
CSCI 460 — Operating Systems

Lecture 14

Distributed Mutual Exclusion/Deadlock

Textbook: Operating Systems

by William Stallings

1



1. Distributed Mutual Exclusion Concepts

• Mutual Exclusion Requirements

– 1. Only one process at one time is allowed to enter the

critical region.

– 2. A process that halts in its non-critical region must not

interfere with other processes.

– 3. The request of a process to enter a critical region must

not be delayed indefinitely.

– 4. When the critical region is free, any other process is

permitted to enter it without delay.

– 5. No assumptions are made about relative process speeds/number

of processors.

– 6. The critical region is of limited time.



2. Centralized algorithm for mutual exclusion

• Idea: one node is designated as the control node and controls

access to all shared objects.

– 1. Only the control node makes resource-allocation deci-

sions.

– 2. The control node keeps the information (identity & sta-

tus) of each resource.

Consequence?

Not very much different from the usual mutual exclusion

control.

• Drawbacks

– 1. If the control node fails, then mutual exclusion control

breaks down, at least temporarily.

– 2. The control node might become a bottleneck in system

performance.



3. Distributed algorithms for mutual exclusion

• A fully distributed algorithm should have the following proper-

ties.

– 1. All nodes have roughly equal amount of information.

– 2. Each node has only some local information of the system.

– 3. All nodes expand roughly equal effort in making a final

decision.

– 4. Failure of a node does not make the system collapse.

– 5. There is no systemwide common clock for the whole

system.



4. How to handle the problem of no systemwide

clock?

• Problem: Assume that event a of system i occurred before

event b at system j, we want to make sure that this conclusion

is consistent among all nodes in the system.

Why this is a problem?

• Timestamp: a method which orders events in a distributed

system without using system clocks [Lamport, 1978].

– 1. Each system i maintains a local counter Ci (which func-

tions like a clock).

– 2. When a system i transmits a message, it first increments

its clock by 1 and sends the message in the form of (m, Ti, i).

– 3. The receiving system j sets its clock by

Cj ← 1 + max[Cj, Ti].

– 4. For message x from system i and message y from system

j, x precedes y if either Ti < Tj or Ti = Tj and i < j.



5. Distributed Queue Solution [Lamport,78]

• Assumptions:

– 1. N nodes, each with a process which is in charge of mutual

exclusion requests.

– 2. Messages are received in the same order as they are sent.

– 3. All messages are delivered in a finite period of time.

– 4. A node can send a message to all other nodes.

– 5. Each node keeps an array (queue) q. At any time q[j] in

the local array contains a message from Pj.

• Similar to a centralized system, all of the sites have a copy of

the common queue.

• One more assumption: before a process makes a decision

based on its own queue, it must have received a message from

all other sites.

Can you see why we need this assumption?



• Three types of messages are used in this algorithm:

– 1. (request, Ti, i): Pi makes a request to access a resource

at time Ti.

– 2. (reply, Tj, j): Pj grants access to a resource under its

control.

– 3. (release, Tk, k): Pk releases a resource previously allo-

cated to it.



• Algorithm:

– 1. When Pi wants to access resource, it sends a message

(request, Ti, i) to all other processes and it also stores the

message in q[i].

– 2. When Pj receives (request, Ti, i), it stores the message

in its own q[i]. If q[j] does not contain a request message

then Pj sends (reply, Tj, j) to Pi.

– 3. Pi can access a resource when both of these conditions

hold:

(a). Pi’s own request message (stored in q[i]) is the earliest

request message in q.

(b). All other messages in q are later than the message in

q[i].

– 4. When Pi exits from the critical region, it sends (release, Ti, i)

to every process.

– 5. When Pi receives (release, Tj, j), it replaces the current

content of q[j] with this message.

– 6. When Pi receives (reply, Tj, j), it replaces the current

content of q[j] with this message.



• Conclusion for Lamport’s Solution:

– 1. Mutual exclusion is enforced.

– 2. The algorithm is fair, i.e., requests are granted according

to the timestamp ordering.

– 3. Deadlock free.

– 4. Starvation free.

• Question: to guarantee mutual exclusion, how many mes-

sages are required?



6. Improved Distributed Queue Solution

• Assumptions: same as before, except that we do not neces-

sarily require that messages sent from a process are received in

the same order.

• Algorithm:

– 1. When Pi wants to access resource, it sends a message

(request, Ti, i) to all other processes and it also stores the

message in q[i].

– 2. When Pj receives (request, Ti, i), it does the following:

(a). If Pj is currently in its critical region, it defers sending

a REPLY message.

(b). If Pj is not waiting to enter its critical region, it sends

(reply, Tj, j) to Pi.

(c). If Pj is waiting to enter its critical region and if the

incoming message follows Pj’s request, then it stores this

message in q[i] and defers sending a REPLY message.

(d). If Pj is waiting to enter its critical region and if the

incoming message precedes Pj’s request, then it stores this

message in q[i] and sends (reply, Tj, j) to Pi.

– 3. When Pi receives (reply, Tj, j) for all Pj, it can access

a resource.

– 4. When Pi exits from the critical region, it sends (reply, Ti, i)

to all pending processes (i.e. process sends a request mes-

sage and is waiting).



• Question: to guarantee mutual exclusion, how many mes-

sages are required with this new solution?

This new solution was proposed by Ricart and Agrawala (1981).



7. A Token-Passing Approach

• Token: an entity which is held by one process at any time.

• Whichever process holds the token can enter its critical region

(without asking any permission); when it leaves its critical re-

gion, it passes the token to another process.

• Algorithm:



• Question: to guarantee mutual exclusion, how many mes-

sages are required with this solution?

This solution was proposed by Suzuki and Kasami (1982).



8. Some Famous Distributed Algorithms

• Leadership Election:

– 1. Each process has a unique ID known to all members.

– 2. The process with the highest ID is the leader.

– 3. Any process may fail at any time.

• Algorithm 1—The BULLY election algorithm:

all process do the following

– 1. P notices there is no reply from the coordinator.

– 2. P sends an elect message to all processes with higher

IDs.

– 3. If there is any reply then P exits.

– 4. If there is no reply then P wins, obtains any state needed

to function as a leader, then sends a coordinator message

to all processes.

– 5. On receipt of an elect message a process must both

reply to the sender and start an election if it is not already

holding one.



• Algorithm 2—A ring-based election algorithm:

all process do the following

– 1. P notices the coordinator is not functioning.

– 2. P sends an elect message containing its own ID to the

next process in the ring.

– 3. On receipt of an elect message

a without the receiver’s ID — add this ID and pass on the

message.

b with the receiver’s ID (the message has been round the

ring)—send a message (coordinator, highest ID in the

message) around the ring.


