MORE FUNCTIONS
Quiz Questions

- Lecture 24:
 - If $f: X \to Y$ is one to one, and $g: Y \to Z$ is one to one, then $(gof)(x)$ is: __________
 - If $f: X \to Y$ is onto, and $g: Y \to Z$ is onto, then $(gof)(x)$ is: __________
 - Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:
 - f is one to one?
 - f is onto?
 - f is one to one and onto?
midterms/homeworks (except 11) are graded
If $f: X \rightarrow Y$ is one to one, and $g: Y \rightarrow Z$ is one to one, then $(gof)(x)$ is one to one.

If $f: X \rightarrow Y$ is onto, and $g: Y \rightarrow Z$ is onto, then $(gof)(x)$ is onto.

Onto Proof: https://www.youtube.com/watch?v=i5b4Mr8Aa4A
Prove that if \(g: A \rightarrow B \) and \(f: B \rightarrow C \) are onto, then \(f \circ g: A \rightarrow C \) is onto.

Proof (Recall \(f: X \rightarrow Y \) is onto if \(\forall y \in Y \exists x \in X \) s.t. \(f(x) = y \)).

Suppose \(c \in C \) is arbitrary. Since \(f \) is onto, \(\exists b \in B \) s.t. \(f(b) = c \).

Since \(g \) is onto, \(\exists a \in A \) s.t. \(g(a) = b \).

Then \((f \circ g)(a) = f(g(a)) = f(b) = c \). Since \(c \in C \) was arbitrary, \(\forall c \in C \), \((f \circ g)(a) = c \). Thus \(\forall c \in C \), \((f \circ g)(a) = c \). Therefore, \(f \circ g \) is onto.
Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:

- f is one to one?
Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:

- f is one to one?

One to one: For every point in x, there must be a distinct point in y.
Lesson 24

- Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:
 - f is one to one?

One to one: For every point in x, there must be a distinct point in y

$m \leq n$
Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:

- f is one to one?

One to one: For every point in x, there must be a distinct point in y

$m \leq n$
Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:
- f is onto?
Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:

- f is onto?

Onto: All elements in y are used
Let $|X| = m$ and $|Y| = n$, what can we say about the relationship between m and n when:

- f is onto?

Onto: All elements in Y are used

$m > n$
Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:

- f is onto?

Onto: All elements in Y are used

$m > n$
Lesson 24

Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:
- f is onto?

Onto: All elements in Y are used

$m > n$
Let $|X| = m$, and $|Y| = n$, what can we say about the relationship between m and n when:

- f is onto?

Onto: All elements in Y are used

$m > n$
Lesson 24

- Pigeon Hole:

 - https://www.youtube.com/watch?v=ROnetLvbl6M
PIGEONHOLE PRINCIPLE
Homework (Group)

1. **let**: $f(x) = -4x + 9$ and $g(x) = 2x - 7$, Find $(f \circ g)(x)$, is it one-to-one, onto, or both?

2. **let**: $h(x) = 3x - 5$ and $g(x) = 2x^2 - 7x$, find $(h \circ g)(x)$ is it one-to-one, onto, or both?

3. **let**: $f(x) = -4x + 9$, $g(x) = 2x - 7$, $h(x) = 3x - 5$, Find $(f \circ g \circ h)(x)$, is it one-to-one, onto, or both?

4. Say size of set $A = 50$ and size of Set $B = 55$, what can we say about a possible relationship between A and B?

5. Say size of set $A = 5$ and size of Set $B = 5$, what can we say about a possible relationship between A and B?
1. Let: \(f(x) = -4x + 9 \) and \(g(x) = 2x - 7 \), find \((g \circ f)(x)\), is it one-to-one, onto, or both?

2. Let: \(h(x) = 3x - 5 \) and \(g(x) = 2x^2 - 7x \), find \((g \circ h)(x)\), is it one-to-one, onto, or both?

3. Let: \(f(x) = -4x + 9 \), \(g(x) = 2x - 7 \), \(h(x) = 3x - 5 \), find \((h \circ f \circ g)(x)\), is it one-to-one, onto, or both?

4. Say size of set \(A = 56 \) and size of Set \(B = 55 \), what can we say about a possible relationship from \(A \) to \(B \)?

5. Say size of set \(A = 13 \) and size of Set \(B = 13 \), what can we say about a possible relationship from \(A \) to \(B \)?