that method.

Subject Programs Method Names Lines

of

Code

# of

Mu-

tants

Used

k Nearest Neighbors

(KNN)

weka.classifiers.lazy.IBk.

buildClassifier

28 125

Naive Bayes (NBC) weka.classifiers.bayes.

NaiveBayes.buildClassifier

53 104

Support Vector Ma-

chine (SVM)

weka.classifiers.functions.SMO.

buildClassifier

68 136

Neural Network

(MLP)

weka.classifiers.functions.

MultilayerPerceptron.buildClassifier

196 130

since it indicates a fault in the mutated code. Conversely, if the mutant produces the

same output as the original program, it is considered a ”surviving” mutant.

The mutation score is then calculated as the ratio of the number of killed mutants

to the total number of mutants. It provides a measure of how effective the test suite

is at detecting faults introduced by the mutations. A higher mutation score indicates

a more effective test suite, as it has detected a larger proportion of mutants.

Consider a test suite t composed of test cases, i.e., pairs of source and follow–up

test cases. The Mutation Score (MS) of t is calculated as follows:

MS(t) = Mk/Mt
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where Mk is the number of killed mutants by the test suite in t, and Mt is the total

number of mutants.

By applying MT in combination with mutation analysis, we can evaluate the

quality of the test suite in terms of its ability to detect faults introduced by the

mutants generated by the Major mutation tool.
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Figure 8.2: Comparison between mutation scores of Random and MRSyn based
datasets for 4 supervised classifier algorithms. These two datasets were applied as
source test suites for MT.

8.9 Results & Discussion

Below we discuss the results from our experiments and provide answers to the

research questions:

RQ1: Is the MRSyn approach more effective for MT than a random

approach in terms of fault detection capability?

The objective was to compare the mutation scores obtained using the MRSyn

approach and the random approach for four supervised classifier algorithms: MLP,

Naive, SVM, and kNN. A total of 85 random datasets and 85 MRSyn generated

datasets were executed separately for this comparison.
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Figure 8.2 presents the comparison of mutation scores between the MRSyn

approach and the random approach for each of the four supervised classifier

algorithms. The results show that in three of the algorithms, namely, MLP, NBC,

SVM, the MRSyn approach outperformed the random approach in terms of mutation

score which is statistically significant (p-value<0.05). This suggests that the test

cases generated using the MRSyn approach were more effective in detecting faults

than the randomly generated test cases.

However, an interesting observation was made for the kNN algorithm. In both

the MRSyn approach and the random approach, the mutation scores were found to

be relatively low. To investigate this further, we examined the code coverage achieved

by both approaches.

Upon analyzing the code coverage, it was discovered that in the majority of

cases, neither the MRSyn approach nor the random approach were able to cover the

statements in the code where the mutants were located. This implies that the test

cases generated by both approaches did not adequately exercise the parts of the code

containing the mutants for the kNN algorithm. Consequently, the fault detection

capability of both approaches was limited for this particular algorithm.

The low mutation scores for the kNN algorithm could be attributed to various

factors, such as the specific characteristics of the algorithm, the nature of the mutants

introduced, or the limitations of the test case generation process. It is crucial

to further investigate and understand these factors to improve the fault detection

effectiveness for the kNN algorithm in future studies.

Overall, while the MRSyn approach demonstrated better performance than

the random approach in three out of the four supervised classifier algorithms,

both approaches faced challenges in achieving adequate code coverage for the kNN

algorithm. These findings highlight the importance of considering code coverage and



147

conducting further investigations to enhance the fault detection capability of both

approaches, particularly in cases where specific algorithms or code segments pose

difficulties for the test case generation process.

MLP NBC SVM KNN
0

20

40

60

80

100

Av
er

ag
e 

M
ut

at
io

n 
Sc

or
e 

(in
 %

)

source
follow-up

2.4

68.44

27.4435.15

57.58

23.11

72.35

Figure 8.3: After applying the MRSyn approach to the source test suites, the mutation
scores of MRs demonstrate an increase.

RQ2: Does the use of MRs have any influence on enhancing the

effectiveness of fault finding in MT?

Figure 8.3 illustrates the mutation scores of automatically generated source test suites

using the MRSyn approach. Additionally, the figure displays the increase in mutation

scores achieved by augmenting MT with the applicable MRs as described in Table 8.1.

Each column represents a supervised classifier algorithm considered as the subject

program in the evaluation.

In the first three columns, a significant increase in mutation scores is observed

when the source test suites are augmented with MRs. This indicates that the addition

of MRs enhances the fault detection capability of MT for these algorithms. However,
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Figure 8.4: Individual mutation scores of MRs compared with source test suites for
each subject program. These MRs were selected based on their validation aspects
described in Table 8.1.
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in the case of the kNN classifier algorithm, there is no observable increment in the

mutation score compared to the other three algorithms. It is important to note that

even the mutation score of the source test suites generated by the MRSyn approach

is low for the kNN classifier algorithm.

