Communication-Oriented Distributed Particle Swarm Optimization

Logan Perreault, Mike P. Wittie, John Sheppard
Montana State University
Particle Swarm Optimization

State Update:

- A particle’s state represents a potential solution.
- $x_i = v_i + x_i$

Velocity Update:

$$v_i = \omega v_i + U(0, \phi_1) \otimes (p_i - x_i) + U(0, \phi_2) \otimes (p_g - x_i)$$
Particle Swarm Optimization

State Update:

- A particle’s state represents a potential solution.
- $x_i = v_i + x_i$

Velocity Update:

$$v_i = \omega v_i + U(0, \phi_1) \otimes (p_i - x_i) + U(0, \phi_2) \otimes (p_g - x_i)$$

$$v_i = \omega v_i + \Phi_1 \text{Cognitive}() + \Phi_2 \text{Social}()$$
Distributed PSO

PSO for Robotic Swarms (dPSO)

Instead of virtual particles, use physical robots.
- unreliable update
- propagation of global best

Previous Work

J. M. Hereford, 2006

J. Pugh and A. Martinoli, 2008
Motivation

Previous Work Did Not Consider Mobile Targets

Previous experiments only attempted to track static targets.

- How well can dPSO track a moving target?
- What adaptations need to be made to achieve this?

Previous Work Ignores Server Communication

Standard dPSO communicates global best to other particles.

- Only useful if you can retrieve the information
- Transmit solutions back to a server
Problem Example
Goal: Periodically relay the current best solution to a central server.

Introduce a Communication Goal

The approach we take is to integrate a communication goal into the fitness function.

- Cognitive and social terms draw particles toward solution
- Communication term draws particles toward server
Notation

\(c \)

Target number of timesteps before communication with the server is restored
\(c \)

Target number of timesteps before communication with the server is restored

\(\theta_i \)

Unique offset for each particle

\[
\theta_i = R_{id} \times \frac{c}{N}
\]
\(c \)
Target number of timesteps before communication with the server is restored

\(\theta_i \)
Unique offset for each particle
\[
\theta_i = R_{id} \times c / N
\]

\(t_c \)
The last timestep where successful communication with the server was made
Communication-Oriented Velocity Update Rule

\[v_i = \omega v_i + \left(1 - \min \left(1, \left\lfloor \frac{t - t_c}{c + \theta_i} \right\rfloor \right) \right) \Phi_1 \text{Cognitive()} \]

\[+ \left(1 - \min \left(1, \left\lfloor \frac{t - t_c}{c + \theta_i} \right\rfloor \right) \right) \Phi_2 \text{Social()} \]

\[+ \min \left(1, \left\lfloor \frac{t - t_c}{c + \theta_i} \right\rfloor \right) \Phi_3 \text{Communication()} \]
The new communication term requires a new fitness function.

- Defined by the number of hops H required to reach the server.
- Exponential decrease in fitness as hops increase.

$$fitness_c = \frac{1}{d^H}$$
Our Approach to Tracking Dynamic Targets

Goal: Find and track targets that are in motion.

Decay

We decay the three fitness values for each particle as follows:

- $f_i \leftarrow \beta_1 f_i$
- $f_g \leftarrow \beta_2 f_g$
- $f_c \leftarrow \beta_3 f_c$
Experimental Design

We implemented \textit{dPSO} and \textit{C-dPSO} in a simulated environment.

- communication range limited to 25\% of search space
- notion of global best must be propagated

We conducted 9 experiments to test our contributions.

- 8 particles, 1 server, 1 target
- 500 noisy points with fitness from 0\% to 5\% of target
- 1000 randomized iterations per experiment
- Parameters were tuned experimentally (β_k was insensitive)

Measurements were taken in terms of server error.
Fitness Evaluation for the Communication Goal

Summary of Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic 1</td>
<td>Mobile</td>
</tr>
<tr>
<td>Dynamic 2</td>
<td>Decay</td>
</tr>
<tr>
<td>Dynamic 3</td>
<td>Fast Decay</td>
</tr>
<tr>
<td>Dynamic 4</td>
<td>Mobile Fast Decay</td>
</tr>
<tr>
<td>Comm 0</td>
<td>Static</td>
</tr>
<tr>
<td>Comm 1</td>
<td>Mobile</td>
</tr>
<tr>
<td>Comm 2</td>
<td>Decay</td>
</tr>
<tr>
<td>Comm 3</td>
<td>Fast Decay</td>
</tr>
<tr>
<td>Comm 4</td>
<td>Mobile Fast Decay</td>
</tr>
</tbody>
</table>
Fitness Evaluation for the Communication Goal

Dynamic Results in Euclidean Distance

<table>
<thead>
<tr>
<th>Experiment</th>
<th>C-dPSO</th>
<th>C-dPSO Decayed</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile</td>
<td>53.435</td>
<td>1.263</td>
<td>< 0.00001</td>
</tr>
<tr>
<td>Decay</td>
<td>8.823</td>
<td>6.879</td>
<td>0.09863</td>
</tr>
<tr>
<td>Fast Decay</td>
<td>12.071</td>
<td>9.419</td>
<td>0.04702</td>
</tr>
<tr>
<td>Mobile Fast Decay</td>
<td>53.586</td>
<td>27.936</td>
<td>< 0.00001</td>
</tr>
</tbody>
</table>
Communication Results in Euclidean Distance

<table>
<thead>
<tr>
<th>Experiment</th>
<th>dPSO</th>
<th>C-dPSO</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>8.308</td>
<td>4.338</td>
<td>0.00008</td>
</tr>
<tr>
<td>Mobile</td>
<td>5.351</td>
<td>1.263</td>
<td>< 0.00001</td>
</tr>
<tr>
<td>Decay</td>
<td>10.159</td>
<td>6.879</td>
<td>0.00499</td>
</tr>
<tr>
<td>Fast Decay</td>
<td>15.160</td>
<td>9.419</td>
<td>0.00005</td>
</tr>
<tr>
<td>Mobile Fast Decay</td>
<td>30.072</td>
<td>27.936</td>
<td>0.00309</td>
</tr>
</tbody>
</table>
C-dPSO Tracking a Mobile Target
Conclusion

C-dPSO

We proposed *C-dPSO* as an alternative to standard *dPSO*.

- Particles relay information to servers with more consistency.
- Fitness value decay helps to track mobile targets.

Future Work

- Examine problems with mobile servers.
- Investigate effects of a server with larger communication range.
- Implementation on physical robots.
Thank You!