
ISBN: 978-1-491-92462-4

A
N

A
LYZIN

G
 TH

E A
N

A
LYZER

S

Python in
Education

Nicholas H. Tollervey

Teach, Learn, Program

Nicholas H.Tollervey

Python in Education
Teach, Learn, Program

978-1-491-92462-4

[LSI]

Python in Education
by Nicholas H. Tollervey

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2015: First Edition

Revision History for the First Edition
2015-03-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491924624 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python in Educa‐
tion, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491924624

In memory of John Pinner (1944–2015), who tragically lost his fight
with cancer while this work was being written.

He taught Python to me and many other people in the UK. This kind
and gentle man understood the value of computing education and,

through his work as founder and chairperson of the PyconUK confer‐
ence, promoted it with great zeal.

He is a sorely missed mentor, leader and friend.

Table of Contents

Preface. vii

1. The Story of Python. 1

2. A Pythonic Case Study:
Raspberry Pi. 7

3. Why Python in Education?. 13
Code Readability 13
Obvious Simplicity 15
Open Extensibility 20
Cross-Platform Runability 21
Humanity 24

4. Python’s Secret Weapon: Community!. 25
The PSF 26
Conferences 27

5. Looking Ahead. 29

v

1 Neo, in the film The Matrix.
2 Mark Zuckerberg’s character in the film The Social Network.
3 Moss, from the UK TV series The I.T. Crowd.

Preface

Programming is cool.

Why?

Because programmers are obviously black-clad kung-fu ninjas with
“hacker aliases” who always take the red pill, type really fast to
“crack databases,” and save the world from renegade artificial intelli‐
gences.1 Or perhaps programmers are geeky wunderkind who make
billions of dollars by founding social networks that have more users
than most countries have citizens.2 Then again, programmers are
those socially awkward yet rather useful savants who are always so
keen to fix your computer (but never let them explain what they’re
doing or they’ll bore you with overly enthusiastic technobabble).3

Also, why is programming such a “boy” thing?

Stereotypes stop people from doing stuff.

This applies as much to programming as any other aspect of life. If
your view of a programmer is as ridiculous as the stereotypes listed
above, then programming is likely to appear as an intimidating form
of technical magic or a dull obsession for misfit boys who avoid the
great outdoors.

But there is hope: the damaging prejudices and misconceptions lis‐
ted above can be overturned through education. Organizations such
as the RaspberryPi Foundation and One Laptop Per Child (OLPC)

vii

http://raspberrypi.org
http://onelaptop.org

project see programming as a means of empowerment. A new gen‐
eration of programmers are learning to be enterprising digital mak‐
ers and creators rather than merely passive users. Even politicians
are waking up to the realization that the long-term viability of their
country’s economy and public services fundamentally depends on
citizens’ ability to excel in the digital realm. And so educators have
been tasked to change the school computing curriculum from an
uninspiring Microsoft Office how-to into an education that includes
programming, taking control of the computer and making it do
things where the only encumbrance is one’s imagination.

There is a programming language whose creator has explicitly said
that his aim is to make computer programming for everybody. That
person is Guido van Rossum, and the programming language is
Python.

Python Is Everywhere
A quick glance online suggests that Python is the language du jour
for teaching programming. Yet Python is, and has been for a while,
one of the world’s most popular programming languages in industry
as well. Every day, without realizing it, you probably use software
that is written using Python. Python is used by companies to write
all sorts of applications. Google, NASA, Bank of America, Disney,
CERN, YouTube, Mozilla, The Guardian—the list goes on of compa‐
nies and organizations of all sizes in all sectors of the economy that
use Python.

Why is Python so popular?

I aim to answer this question from an educational perspective. One
might distill the answer into the following points:

Resources
There are lots of resources for learners of all ages and levels.
These range from traditional textbooks to websites that offer
online self-paced courses in Python programming. With the
advent of the Raspberry Pi and OLPC projects, everyone can get
hold of affordable hardware that runs Python.

The Language’s Design
Python is easy to learn, intuitive, pleasing to the eye and comes
with a plethora of libraries that allow programmers to build all
sorts of applications addressing different domains and activities.

viii | Preface

http://onelaptop.org
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

It’s easy to read: if you squint a little, most Python code is com‐
prehensible even to people who wouldn’t call themselves pro‐
grammers (for example, Python is very popular among
scientists).

Community
Python has a large, diverse and proactive community associated
with it. The Python Software Foundation (PSF) is a community-
led charitable organization whose mission is to promote, pro‐
tect and advance the Python programming language.

Momentum
Being popular is itself a strength and a virtuous circle that rein‐
forces Python’s popularity. New projects and initiatives are
announced all the time. For example, the author is aware of sev‐
eral yet-to-be publicly announced Python-in-education
projects. The online version of this document will be updated to
reflect these announcements, so be sure to check http://
www.oreilly.com/programming/free/python-in-education.csp.

What’s in It for You?
If you’re reading this report, I imagine you’re a programmer, teacher,
student, parent or other interested party. You’re probably wondering
how this report will help you understand Python’s place in the
recent resurgence of interest in computing education. Assuming the
categories of reader listed above, here’s what’s in it for you.

You’re a Programmer
If you already know how to write code, then you might believe that
education is of little interest to you.

But wait!

If you’re a good programmer, you also know that part of the vocation
of software development involves learning new technology and,
when in a position of responsibility, teaching junior colleagues how
your software works. Put simply, to be a programmer is to be both a
teacher and a student.

To describe programming so children understand you indicates that
you know your craft at a deep level. For instance, you appreciate
what to leave in or how much to leave out of an explanation. You

Preface | ix

http://www.oreilly.com/programming/free/python-in-education.csp
http://www.oreilly.com/programming/free/python-in-education.csp

have clear enough mental models of the concepts of programming
that you can accurately analogize and summarize. Furthermore, you
explain yourself in simple and easy-to-understand language that
demonstrates your own clarity of thought. Finally, finding the
opportunities to practice these skills on young coders is a sign of
moral and professional value: you’re putting something back into
the wider community and have shown initiative.

