
CSCI 460 — Operating Systems

Lecture 12

Real-time Scheduling

Textbook: Operating Systems

by William Stallings

1

1. Real-time Scheduling Examples

• Real-time scheduling requires not only the correctness of logical

computation but also timing

• Examples

– 1. Process control plants.

– 2. Robotics.

– 3. Aircraft control.

– 4. Cruise missile.

– 5. etc.

2. Basic concepts

• Hard real-time task: one which we must meet its deadline;

otherwise, fatal damage or error will occur.

• Soft real-time task: one which we should meet its deadline,

but not mandatory. We should schedule it even if the deadline

is already passed.

• Aperiodic task: a somehow ‘random’ task which may have

a constraint on start time or finish time or both.

• Periodic task: a sequence of tasks which appear ‘once per

period T’.

3. Characteristics of real-time OS

• Determinism

– 1. Multi-process system is in general non-deterministic.

– 2. Real-time OS should respond by external events/timing,

hence should be deterministic.

– 3. Determinism is determined by the speed the OS responds

to interrupts, as well as the capacity of the system.

– 4. Maximal delay is small: microseconds to a millisecond.

• Responsiveness — how long it takes the OS to service the in-

terrupt

– 1. Time required to start interrupt.

– 2. Time to finish the interrupt.

– 3. Is nested interrupt allowed?

• User Control

– 1. User control should be processed immediately.

– 2. Should even allow the user to specify hard/soft tasks.

• Reliability

– 1. Reliability is much more important for real-time systems

than regular systems.

– 2. Error generally not recoverable.

• Fail-soft Operation

– 1. For some soft tasks, failure is allowed.

– 2. Ability to preserve as much capacity and data as possible

(when failure occurs).

– 3. Try to either correct the problem or minimize its effects.

– 4. Stability—when it is impossible to meet all deadlines,

system will satisfy the most critical tasks.

4. Features of modern real-time OS

• Fast process/thread switch

• Small size

• Responds to external interrupts quickly

• Preemptive scheduling based on priority

• Primitives to delay tasks for limited time

• Special alarms and time-outs

•

• The most important thing in real-time OS is to start hard tasks

by their deadline and finish them by their deadlines.

5. Deadline Scheduling

• Ready time: Time at which a task becomes ready to run

• Starting deadline: Time by which a task must start

• Completion deadline: Time by which a task must complete

• Processing time: Time to actually serve a task

• Resource requirements: Resources required by a task

• Priority: Importance of a task

• On either a uniprocessor or a multiprocessor, scheduling tasks

with the earliest deadline gives us an optimal solution.

• An example on scheduling periodic tasks

• An example on scheduling aperiodic tasks

6. Rate Monotone Scheduling

• A task’s period, T , is the time between the arrival of two tasks

(within the same sequence).

• A task’s rate is 1/T .

• A task’s computation time, C, is the time to process each

occurrence of the task.

• On a uniprocessor system, C ≤ T .

• If a task can run to completion, the corresponding processor

utilization is C/T .

• RMS always ranks a task with the shortest period as having

the highest priority.

• If we have n tasks, each with a fixed period and execution time,

then clearly

C1

T1
+ C2

T2
+ ... + Cn

Tn

≤ 1.

We can even prove that

C1

T1
+ C2

T2
+ ... + Cn

Tn

≤ n(21/n − 1).

• RMS is popular in practice because

– 1. The performance difference is small.

– 2. It can handle a mixture of hard real-time tasks and soft

real-time tasks.

– 3. It is stable.

7. Unix and Windows Real-Time Scheduling

• Unix provides a real-time scheduling capability, varying from

different versions.

• In the FreeBSD version, a score used to determine whether a

thread is real-time (interactive).

Scaling Factor = Maximum interactivity score
2

.

For threads with sleep time > run time,

Interactivity score = Scaling factor(run time
sleep time

).

For threads with run time > sleep time,

Interactivity score = Scaling factor(1+sleep time
run time).

• Windows provides a real-time scheduling capability by allowing

two priority classes: real-time and variable priority.

8. Priority Inversion

• Priority inversion occurs when a higher-priority task is forced

to wait for a lower-priority task.

• In some real-time system, priority inversion is very dangerous

for the system.

Solution?

• Priority inheritance: a lower-priority task inherits the pri-

ority of a higher-priority task sharing (and waiting for) the same

resource.

