
CSCI 460 — Operating Systems

Lecture 11

Multiprocessor Scheduling

Textbook: Operating Systems

by William Stallings

1



1. Multiprocessor Types

• Cluster (loosely coupled or distributed multiprocessor)

– 1. No shared memory.

– 2. Each processor has its own memory and I/O channels.

– 3. Each processor can complete tasks almost independently.

• Special Processors — I/O processor.

• Tightly coupled multiprocessing

– 1. With a shared memory.

– 2. Must coordinate among the processors to complete tasks.



2. Granularity

• Granularity: frequency of synchronization between processes

in a system.



3. Issues on Multiprocessor Scheduling

• Assignment of Processes to Processors

– 1. If all the processors are the same, then we can use either

a static or a dynamic policy.

– 1.1. Static assignment: a process is run on a processor un-

til it is finished; each processor also maintains a short-term

queue.

Advantage: low overhead.

Disadvantage: unbalanced workload.

Question: Is this policy easy?

– 1.2. Dynamic assignment: a process may be run on differ-

ent processors during its lifetime.

– 2. If not all the processors are the same, then we can use

master/slave or peer approaches.

– 2.1. Master/slave: Master is responsible for scheduling jobs

and slave is responsible for finishing them.



Disadvantage: (a) If master fails, ... (b) Master can

be a performance bottleneck.

– 2.2. Peer: OS can run on any processor and each processor

does self-scheduling.

Problem?

• Use of Multiprogramming on a Processor?

– Coarse-grained multiprocessor: yes.

– Medium- or fine-grained multiprocessor: maybe not. (Think

of a job with 6 threads working on shared data.)

• Process Dispatching

– 1. On uniprocessor scheduling, priority or complicated schedul-

ing will improve performance.

– 2. On Multiprocessor scheduling, simple scheduling is bet-

ter. (Thread scheduling is a new issue.)



4. Process Scheduling

• In general a multiprocessor system is a multiserver system

• A two-processor example

• Conclusion: Using which scheduling algorithm does not quite

matter in a multiprocessor system.



5. Thread Scheduling

• Threads of a process run concurrently within the same address

space

• On a uniprocessor, threads can only try to overlap with I/O

operation

• On a multiprocessor, threads can obtain great performance

gains; of course, it is more difficult to schedule them. The

following 3 methods are common.

• 1. Load sharing.

– 1.1) A global queue of ready threads is maintained.

– 1.2) Load is evenly distributed among processors.

– 1.3) No centralized scheduler is needed.

– 1.4) Global queue can be maintained using methods on

uniprocessor scheduling.

– Disadvantage.

– 1.5) If many processors are available, ...

– 1.6) Interrupted threads may not resume execution on the

same processor.

– 1.7) Threads of one process might not be run at the same

time.



• 2. Gang scheduling.

– 2.1) A set of related threads are run (on different processors)

at the same time.

– 2.2) Scheduling overhead could be reduced.

– 2.3) Example.



• 3. Dedicated processor assignment.

– 3.1) Each program is given a set of processors equal to the

number of threads it contains.

why it works?

– 3.2) You have many processors, CPU utilization is not that

important.

– 3.3) You do not have to do process (context) switching.

– 3.4) Example.