This report describes how you and your colleagues may continue
your professional development by supporting the next generation of
programmers.

You’re a Teacher
Well done! Before becoming a programmer, I was a senior secon‐
dary school teacher in the United Kingdom. It was the most difficult
yet also most rewarding job I have ever had to do. Teaching is the
one profession that creates all the other professions. It is a calling
(you’re certainly not doing it for the money or perks) and, as a prac‐
titioner of this remarkable profession, if you’re looking for help and
support in teaching programming, then you’ve made a great choice
by investigating Python.

This report describes where to learn about Python (so you’re no
longer one page ahead of the class), get involved with and find sup‐
port from the wider Python community and become acquainted
with the story of Python—an interesting subject in itself when
teaching computing.

You’re a Student
It often seems daunting to learn new skills and knowledge. But rest
assured, Python is both relatively easy to learn and a real program‐
ming language used widely in industry. Python comes with “batter‐
ies included”: there are plenty of libraries of code written in Python
that allow you to build all sorts of amazing and incredible applica‐
tions.

Python’s community is a welcoming and friendly place. Remember,
what you get out of the community is directly related to what you
put in. Don’t just sit there, do something! Jump in and get involved.

x | Preface

This report explains where to learn Python (so you’re several pages
ahead of your teacher in programming classes) and how to get in
touch with the wider community.

You’re a Parent
Someone you care about is obviously passionate about computers
and programming. That’s a good thing—if they make it their career,
they’re joining a profession that has a high demand for quality engi‐
neers.

This report gives you enough information so you can best support
your loved one. Hopefully, it will allay any fears and uncertainties
you may have and answer some of your questions about learning to
program with Python.

You’re Interested in Learning More
You’ve probably heard about the computing revolution in schools.
Maybe you’ve heard of the Raspberry Pi. In any case, Python is at
the center of these fundamental changes in computing education.

This report arms you with the facts and information you need to
understand where Python sits within this context.

Acknowledgments
Many thanks to Amelia Watkiss, Samuel Tollervey and William Toll‐
ervey for the moment of adventuring into Python captured on the
front cover of this document. Thanks also to Carrie Anne Philbin,
Naomi Ceder and Tim Golden for invaluable feedback on an early
draft. The picture of a fractal tree built in Minecraft was provided by
the extraordinarily creative Martin O’Hanlon. Finally, Meghan
Blanchette has, yet again, been a very patient editor.

Preface | xi

1 From the foreword to Mark Lutz’s book Programming Python (1st ed.), published by
O’Reilly. http://www.python.org/doc/essays/foreword/

CHAPTER 1

The Story of Python

In December 1989, a Dutch programmer called Guido van Rossum
was looking for a “hobby” project to keep him occupied over his
Christmas holiday. He decided to write an interpreter for a new pro‐
gramming language he’d been thinking about. He states that he was
in a slightly irreverent mood so he decided to call his project
“Python” after the famous British comedy troupe, “Monty Python’s
Flying Circus.”1

Van Rossum goes on to explain:
It all started with ABC, a wonderful teaching language that I had
helped create in the early eighties. It was an incredibly elegant and
powerful language, aimed at non-professional programmers.
Despite all its elegance and power and the availability of a free
implementation, ABC never became popular in the Unix/C world. I
can only speculate about the reasons, but here’s a likely one: the dif‐
ficulty of adding new “primitive” operations to ABC. It was a mon‐
olithic, “closed system,” with only the most basic I/O operations:
read a string from the console, write a string to the console. I deci‐
ded not to repeat this mistake in Python.

Perhaps this explains why Python is so popular in education: from
the beginning, it was derived from a language designed for teaching
and aimed at nonprofessional programmers. Yet by making it an
open and extensible platform (Python is an open source project),

1

http://www.python.org/doc/essays/foreword/

Python could grow into the hugely popular and flexible language it
is today, capable of simply and effectively addressing many different
types of computational problems.

Van Rossum is now the Benevolent Dictator For Life (BDFL) for the
Python language and continues to make core contributions to the
language along with many thousands of developers spread all over
the world. From such curious beginnings, Python has grown to be a
major open source software project. Why? What is it about Python
that has made it so successful? What are the guiding principles that
attract such a large group of programmers, both amateur and pro‐
fessional, to work with and contribute to Python?

A handy answer is the Zen of Python. Its author, Tim Peters,
describes it as a document that “succinctly channels the BDFL’s
guiding principles for Python’s design into 20 aphorisms, only 19 of
which have been written down.”

To read the Zen of Python, one simply starts the Python interpreter
and types the command import this:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious
way to do it.
Although that way may not be obvious at first unless
you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

2 | Chapter 1: The Story of Python

While much of this cultural artifact won’t make sense to nonprog‐
rammers, the general sense—which should be obvious to all—is a
striving for simplicity, clarity, pragmatism and a sense of playful fun.
Contrast this outlook with the usual stereotypes of programming
languages as complex, obscure, dense and serious endeavours. It’s
hard not to wonder about Python, “What’s not to like?”

As Alex Martelli puts it in his Python Cookbook (O’Reilly), “To
describe something as clever is not considered a compliment in the
Python culture.”

Python culture? Yes, there is a Python culture that labels positive
aspects of Python programming as “Pythonic.” A simple, elegant
and easy-to-comprehend solution to a programming problem (i.e.,
it conforms to the Zen of Python) will often be called Pythonic.

Python’s focus on simplicity, clarity, pragmatism and fun is appeal‐
ing in an engineering context. I believe it is also essential and attrac‐
tive in the world of education. After all, engaging young coders with
a text-based programming language puts up plenty of barriers to
entry (learning to type accurately, underdeveloped literacy and com‐
prehension skills and a lack of syntactic discipline when writing
spring immediately to mind). This is before even having to deal with
the complexity of the language itself, its idioms and abstractions.