These findings suggest that the fault detection effectiveness of MT is influenced

by both the MRs used for testing and the quality of the source test cases employed

to execute those MRs. The increase in mutation scores achieved by augmenting with

MRs indicates that effective source test suites can enhance the effectiveness of MRs

in detecting faults. However, the lack of improvement in the mutation score for the

kNN classifier algorithm raises the need for further investigation to determine the

exact reason for the poor performance in fault detection effectiveness.

Possible factors contributing to the observed reduction in fault detection for the

kNN classifier algorithm could include the specific characteristics of the algorithm,

the nature of the identified MRs, or limitations in the test case generation process.

Detailed analysis and investigation to identify these factors and address them are

necessary.

The findings depicted in Figure 8.4 provide insights into the individual fault

finding capability of MRs when applied with the source test cases generated by

the MRSyn approach. Specifically, the performance of MRs in detecting mutants

is compared to that of the source test cases when applying MT on subject programs

utilizing the MLP, SVM, NBC, and kNN classifiers.

For the MLP and SVM classifiers, a majority of the MRs demonstrate improved

fault finding capabilities compared to the source test cases. When subjected to MT,

these MRs display a higher mutant detection rate. Conversely, in the case of the

NBC classifier, MR1, MR3, and MR10 yield similar results in mutant detection when

compared to the source test cases. However, for the kNN classifier, all MRs except
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MR6 and MR7 fail to detect any mutants.

These findings emphasize the significance of identifying effective MRs to enhance

the fault finding capabilities of test suites. Moreover, generating high-quality source

test cases also proves to be a crucial factor in the success of Metamorphic Testing.

By meticulously selecting MRs and ensuring the generation of robust source test

cases, the effectiveness of MT can be maximized, leading to improved software testing

outcomes.

Overall, these observations shed light on the importance of both MR selection

and source test case generation in Metamorphic Testing, underscoring their role in

enhancing the effectiveness and fault-finding capabilities of the testing process.

RQ3: Can test suite minimization techniques reduce the cost of executing

a test suite?

Table 8.6 presents the findings on the percentage reduction in test suite size and

fault detection for the combined test suites and the reduced selected property

parameter criteria separately. The results highlight the significant impact of test

suite minimization in reducing the size of the test suite. In particular, the

n clusters per class property parameter criteria result in a substantial reduction of

68.24% in test suite size.

Furthermore, Table 8.6-B provides insights into the percentage reduction in fault

detection effectiveness, specifically for the n clusters per class property parameter.

The minimized test suites generated based on the n clusters per class property

demonstrate a promising overall performance, with a fault detection effectiveness

reduction of less than 6% compared to the combined test suites.

The results indicate that utilizing the n clusters per class parameter from the

Scikit-learn package as a source test case generation technique for MT can lead to

test suites that exhibit comparable fault detection capability to larger test suites.
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Table 8.6: Percentage reduction on test suite size and fault detection after applying
test suite minimization technique in MT

A: Percentage reduction on test suite size

Subject

Programs

Combined After Reduction (Selected

Property Parameters)

% Reduced

kNN 85 27 (n clusters per class) 68.24

MLP 85 27 (n clusters per class) 68.24

NBC 85 27 (n clusters per class) 68.24

SVM 85 27 (n clusters per class) 68.24

B: Percentage reduction on fault detection

Subject

Programs

Combined After Reduction % Reduced

kNN 2.4 2.4 0

MLP 95.46 90.34 5.36

NBC 92.73 92.31 0.45

SVM 96.32 93.85 2.56

This significant reduction in test suite size translates to substantial savings in test

execution costs.

It is worth noting that the average reduction in fault detection effectiveness

of less than 6% implies that the approach of test suite minimization based on the

n clusters per class property parameter can be practically useful in scenarios where

the testing time is limited and the system under test is not critical. The approach

allows for efficient testing while still maintaining an acceptable level of fault detection
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effectiveness.

Overall, the findings highlight the potential benefits of utilizing the n clusters per

class property parameter for test suite minimization in MT, enabling significant

reductions in test suite size and associated costs, without compromising the overall

fault detection effectiveness within practical contexts.

8.10 Threats to Validity

In our empirical study, we have taken measures to address potential threats to

the validity of our findings, following the guidelines proposed by Wohlin et al. [90].

