- Messages received by C1 from C6, C7 and destined for C2 are buffered in a queue Q1.
- Messages received by C2 from C3, C4 and destined for C1 are buffered in a queue Q2.
- As traffic increases, Q1, Q2 will be full.
- Consequently,
 C1, C2 can't accept more messages.
 The communication path between C1, C2 becomes deadlocked.
Consider a system of \(n \) processes and \(m \) different types of resources. Let us define the following vectors and matrices:

- **Resource** \(= (R_1, R_2, \ldots, R_m) \) \(n \times 1 \) vector of total amount of each resource in the system.

- **Available** \(= (V_1, V_2, \ldots, V_m) \) \(n \times 1 \) vector of total amount of each resource not allocated to a process.

- **Claim** \(= \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1m} \\ C_{21} & C_{22} & \cdots & C_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nm} \end{pmatrix} \) \(n \times m \) matrix of requirement of each process for each resource.

- **Allocation** \(= \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix} \) \(n \times m \) matrix of current allocation.
Figure 6.8 Determination of an Unsafe State
Figure 6.7 Determination of a Safe State
Figure 6.9 Example for Deadlock Detection

We can use Figure 6.9 to illustrate the deadlock detection algorithm. The algorithm proceeds as follows:

1. Mark P4, because P4 has no allocated resources.
2. Set $W = (0 \ 0 \ 0 \ 0 \ 1)$.
3. The request of process P3 is less than or equal to W, so mark P3 and set $W = W + (0 \ 0 \ 0 \ 1 \ 0) = (0 \ 0 \ 0 \ 1 \ 1)$.
4. No other unmarked process has a row in Q that is less than or equal to W. Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating that these processes are deadlocked.