Python’s potential role in the world of education was not missed by
Van Rossum. In 1999, he made his position on the subject public
through a proposal for a project called “Computer Programming for
Everybody: A Scouting Expedition for the Programmers of Tomor‐
row”. The opening paragraphs of the proposal succinctly describe
his outlook:

In the seventies, Xerox PARC asked: “Can we have a computer on
every desk?” We now know this is possible, but those computers
haven’t necessarily empowered their users. Today’s computers are
often inflexible: the average computer user can typically only
change a limited set of options configurable via a “wizard” (a lofty
word for a canned dialog), and is dependent on expert program‐
mers for everything else.
We ask a follow-up question: “What will happen if users can pro‐
gram their own computer?” We’re looking forward to a future
where every computer user will be able to “open the hood” of their
computer and make improvements to the applications inside. We
believe that this will eventually change the nature of software and
software development tools fundamentally.

The Story of Python | 3

http://shop.oreilly.com/product/9780596001674.do
http://www.python.org/doc/essays/cp4e/
http://www.python.org/doc/essays/cp4e/
http://www.python.org/doc/essays/cp4e/

The project planned to have three components. They intended to:

1. Develop a new computing curriculum suitable for high school
and college students.

2. Create better, easier-to-use tools for program development and
analysis.

3. Build a user community around all of the above, encouraging
feedback and self-help.

The results of the project’s endeavors were to come together in a sci‐
entific exploration of the role of programming in the next genera‐
tion of computing environments. The proposal continues:

We intend to start with Python, a language designed for rapid
development. We believe that Python makes a great first language
to learn: Unlike languages designed specifically for beginners,
Python is also the choice of many programming professionals. It
has an active, growing user community which has already
expressed much interest in this proposal, and we expect that this
will be a fertile first deployment ground for the teaching materials
and tools we propose to create. During the course of the research
we will evaluate Python and propose improvements or alternatives.

Exploring how learners used Python was going to inform the devel‐
opment of new programming languages and tools. These opening
paragraphs also beautifully encapsulate Python’s strengths in the
context of education.

Unfortunately the project was never finished due to a lack of fund‐
ing. I find it an interesting (and rather frustrating) “what if?”. How
might Python and computing education have developed if the
project had delivered on all three of the planned components?

In any case, this is yet more evidence of how Python has always had
education as a core focus. The proposal also appears prescient given
the recent changes in attitude to the computing curriculum and the
promotion of programming. Van Rossum was a decade and a half
too early. Could such a project be revived today?

Nevertheless, such educational endeavors did not go unnoticed.
Projects concerned with computing and education have successfully
made use of Python to great effect. For example, the One Laptop Per
Child (OLPC) project has the following aim:

4 | Chapter 1: The Story of Python

http://one.laptop.org/
http://one.laptop.org/

We aim to provide each child with a rugged, low-cost, low-power,
connected laptop. To this end, we have designed hardware, content
and software for collaborative, joyful, and self-empowered learning.
With access to this type of tool, children are engaged in their own
education, and learn, share, and create together. They become con‐
nected to each other, to the world and to a brighter future.

The user interface and applications for the OLPC were written in
Python. Over 2.5 million children and teachers in 42 countries have
such laptops.

Perhaps the most famous and successful computing-in-education
project in history is the Raspberry Pi (with over 5 million devices
delivered so far). Unsurprisingly, Python is at the heart of the
project. The next chapter is a case study exploring why the Rasp‐
berry Pi Foundation chose to focus on Python and how this has led
to some unexpected yet wonderful outcomes.

The Story of Python | 5

http://www.raspberrypi.org/

CHAPTER 2

A Pythonic Case Study:
Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that
plugs into a computer monitor or TV, and uses a standard key‐
board and mouse. It is a capable little device that enables people of
all ages to explore computing, and to learn how to program in lan‐
guages like Scratch and Python. It’s capable of doing everything
you’d expect a desktop computer to do, from browsing the internet
and playing high-definition video, to making spreadsheets, word-
processing, and playing games.
What’s more, the Raspberry Pi has the ability to interact with the
outside world, and has been used in a wide array of digital maker
projects, from music machines and parent detectors to weather sta‐
tions and tweeting birdhouses with infra-red cameras. We want to
see the Raspberry Pi being used by kids all over the world to learn
to program and understand how computers work.

—Raspberry Pi Foundation

In a BBC interview, Eben Upton, one of the founders of the Rasp‐
berry Pi project, explained that the device was so named because it
was capable of running the Python programming language. He later
conceded at Pycon 2013 that their spelling might have been a bit off
(“Pi” instead of “Py”).

When talking with Eben and two members of the Raspberry Pi edu‐
cation team, Carrie Anne Philbin and Ben Nuttall, it’s clear that

7

http://raspberrypi.org/

1 In mid-February 2015, the author visited the Raspberry Pi Foundation to discuss their
use of Python.

Python is an important aspect of their work.1 They initially chose to
concentrate on Python for several reasons.

The traditional first lesson in any programming language is to make
the computer print “Hello World” on the screen. This is ridiculously
easy in Python:

 print('Hello World')

Contrast this with the Java version:

 public class java {
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
 }

Eben explained that it’s a great illustration of Python’s simplicity,
readability and accessibility. Compared to the Java code, it has mini‐
mal syntax and is a meaningfully concise instruction of what you,
the programmer, are expecting the computer to do. In contrast, with
Java you have two options: either ignore four out or five lines of
code, or learn enough to understand object-oriented programming,
Java method definitions, string arrays and referencing the standard
library.

Given such an easy way to start programming with Python, the
Raspberry Pi Foundation valued the way the language allows learn‐
ers to move on. As we know, Python is a real programming language
rather than simply an educational “toy” language (such as the rather
wonderful visual programming tool Scratch). Learners can graduate
to real-world programming using the language they’re already
familiar with. Eben went on to explain, “Python has a learning curve
with no discontinuity in it. Python is very smooth.”