To mitigate threats to internal validity, which involve the causal relationship

between factors in the study, we ensured the reliability of our experimental setup. We

conducted our experiments 10 times using the same configuration, which increases our

confidence in the obtained results and minimizes the impact of random variations.

Threats to construct validity were considered, which pertain to the measurement

and operationalization of variables. We utilized third-party tools, such as the Scikit-

learn package in Python for generating source test cases and the Major mutation

tool for creating mutants. To minimize potential threats arising from these tools, we

conducted manual inspections of randomly selected tool outputs. By verifying the

correctness of the results, we increase confidence in the validity of the tools’ outputs

and their impact on our study.

In terms of external validity, which concerns the generalizability of the study’s

findings, we employed four different supervised classifier algorithms from the Weka

tool. This choice ensures a diverse range of classifiers and enhances the likelihood that

our results can be generalized to other open-source software projects. However, it is

important to note that we specifically used the Scikit-learn package for generating

test cases in our main experiment.
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By considering these threats and taking appropriate measures to mitigate them,

we have striven to ensure the internal, construct, and external validity of our empirical

study. This increases the reliability and generalizability of our findings, enhancing

the overall quality and trustworthiness of our research.

8.11 Related Works

Prior research in the field of metamorphic testing (MT) applied to machine

learning (ML) applications has predominantly focused on generating modified test

cases to evaluate the quality and performance of ML models. These studies have

explored various modifications to the dataset, such as repeated values, missing values,

categorical data, and synthetic data with known distributions.

For instance, Murphy et al. conducted experiments to test two ML ranking

applications using generated data with controlled properties and randomness. Their

data generation tool proved to be a reliable and simplified alternative to real-world

data for testing purposes [57].

Breck et al. employed synthetic training data adhering to schema constraints

to expose hidden assumptions in ML code that do not align with those constraints.

They identified data bugs during the deployment of the system on TFX, an end-to-

end ML platform at Google. They also investigated data skewness in both training

and new data [12].

Zhang et al. focused on testing overfitting in ML models by using synthetic

data with known distributions. They proposed a technique called Perturbed Model

Validation (PMV), which involved injecting noise into the training data. PMV

combined the principles of metamorphic relationships and data mutation to detect

overfitting in ML models [99].

However, none of these studies have specifically addressed the verification of
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software applications implementing supervised classifiers. The objective of our

research is to verify the correctness of software applications for supervised classifiers

using MT as a testing technique. By applying MT to the software applications of

supervised classifiers, we aim to uncover potential faults, assess the reliability of

the implementations, and validate the expected behavior of these applications. This

targeted approach distinguishes our work from previous studies that have primarily

focused on evaluating ML models and their data inputs.

8.12 Conclusions

This research paper proposes the MRSyn approach, a novel test case generation

and minimization technique for testing supervised classifier models using MT. The

motivation for this research stems from the challenges associated with testing

supervised classifiers, such as the absence of a reliable test oracle and the probabilistic

nature of these models.

The MRSyn approach leverages the important properties of supervised ML

alogrithms to guide the test case generation process. MRs define the expected

relationships between inputs and outputs when specific transformations are applied.

By systematically applying these transformations to the source test cases, a set of

related test cases is generated. The approach also incorporates test suite minimization

techniques to reduce the number of test cases while maintaining their fault detection

capability.

Through empirical experiments and analysis, the effectiveness of the MRSyn ap-

proach is evaluated. The results demonstrate that the MRSyn approach outperforms

random test case generation in terms of fault detection capability for three out of

four supervised classifier algorithms tested. Additionally, the MRSyn-generated test

cases, when augmented with applicable MRs, show a significant increase in mutation
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scores, indicating improved fault detection effectiveness.

The findings highlight the importance of effective test case generation in the

context of supervised classifier models. By utilizing MRs and applying test suite

minimization techniques, the MRSyn approach offers a more efficient and effective

testing process. It reduces the number of test cases while maintaining the fault

detection capability, thereby optimizing the testing process and improving the

reliability and accuracy of supervised classifier models.

Overall, this research contributes to the field of software testing by addressing

the challenges specific to testing supervised classifier models. The MRSyn approach

provides a valuable methodology for generating and minimizing test cases, enabling

more thorough testing, and enhancing the quality assurance process for these critical

applications.
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CHAPTER NINE

CONCLUSION & FUTURE WORK

9.1 Conclusion

This thesis has contributed significant enhancements to the application of

coverage-based test case generation for testing numerical programs and MR property-

based test case generation for testing supervised classifier algorithms with complex

input types. In detail, the contributions are:

