Quiz Questions

- Lecture 14:
 - What is the Big-O notation for Euclid's Algorithm runtime?

- Lecture 15:
 - Show $f(n) = 10n + 5$ is in $O(n^2)$
Notes

- Modified Office Hours Today
- Midterm
- Homework Handback
Lesson 14 & 15

- Big – O => Upper Bound
Big – O => Upper Bound

\[f(n) = O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \]
Lesson 14 & 15

- **Big – O => Upper Bound**
 - $f(n) = O(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$

- **Example:** (http://www.fas.harvard.edu/~cscie119/lectures-sorting.pdf)
 - $f(n) = n^2/2 - n/2$ is $O(n^2)$, because $n^2/2 - n/2 \leq n^2$ for all $n \geq 0$
Lesson 14 & 15

- **Big – O => Upper Bound**
 - $f(n) = O(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$

- **Example**: (http://www.fas.harvard.edu/~cscie119/lectures/sorting.pdf)
 - $f(n) = \frac{n^2}{2} - \frac{n}{2}$ is $O(n^2)$, because $\frac{n^2}{2} - \frac{n}{2} \leq n^2$ for all $n \geq 0$

 - $c = 1$
 - $n_0 = 0$
Lesson 14 & 15

- **Big – \(\Omega \) => Lower Bound
- \(f(n) = O(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that
 \[f(n) \leq c \cdot g(n) \] for all \(n \geq n_0 \)
Lesson 14 & 15

- **Big – \(\Omega \) => Lower Bound**
- \(f(n) = \Omega(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that
 \[
 f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0
 \]

- **Example:**
 - \(n^3 + 4n^2 = \Omega(n^2) \) is \(O(n^2) \), because \(n^3 \leq n^3 + 4n^2 \) for all \(n \geq 0 \)
Big – Ω => Lower Bound

- $f(n) = \Omega(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq c \times g(n)$ for all $n \geq n_0$

Example:

- $n^3 + 4n^2 = \Omega(n^2)$ is $\Omega(O(n^2))$, because $n^3 \leq c \times n^3 + 4n^2$ for all $n \geq 0$

```
c=1
no=0
```
Lesson 14 & 15

- **Big – Θ => Tight Bound**

 - $f(n) = \Theta(g(n))$ if there exists constants c_1, c_2, c_3 and n_0 such that

 $$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n > n_0$$
Lesson 14 & 15

- **Big – Θ => Tight Bound**
 - \(f(n) = \Theta(g(n)) \) if there exists constants \(c_1, c_2, c_3 \) and \(n_0 \) such that
 - \(c_1g(n) \leq f(n) \leq c_2g(n) \) for all \(n > n_0 \)
 - **Example:** (http://www.fas.harvard.edu/~cscie119/lectures/sorting.pdf)
 - \(f(n) = n^2/2 - n/2 \) is \(\Theta(n^2) \) because \((1/4)n^2 \leq n^2/2 - n/2 \leq n^2 \) for all \(n \geq 2 \)
Big – Θ => Tight Bound

- $f(n) = \Theta(g(n))$ if there exists constants c_1, c_2, c_3 and n_o such that
 - $c_1 g(n) \leq f(n) \leq c_2 g(n)$ for all $n > n_o$

- **Example**: (http://www.fas.harvard.edu/~cscie119/lectures/sorting.pdf)

- $f(n) = n^2/2 - n/2$ is $\Theta(n^2)$ because $(1/4) n^2 \leq n^2/2 - n/2 \leq n^2$ for all $n \geq 2$

 - $c_1 = 1/4$
 - $c_2 = 1$
 - $n_o = 2$
Lesson 14 & 15
Determine whether each of these functions is $O(x)$ by giving a C and n_0 value where appropriate

1. $f(x) = 10$
2. $f(x) = 3x + 7$
3. $f(x) = x^2 + x + 1$
4. $f(x) = 5 \log x$
5. $f(x) = \text{floor}(x)$
6. $f(x) = \text{ceiling}(x)$
Homework (Individual)

1. Explain the differences between Big-O, Big-Ω (Omega), and Big-Θ (Theta)
2. Explains what it means for a function to be O(1) instead of O(n)
3. Show that $f(x) = (x + 5) \log_2 (3x^2 + 7)$ is $O(x \log_2 x)$
 a) Hint: Remember that $\log(x^k) = k \cdot \log(x)$
4. Consider: $f(x) = 15n^3 + n^2 + 4$,
 a) Express $f(x)$ in Big - O notation
 b) Express $f(x)$ in Big – Ω notation
 c) Express $f(x)$ in Big – Θ notation