Finally, and perhaps because several of the creators of the Raspberry
Pi were children in the 1980s, it is possible to use Python in a similar
fashion to the old 8-bit home computers from the 1980s that ran
BASIC. This is good because learners simply start to type code and
the computer immediately responds, thus creating a tight feedback
loop that encourages exploration and experimentation (important
aspects of any learning activity).

8 | Chapter 2: A Pythonic Case Study: Raspberry Pi

http://scratch.mit.edu/

In fact, the Raspberry Pi was originally going to boot into a Python
console (à la the home computers of the 1980s).

Given these initial considerations and the worldwide success of the
project, it is interesting to learn about the Raspberry Pi Foundation’s
subsequent experience with Python. Did their initial focus on
Python turn out to be a good decision?

Unsurprisingly, it did.

They described the Python community as “exactly the sort you want.
Education is a core part of the community.”

Visiting Pycon in 2013 bore fruit. First, the Foundation was able to
observe the Python community engaging in an education track for
kids. Second, it was an occasion to test the hypothesis that kids don’t
code because they don’t have a platform to program on. This
hypothesis is important given that modern desktop PCs and mobile
devices don’t encourage fun “hacks” (used in the positive sense: the
exploration and elegant use of technology). That the kids at Pycon
2013 were engaged and having a lot of fun initially proved the
hypothesis. This has subsequently been confirmed by the device’s
international runaway success in the education world.

Since then, Pythonic highlights for the Foundation have included
contributions of code to the project. As you can see in Figure 2-1,
the Raspberry Pi has general purpose input/output (GPIO) pins that
allow users to attach and control external devices.

Figure 2-1. A Raspberry Pi (note the GPIO pins running across the top
of the board)

A Pythonic Case Study: Raspberry Pi | 9

Ben Croston, an enterprising tuba-playing brewer (tuba players love
to drink beer) set up a microbrewery that used the Raspberry Pi to
monitor and adjust the brewing process. In order to make this hap‐
pen, he wrote and then released as free software a Python library for
easily controlling devices via the GPIO pins. Since then, the library
originally used for brewing beer for members of brass bands in
northern England has been used for a huge number of physical
computing projects. Put simply, whenever you hear of a Raspberry
Pi project where the device is used to connect to and control some‐
thing else, it probably uses Ben’s library. Such sharing of Python
code creates opportunities for inadvertent educational use: kids are
plugging in and controlling all sorts of hardware devices (such as the
weather stations and tweeting birdhouses mentioned in the descrip‐
tion from the Raspberry Pi Foundation at the start of this chapter).

You may have heard of Minecraft, a hugely popular game that works
like a sort of digital Lego. The game is set in a computer-generated
“blocky” world. Players have the ability to build and explore this
world along with others connected on the network. Mojang, the
publisher of Minecraft, released a version for the Raspberry Pi and
included a Python-based library that made it easy for anyone to
interact with the game via code.

There have been some amazing projects that make use of this
library, especially the work of Martin O’Hanlon and David Whale
who have created many resources and projects that inspire kids to
interact with their favorite game via Python. For example, at
PyconUK 2014, Martin worked with about 80 kids who collaborated
together to program such projects as in-game teleporters, magic
bridge building (walk off a cliff and a bridge will magically appear at
your feet), and growing multi-colored fractal trees, as seen in
Figure 2-2.

10 | Chapter 2: A Pythonic Case Study: Raspberry Pi

http://minecraft.net/
http://mojang.com/
http://www.stuffaboutcode.com/
http://blog.whaleygeek.co.uk/
http://pyconuk.org/education

Figure 2-2. Multi-colored fractal trees created in Minecraft using
Python running on a Raspberry Pi

The image on the front cover of this report was also taken at
PyconUK. Notice the lack of adult supervision; this is a group of
kids between the ages of 6 and 9 autonomously working out how to
program Minecraft with Python. These are tomorrow’s program‐
mers inspired into programming today.

Another interesting side effect of having the Raspberry Pi at
PyconUK was how such educational activities motivated professio‐
nal software developers. A group of Python developers took the
library provided by Mojang and started to add features and update it
to the latest version of Python, making the learning curve for the
kids shallower and smoother.

As Ben from the Raspberry Pi education team pointed out, teachers
don’t necessarily have the skills or time to write the Python libraries
they need to create engaging lessons for their students. Yet the
Python community steps up and makes stuff happen so that their
work can be repurposed (sometimes unintentionally) for use in the
classroom.

Such crossover between programming and education, facilitated by
the popularity of the Raspberry Pi device in both realms, has led to
many positive, mutually beneficial outcomes. Teachers now make
up a significant minority of attendees at PyconUK, kids attend
Python conferences all over the world, Python developers run code
workshops (for example, the London Python Code Dojo contrib‐

A Pythonic Case Study: Raspberry Pi | 11

http://github.com/py3minepi/py3minepi
http://github.com/py3minepi/py3minepi

uted several code projects to the Raspberry Pi foundation) and treat
teachers as colleagues who generate use cases for them to turn into
working code.

Ultimately, the efforts and good will shown by the Python commu‐
nity have paid off: the Raspberry Pi Foundation has given back to
the community by funding Python-related events, providing resour‐
ces and supporting programming projects such as PyPy, a high-
performance version of Python that runs extraordinarily quickly on
the Raspberry Pi (and other devices).

The future looks bright for the Raspberry Pi. For example, it’s going
to fly with British ESA astronaut Tim Peake to the International
Space Station. British schoolchildren will program the device with
experiments and tasks for Tim to fulfill as part of the AstroPi
project.

I bet you can’t guess the language in which these programs will be
written.

12 | Chapter 2: A Pythonic Case Study: Raspberry Pi

http://ramblings.timgolden.me.uk/2015/02/13/raspberry-pi-themed-dojo-at-baml/
http://www.raspberrypi.org/pypy-on-pi/
http://astro-pi.org/
http://astro-pi.org/

CHAPTER 3

Why Python in Education?