• Demonstrating the effectiveness of the line, branch, and weak mutation

coverage-based test case generation approaches on 4 open source code repos-

itories using MT

• Investigating the importance of MRs’ identification for MT on LA4J Java

classes

• Investigating a mutant reduction strategy that is applied to increase the testing

efficiency of source test cases, and a test suite minimization technique to help

reduce the testing costs without trading off fault-finding effectiveness

• Investigating the fault detection effectiveness of MRs while testing the applica-

tions of supervised classifiers using MT

• Developing a test case generation and minimization technique for MT to test

supervised classifier algorithms

Chapter 4 demonstrated the effectiveness of systematic source test case gener-

ation in enhancing the fault detection capabilities of metamorphic testing, a testing

strategy addressing the oracle problem in software testing. Through evaluating line



157

coverage, branch coverage, weak mutation, and random test generation strategies

across 77 methods from four open-source code repositories, the study demonstrated

that a systematic approach to generating source test cases significantly improves the

effectiveness of metamorphic testing. Additionally, we introduced ”METtester” tool

to facilitate the application of these findings by conducting metamorphic testing on

the specified methods.

Chapter 5 investigated the challenge of developing effective test oracles for

automatically generated test cases, focusing on the utilization of metamorphic testing

(MT), a technique known for its potential to mitigate the oracle problem through

metamorphic relations (MRs). An empirical study conducted on an open-source linear

algebra library LA4J, assesses the impact of MRs on enhancing the fault detection

capabilities of these test cases. The findings indicate that employing MRs can indeed

significantly improve the fault detection effectiveness of automatically generated test

cases.

Chapter 6 proposed a mutant reduction strategy to enhance the efficiency of

source test cases and a test suite minimization technique aimed at lowering testing

costs while maintaining fault detection capabilities. An empirical study validates

these methods, showing that they improve both the efficiency and effectiveness of

source test cases in fault detection.

Chapter 7 investigated the effectiveness of MT in identifying faults in supervised

classifiers, a common challenge due to the oracle problem in machine learning

applications. Through an empirical study involving 709 mutants generated from

different mutation engines and various datasets, the research assessed the fault

detection capability of MRs previously used in testing supervised classifiers. The

findings indicate that the MRs tested only detected 14.8% of the mutants, suggesting

that the effectiveness of these MRs does not improve proportionally with an increase
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in the number of mutants, challenging previous studies’ results.

Chapter 8 introduced the MRSyn approach, a novel method for generating

and minimizing test cases for MT to test supervised classifiers, addressing the

challenges of testing these probabilistic models without a reliable test oracle. By

leveraging important properties of supervised classifiers, MRSyn efficiently creates a

condensed set of source test cases that exhibit an improved ability to detect faults.

Empirical experiments have shown that test cases generated by MRSyn significantly

outperform those created through random generation methods in identifying faults

within supervised classifiers. The results underscore the potential of MRSyn to

enhance the reliability and accuracy of supervised classifiers by refining the test case

generation process and thereby advancing the quality assurance of these essential

machine learning applications.

To summarize, this thesis introduces two separate source test case generation

approaches for MT to test numerical programs and supervised classifier algorithm-

based software applications.

9.2 Future Work

This dissertation has contributed to develop two novel source test case generation

techniques for MT. The contributions of this work pave the way for more in-depth

studies and technological advancements in these areas. Future work could focus on

the following key aspects:

• Exploration of Additional Coverage Criteria: While this thesis has

demonstrated the effectiveness of line, branch, and weak mutation coverage

in generating test cases, future work could explore additional coverage criteria

such as path, condition, and decision coverage. Investigating these criteria
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could uncover new insights into optimizing test case generation for numerical

programs.

• Expansion of Test Suite Minimization Techniques: The proposed test

suite minimization technique has shown promise in reducing testing costs

without compromising fault detection effectiveness. Future research could

expand on this work by developing more sophisticated minimization algorithms

that further optimize the trade-off between cost and effectiveness, potentially

incorporating machine learning models to predict the impact of different

minimization strategies.

• Broader Application and Evaluation of the MRSyn Approach: The

MRSyn approach has demonstrated significant potential in generating effective

test cases for supervised classifiers. Future work could apply MRSyn to a wider

range of machine learning models and applications specifically unsupervised

classifier algorithms, evaluating its effectiveness across different contexts and

exploring modifications to the approach that could enhance its applicability

and performance.

• Empirical Studies in Industry Contexts: Conducting empirical studies in

industry contexts could provide valuable insights into the practical challenges

and benefits of applying the techniques developed in this thesis. Collaborating

with industry partners to test real-world applications could help to validate the

effectiveness of these approaches in diverse and complex software environments,

driving further improvements and adaptations.

In conclusion, this thesis lays the groundwork for a range of future research

opportunities aimed at advancing the state of the art in software testing for numerical

programs and supervised classifier algorithms.
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