I am going to answer a very simple question: which features of the
Python language itself make it appropriate for education? This will
involve learning a little Python and reading some code. But don’t
worry if you’re not a coder! This chapter will hopefully open your
eyes to how easy it is to learn Python (and thus, why it is such a pop‐
ular choice as a teaching language).

Code Readability
When I write a to-do list on a piece of paper, it looks something like
this:

Shopping
Fix broken gutter
Mow the lawn

This is an obvious list of items. If I wanted to break down my to-do
list a bit further, I might write something like this:

Shopping:
 Eggs
 Bacon
 Tomatoes
Fix broken gutter:
 Borrow ladder from next door
 Find hammer and nails
 Return ladder!
Mow the lawn:
 Check lawn around pond for frogs
 Check mower fuel level

13

Intuitively we understand that the main tasks are broken down into
sub-tasks that are indented underneath the main task to which they
relate. This makes it easy to see, at a glance, how the tasks relate to
each other.

This is called scoping.

Indenting in this manner is also how Python organizes the various
tasks defined in Python programs. For example, the following code
simply says that there is a function called say_hello that asks the
user to input their name, and then—you guessed it—prints a
friendly greeting:

def say_hello():
 name = input('What is your name? ')
 print('Hello, ' + name)

Here’s this code in action (including my user input):

What is your name? Nicholas
Hello, Nicholas

Notice how the lines of code implementing the say_hello function
are indented just like the to-do list. Furthermore, each instruction in
the code is on its own line. The code is easy to read and understand:
it is obvious which lines of code relate to each other just by looking
at the way the code is indented.

Most other computer languages use syntactic symbols rather than
indentation to indicate scope. For example, many languages such as
Java, JavaScript and C use curly braces and semicolons for this pur‐
pose.

Why is this important?

If, like me, you have taught students with English as an additional
language or who have a special educational need such as dyslexia,
then you will realize that Python’s intuitive indentation is something
people the world over understand (no matter their linguistic back‐
ground). A lack of confusing symbols such as '{', '}' and ';' scattered
around the code also make it a lot easier to read Python code. Such
indentation rules also guide how the code should look when you
write it down—the students intuitively understand how to present
their work.

Compared to most other languages, Python’s syntax (how it is writ‐
ten) is simple and easy to understand. For example, the following

14 | Chapter 3: Why Python in Education?

code written using the Perl programming language will look for
duplicate words in a text document:

print "$.: doubled $_\n" while /\b(\w+)\b\s+\b\1\b/gi

Can you work out how Perl does this?

(In Perl’s defense, it is an amazingly powerful programming lan‐
guage with a different set of aims and objectives than Python. That’s
the point—you wouldn’t try to teach a person how to read with
James Joyce’s Ulysses, despite it being widely regarded as one of the
top English-language novels of the 20th century.)

Put simply, because you don’t have to concentrate on how to read or
write Python code, you can put more effort into actually under‐
standing it. Anything that lowers the effort required to engage in
programming is a good thing in an educational context (actually,
one could argue that this is true in all contexts).

Obvious Simplicity
The simple core concepts and knowledge required to write Python
code will get you quite far. That they are easy to learn, use and
remember is another characteristic in Python’s favor. Furthermore,
Python is an obvious programming language—it tries to do the
expected thing and will complain if you, the programmer, attempt to
do something clearly wrong. It’s also obvious in a second sense—it
names various concepts using commonly understood English
words.

Consider the following two examples.

In some languages, if you want to create a list of things, you have to
use variously named constructs such as arrays, arraylists, vectors
and collections. In Python, you use something called a list. Here’s
my to-do list from earlier written in Python:

todo_list = ['Shopping', 'Fix broken gutter', 'Mow the lawn']

This code assigns a list of values (strings of characters containing
words that describe tasks in my to-do list) to an object named
todo_list (which I can reuse later to refer to this specific list of
items).

In some languages, if you want to create a data dictionary that
allows you to store and look up named values (a basic key/value

Obvious Simplicity | 15

store), you’d use constructs called hashtables, associative arrays,
maps or tables. In Python, you use something called a dictionary.
Here’s a data dictionary of a small selection of random capital cities:

capital_cities = {
 'China': 'Beijing'
 'Germany': 'Berlin',
 'Greece': 'Athens',
 'Russia': 'Moscow',
 'United Kingdom': 'London',
}

I’ve simply assigned the dictionary to the capital_cities object. If
I want to look up a capital city for a certain country, I reference the
county’s name in square brackets next to the object named capi
tal_cities:

capital_cities['China']
'Beijing'

Many programming languages have data structures that work like
Python’s lists and dictionaries; some of them do the obvious thing
and call such constructs “lists” and “dictionaries”; some other lan‐
guages make using such constructs as easy and obvious as Python
(although many don’t). Python’s advantage is that it does all three of
these things: it has useful data structures as a core part of the lan‐
guage, it gives them obvious names, and makes them extraordinarily
easy to use. Such usefulness, simplicity and clarity is another case of
removing barriers to engaging with programming.

As mentioned earlier, Python also does the expected thing. For
example, if I try to sum together an empty dictionary and an empty
list (something that’s obviously wrong—evidence that I’ve misun‐
derstood what I’m trying to do) Python will complain:

>>> {} + []
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'dict' and 'list'

This is simply telling me that I can’t use the “+” operand to sum a
dictionary and a list. This is to be expected, rather obvious and quite
helpful.

Nevertheless, other languages try to be less strict and more forgiving
of the programmer. While this may sound like a good idea, it means
that faulty code like that attempted above will be executed without
any error and cause uncertain results (after all, what is the answer of

16 | Chapter 3: Why Python in Education?

summing a dictionary and a list?). Here’s what the ubiquitous Java‐
Script language will do when you attempt to add the equivalent data
structures (in JavaScript parlance, an object '{}' and an array '[]'):

> {} + []
0

Of course, the answer is obviously zero!?!

Guess what happens if you try to sum an empty array with an object
in JavaScript (we switch around the summed terms).

> [] + {}
"[object Object]"

I bet you were expecting a consistent result!

(Again, the caveat of JavaScript having a different set of aims and
objectives to Python should be applied here.)

Learning, by its very nature, involves making mistakes and realizing
that mistakes have been made. Only then can behavior be adjusted
and progress made. If you’re learning to program using a language
like JavaScript (that would rather make what appears to be a best
guess at what you mean, rather than complain about an obvious
error), then all sorts of mistakes will pass by unnoticed. Instead,
you’ll either continue in your mistaken view of the programming
world or you’ll have to understand the rather complex and tortuous
rules that JavaScript uses to cause {} + [] to equal 0 and [] + {} to
equal "[object Object]" (itself, a difficult educational feat to pull
off).

Python’s simplicity and obviousness encourages learners and profes‐
sional developers alike to create understandable code. Understanda‐
ble code is easier to maintain and less likely to contain bugs (because
many bugs are caused by misunderstanding what the code is actually
doing compared to what you mistakenly think it ought to be doing).
Being able to simply state your ideas in code is a very powerful and
empowering capability.

For example, consider an old-school text adventure game. Players
wander around a world consisting of locations that have descrip‐
tions and exits to other locations. The program below very clearly
and simply implements exactly that.

Most of the program consists of either comments to explain how it
works or is a data dictionary that describes the game world. It is only

Obvious Simplicity | 17

the final block of code that actually defines the behavior of the game.
It is my hunch, even if you’re not a programmer, that you’ll be able
to get the gist of how it works.

"""
A very simple adventure game written in Python 3.

The "world" is a data structure that describes the game
world we want to explore. It's made up of key/value fields
that describe locations. Each location has a description
and one or more exits to other locations. Such records are
implemented as dictionaries.

The code at the very end creates a game "loop" that causes
multiple turns to take place in the game. Each turn displays
the user's location, available exits, asks the user where
to go next and then responds appropriately to the user's
input.
"""

world = {
 'cave': {
 'description': 'You are in a mysterious cave.',
 'exits': {
 'up': 'courtyard',
 },
 },
 'tower': {
 'description': 'You are at the top of a tall tower.',
 'exits': {
 'down': 'gatehouse',
 },
 },
 'courtyard': {
 'description': 'You are in the castle courtyard.',
 'exits': {
 'south': 'gatehouse',
 'down': 'cave'
 },
 },
 'gatehouse': {
 'description': 'You are at the gates of a castle.',
 'exits': {
 'south': 'forest',
 'up': 'tower',
 'north': 'courtyard',
 },
 },
 'forest': {
 'description': 'You are in a forest glade.',

18 | Chapter 3: Why Python in Education?

 'exits': {
 'north': 'gatehouse',
 },
 },
}

Set a default starting point.
place = 'cave'
Start the game "loop" that will keep making new turns.
while True:
 # Get the current location from the world.
 location = world[place]
 # Print the location's description and exits.
 print(location['description'])
 print('Exits:')
 print(', '.join(location['exits'].keys()))
 # Get user input.
 direction = input('Where now? ').strip().lower()
 # Parse the user input...
 if direction == 'quit':
 print('Bye!')
 break # Break out of the game loop and end.
 elif direction in location['exits']:
 # Set new place in world.
 place = location['exits'][direction]
 else:
 # That exit doesn't exist!
 print("I don't understand!")

A typical “game” (including user input) looks something like this:

$ python adventure.py
You are in a mysterious cave.
Exits:
up
Where now? up
You are in the castle courtyard.
Exits:
south, down
Where now? south
You are at the gates of a castle.
Exits:
south, north, up
Where now? hello
I don't understand!
You are at the gates of a castle.
Exits:
south, north, up
Where now? quit
Bye!

Obvious Simplicity | 19

Furthermore, from an educational point of view, this simple adven‐
ture game can be modified in all sorts of interesting and obvious
ways by learners: adding objects to the world, creating puzzles,
adding more advanced commands and so on. In fact, there are
opportunities for cross-curricular work with other disciplines. Play‐
ing such a game is a form of interactive fiction—perhaps the English
department could help the students come up with more than just
the bare-bones descriptions of the original?

Open Extensibility
Despite the powerful simplicity of the core language, programmers
often need to reuse existing library modules of code to achieve a
common task. A library module is like a recipe book of instructions
for carrying out certain related tasks. It means programmers don’t
have to start from scratch or reinvent the wheel every time they
encounter a common problem.

While most programming languages have mechanisms to write and
reuse libraries of code, Python is especially blessed in having a large
and extensive standard library (built into the core language), as well
as a thriving ecosystem of third-party modules.

For example, a common task is to retrieve data from a website. We
can use the requests third-party module to download web pages
using Python:

>>> import requests
>>> response = requests.get('http://python.org/')
>>> response.ok
True
>>> response.text[:42]
'<!doctype html>\n<!--[if lt IE 7]> <html '

(This code tells Python that we want to use the requests library, gets
the HTML for Python’s home page, checks that the response was a
success [it was] and displays the first 42 characters of the resulting
HTML document.)

Some modules, such as requests, do one thing and do it exception‐
ally well. Other modules are organized into large libraries to create
application frameworks that solve many of the repetitive tasks
needed when writing common types of application.

20 | Chapter 3: Why Python in Education?

http://python.org/

For example, Django is an application framework for writing web
applications (as used by Mozilla, The Guardian, National Geo‐
graphic, NASA and Instagram, among others). Django looks after
common tasks such as modelling data, interacting with a database,
writing templates for web pages, security, scalability, deciding where
to put business logic and so on. Because this has already been taken
care of by Django, developers are able to concentrate on the impor‐
tant task of designing websites and implementing business logic.

Many languages have extensive code libraries and application frame‐
works, but Python’s strength is in its broad reach. SciPy and NumPy
are used by scientists and mathematicians, NLTK (the Natural Lan‐
guage Tool Kit) is used by linguists parsing text, Pandas is used
extensively by statisticians and OpenStack is used to organize and
control cloud-based computing resources. The list goes on and on.

Teaching a language that has such extensive real-world use has an
obvious benefit: learners acquire a skill in a programming language
that has real economic value.

Another aspect of being openly extensible is that Python is an open
source project. Anyone can take part in developing the language by
submitting bug reports or patches to the core developers (led by
Guido van Rossum himself). There is also a well-understood and
simple process by which new features of the language are proposed
and implemented: the Python Enhancement Proposals (PEPs). In
this way, the language is developed in full view of the community
that uses it with the opportunity for the community to inform and
guide its future development. This process is explained in great
detail by PEP 1.

Cross-Platform Runability
Python is a platform-agnostic language: it works on Microsoft Win‐
dows, Mac OS X, Linux and many other operating systems and devi‐
ces. It’s even possible to have Python as a service through websites
such as Python Anywhere.

This is important in an educational context because Python works
on the computers used in schools. Students can also use it on the
computers they have at home, no matter the make or model they
may own. Furthermore, Python as a service provided via a website is
an excellent solution to the problem of the infamously troll-like

Cross-Platform Runability | 21

http://www.djangoproject.com/
http://www.scipy.org/
http://www.numpy.org/
http://www.nltk.org/
http://www.nltk.org/
http://pandas.pydata.org/
http://www.openstack.org/
http://www.python.org/dev/peps/
http://www.python.org/dev/peps/pep-0001/
http://pythonanywhere.com/

school system administrators who won’t let teachers install anything
other than Microsoft Office on school PCs. Users simply point their
browser at a website and they are presented with a fully functional
Python development environment without having to install any
additional software.

As we have seen, Python also works on small-form devices such as
the Raspberry Pi. It even runs on microcontrollers—small, low-
powered chips designed to run within embedded devices, applian‐
ces, remote controls and toys (among other things).

The MicroPython project has created a pared-down version of
Python 3 optimized for such devices, and provides a small electronic
circuit board (see Figure 3-1) that runs such a svelte version of
Python.

Figure 3-1. A MicroPython board (about the same size as a postage
stamp)

This very simple Python-based operating system can be used as the
basis for all sorts of interesting and fun electronic projects. Add-ons
for the board include an LCD display screen, speaker and micro‐
phone and motors. It is a relatively easy task to build a simple robot
with such a device.

22 | Chapter 3: Why Python in Education?

http://micropython.org/

More recently, the BBC announced the MicroBit project, a small
battery-powered programmable device for children. One million of
the devices will be given away to 11-year-olds in the UK at the start
of the new academic year in September 2015. It will also be on sale
to the public.

The MicroBit fastens to clothing and has a couple of buttons and an
LED matrix that displays scrolling text and images. Just like the
Raspberry Pi and Micro Python board, it has the ability to interact
with other devices via I/O connections.

Python is one of three supported languages for programming the
MicroBit.

Figure 3-2. A prototype of the BBC’s MicroBit programmable device
for children

The important educational advantage is continuity.

By learning Python, a student has access to all sorts of fun and inter‐
esting platforms that can be explored using tools and code they’re
familiar with. Because Python runs on so many platforms, it is feasi‐
ble to write code for one device and, assuming it doesn’t use device-
specific code and run within hardware constraints, it should run on
many others.

Cross-Platform Runability | 23

http://www.bbc.co.uk/news/technology-31834927

Humanity
While not a strict feature of the language, Python’s community, his‐
tory and philosophy often shines through code written in Python.

The odd Monty Python reference (the website that hosts third-party
Python modules is called the Cheese Shop after the sketch about a
cheese shop with no cheese), a playful sense of fun (for instance,
“the PyPy project” is so named because it is a high-performance ver‐
sion of Python written in Python) and other apparent eccentricities
bestow upon Python the appearance of an approachable and inter‐
esting language. It’s obviously used by humans for humans rather
than being an abstract tool for esoterics.

Python’s community is a friendly and diverse bunch. It is to this
community of developers, teachers and students that I want to turn
in the next chapter.

Put simply, the Python community is the secret weapon of its
success.

24 | Chapter 3: Why Python in Education?

CHAPTER 4

Python’s Secret Weapon:
Community!

Why is Python’s community so important?

When you learn a new skill, you become aware of and a participant
in the unique culture associated with that thing. The military, teach‐
ers, musicians and other vocations all have their own characteristic
and immediately recognizable cultures. The same goes for program‐
mers and different programming languages.

Happily, the Python community has an excellent reputation for
being a friendly group of people who value openness, actively
engage in outreach and give up their time for educational support.
These are all attributes that make it easy for both teachers and stu‐
dents to get involved with Python’s inimitable culture. As Eben
Upton from the Raspberry Pi Foundation mentioned, the Python
community is “exactly the sort you want. Education is a core part of
the community.”

Python programmers (variously called Pythonists, Pythonistas
and/or Pythonauts) are also a well organized bunch and have cre‐
ated the Python Software Foundation (PSF) as a rallying point for
the community. It also means that there is a legal entity with which
governments, companies and other institutions can formally inter‐
act.

25

http://www.python.org/psf/

1 For a complete list of Pycons around the world, see http://pycon.org/.

The PSF
Here’s how the PSF describes itself:

The Python Software Foundation (PSF) is a volunteer led organiza‐
tion devoted to advancing open source technology related to the
Python programming language. It qualifies under the US Internal
Revenue Code as a tax-exempt 501(c)(3) scientific and educational
public charity, and conducts its business according to the rules for
such organizations.

The PSF was created to promote, protect, and advance the Python
programming language and to support and facilitate the growth of a
diverse and international community of Python programmers. This
is achieved by supporting the development of the Python program‐
ming language itself (whose intellectual property belongs to the
PSF), providing technical infrastructure for the Python community
(such as servers, mailing lists and the Python website), running and
supporting various international Python conferences (or Pycons,1

such as the one held in the UK mentioned in Chapter 2), and the
giving of grants to individuals and organizations for projects related
to the development of Python, Python-related technology, and edu‐
cational resources.

Anyone who is a user or supporter of Python can join and volunteer
as little or much as they see fit. The Python website and PSF should
be your first port of call for information relating to the Python com‐
munity. It includes the complete documentation for the language
(and tutorials, too).

The PSF also hosts several mailing lists that cater to various locales
and interests. For example, there is an education special interest
group mailing list that you can join (the web page for the Edu-SIG
also includes many useful links for resources and evidence of
Python’s efficacy as an educational programming language).

Another important aspect of the PSF’s work is outreach and helping
to make the community a welcoming place for newcomers—no
matter their background, age or level of experience. This is manifes‐
ted in several ways.

26 | Chapter 4: Python’s Secret Weapon: Community!

http://pycon.org/
http://python.org/
http://docs.python.org/
http://www.python.org/community/lists/
http://www.python.org/community/sigs/current/edu-sig/
http://www.python.org/community/sigs/current/edu-sig/
http://mail.python.org/mailman/listinfo/outreach-and-education

Conferences supported by the PSF must have a code of conduct that
helps to promote and maintain the community’s reputation as a
friendly, welcoming and dynamic group of people. Put simply, they
help to make it clear that conference attendees are expected to treat
each other in a way that reflects the widely held view that diversity
and friendliness are strengths of the community to be celebrated
and fostered.

The PSF awards grants for projects that promote Python, Python-
related technology, educational programs and resources. This is an
important mechanism for community-led support and development
—if you have an idea for something to contribute that needs fund‐
ing, you should apply (the process is easy and the board are respon‐
sive and helpful).

Conferences
Like every international community of free software developers,
many members collaborate over the Internet rather than in real life.
As a result, conferences are an important part of the community
because they literally bring people together. Friendships are
strengthened, collaborators are found and ideas are debated. Code is
furiously written during “code sprints” (intense days of group pro‐
gramming). There are also the usual conference events: talks, tutori‐
als, dinners and keynote speeches.

More recently in the world of Python conferences, things have taken
a decidedly educational turn. Since 2012, PyconUK has had teachers
attend and give presentations. In 2013, PyconUK had a specialist
education track for teachers and developers to come together and
learn from each other. Since 2013, the education track at PyconUK
has had a day set aside for kids to attend with their families. Next
year, PyconUK expects about 50 teachers and 150 kids to attend
over the course of two days during the main conference.

In North America, there has been a PyCon Education Summit for
developers and teachers since 2013 (and since as early as 2003, there
have been education-themed “open spaces”). Also in 2013, a kids’
track was initiated where developers volunteer their time to teach
young coders and help them take their first steps into the world of
Python.

Conferences | 27

http://www.python.org/psf/grants/
http://us.pycon.org/

Pycon Australia will hold their first education “miniconf ” in 2015
and evidence from discussions at Europython 2014 suggests that
many European countries are in the early stages of making their
own national conferences education-friendly with tracks for teach‐
ers and/or students.

Such educational efforts are not limited to conference tracks for
teachers and kids. Underrepresented groups in the wider technology
sector have had their educational needs met by the Python commu‐
nity: PyLadies is an international network of chapters providing
mentorship and support for women who want to take a more active
role in the Python community, Django Girls organizes free Python
and Django workshops for women, and Trans*Code runs hack days
that draw attention to transgender issues while focusing on intro‐
ductory programming courses for those not currently working in
technology.

The Python community is active, engaged and enthusiastic.

Why not get involved?

28 | Chapter 4: Python’s Secret Weapon: Community!

http://pycon-au.org/
http://europython.eu/
http://www.pyladies.com/
http://djangogirls.org/
http://trans-code.org/

CHAPTER 5

Looking Ahead

In 20 years time, I hope to attend Pycon 2035. If not Pycon 2035,
then I want to attend the conference for whatever Python and its
community morphs into. I’m looking forward to working with the
kids of today who are just starting out on their journey as program‐
mers. I’ll be at the end of my career but I’m certain I’ll be surprised,
energized and inspired by what they do.

How can I be so certain?

I’m already surprised, energized and inspired by what the kids of
today do when they attend the PyconUK education track that I help
to organize.

This latent talent, joie de vivre and receptiveness to programming in
Python has already been identified by the Python community who
want to support, cherish and foster it. I believe the renewed focus by
politicians and teachers on computing will find keen allies in the
Python world.

The fruits of the work done by today’s Python community will
ensure that there is a legacy of new generations of programmers
who are empowered to be enterprising and autonomous digital
makers and creators rather than mere passive users.

The future will be increasingly influenced and controlled by com‐
puting. We need to ensure that tomorrow’s citizens are equipped
with the skills to flourish in this world.

Python and its community can help with that.

29

About the Author
Nicholas Tollervey is a classically trained musician, philosophy
graduate, teacher, writer and software developer. He’s just like this
biography: concise, honest and full of useful information.

	Cover
	Table of Contents
	Preface
	Python Is Everywhere
	What’s in It for You?
	You’re a Programmer
	You’re a Teacher
	You’re a Student
	You’re a Parent
	You’re Interested in Learning More

	Acknowledgments

	Chapter 1. The Story of Python
	Chapter 2. A Pythonic Case Study:
Raspberry Pi
	Chapter 3. Why Python in Education?
	Code Readability
	Obvious Simplicity
	Open Extensibility
	Cross-Platform Runability
	Humanity

	Chapter 4. Python’s Secret Weapon: Community!
	The PSF
	Conferences

	Chapter 5. Looking Ahead
	About the Author

