CSCI 460 — Operating Systems

Lecture 14

Distributed Mutual Exclusion/Deadlock

Textbook: Operating Systems
by William Stallings



1. Distributed Mutual Exclusion Concepts

e Mutual Exclusion Requirements
— 1. Only one process at one time is allowed to enter the
critical region.

— 2. A process that halts in its non-critical region must not
interfere with other processes.

— 3. The request of a process to enter a critical region must
not be delayed indefinitely.

— 4. When the critical region is free, any other process is
permitted to enter it without delay:.

— 5. No assumptions are made about relative process speeds/number
of processors.

— 6. The critical region is of limited time.



2. Centralized algorithm for mutual exclusion

e Idea: one node is designated as the control node and controls
access to all shared objects.

— 1. Only the control node makes resource-allocation deci-
sions.

— 2. The control node keeps the information (identity & sta-

tus) of each resource.

Consequence?

Not very much different from the usual mutual exclusion
control.

e Drawbacks

— 1. If the control node fails, then mutual exclusion control
breaks down, at least temporarily.

— 2. The control node might become a bottleneck in system
performance.



3. Distributed algorithms for mutual exclusion

e A fully distributed algorithm should have the following proper-
ties.
— 1. All nodes have roughly equal amount of information.
— 2. Fach node has only some local information of the system.

— 3. All nodes expand roughly equal effort in making a final
decision.

— 4. Failure of a node does not make the system collapse.

— 5. There is no systemwide common clock for the whole
system.



4. How to handle the problem of no systemwide
clock?

e Problem: Assume that event a of system ¢ occurred before
event b at system 7, we want to make sure that this conclusion
is consistent among all nodes in the system.

Why this is a problem?

e Timestamp: a method which orders events in a distributed
system without using system clocks [Lamport, 1978].

— 1. Each system ¢ maintains a local counter C; (which func-
tions like a clock).

— 2. When a system ¢ transmits a message, it first increments
its clock by 1 and sends the message in the form of (m, T}, 7).

— 3. The receiving system 5 sets its clock by
C; «— 14+ max|C;, T}].

— 4. For message x from system ¢ and message y from system
J, x precedes y if either T; < T or T; =T and i < j.



5. Distributed Queue Solution [Lamport,78]

e Assumptions:
— 1. N nodes, each with a process which is in charge of mutual
exclusion requests.
— 2. Messages are received in the same order as they are sent.
— 3. All messages are delivered in a finite period of time.
— 4. A node can send a message to all other nodes.
— 5. Each node keeps an array (queue) ¢g. At any time g[j] in

the local array contains a message from P;.

e Similar to a centralized system, all of the sites have a copy of
the common queue.

e One more assumption: before a process makes a decision
based on its own queue, it must have received a message from
all other sites.

Can you see why we need this assumption?



e Three types of messages are used in this algorithm:
— 1. (request,T;,i): P; makes a request to access a resource
at time T;.

— 2. (reply,T},j): P; grants access to a resource under its
control.

— 3. (release, Ty, k): Py releases a resource previously allo-
cated to it.



e Algorithm:

— 1. When P, wants to access resource, it sends a message
(request,T;, ) to all other processes and it also stores the
message in q[i].

— 2. When P, receives (request,T;, i), it stores the message
in its own qli]. If ¢[j] does not contain a request message
then P; sends (reply,Tj,j) to P;.

— 3. P; can access a resource when both of these conditions
hold:

(a). P’s own request message (stored in g[é]) is the earliest
request message in q.

(b). All other messages in g are later than the message in
qld].

— 4. When P, exits from the critical region, it sends (release, T, 7)
to every process.

— 5. When P, receives (release, Tj, j), it replaces the current
content of g[j] with this message.

— 6. When P, receives (reply,Tj, j), it replaces the current
content of ¢[j] with this message.



e Conclusion for Lamport’s Solution:

— 1. Mutual exclusion is enforced.

— 2. The algorithm is fair, i.e., requests are granted according
to the timestamp ordering.

— 3. Deadlock free.

— 4. Starvation free.

e Question: to guarantee mutual exclusion, how many mes-
sages are required?



6. Improved Distributed Queue Solution

e Assumptions: same as before, except that we do not neces-
sarily require that messages sent from a process are received in
the same order.

e Algorithm:

— 1. When F; wants to access resource, it sends a message
(request,T;, i) to all other processes and it also stores the
message in q[i].

— 2. When P; receives (request, T, 1), it does the following:
(a). If P, is currently in its critical region, it defers sending
a REPLY message.

(b). If P; is not waiting to enter its critical region, it sends
(reply, T}, 7) to P

(c). If P;is waiting to enter its critical region and if the
incoming message follows P;’s request, then it stores this
message in g[i| and defers sending a REPLY message.
(d). If P;is waiting to enter its critical region and if the
incoming message precedes P;’s request, then it stores this
message in ¢[¢| and sends (reply, T}, j) to P.

— 3. When P, receives (reply,Tj, ) for all P;, it can access
a resource.

— 4. When P, exits from the critical region, it sends (reply, T;, 1)
to all pending processes (i.e. process sends a request mes-
sage and is waiting).



e Question: to guarantee mutual exclusion, how many mes-
sages are required with this new solution?

This new solution was proposed by Ricart and Agrawala (1981).



7. A Token-Passing Approach

e Token: an entity which is held by one process at any time.

e Whichever process holds the token can enter its critical region
(without asking any permission); when it leaves its critical re-
gion, it passes the token to another process.

e Algorithm:



e Question: to guarantee mutual exclusion, how many mes-
sages are required with this solution?

This solution was proposed by Suzuki and Kasami (1982).



8. Some Famous Distributed Algorithms

e Leadership Election:

— 1. Each process has a unique ID known to all members.
— 2. The process with the highest ID is the leader.
— 3. Any process may fail at any time.
e Algorithm 1—The BULLY election algorithm:
all process do the following
— 1. P notices there is no reply from the coordinator.

— 2. P sends an elect message to all processes with higher
[Ds.

— 3. If there is any reply then P exits.

— 4. If there is no reply then P wins, obtains any state needed
to function as a leader, then sends a coordinator message
to all processes.

— 5. On receipt of an elect message a process must both
reply to the sender and start an election if it is not already
holding one.



e Algorithm 2—A ring-based election algorithm:
all process do the following

— 1. P notices the coordinator is not functioning.

— 2. P sends an elect message containing its own ID to the
next process in the ring.

— 3. On receipt of an elect message
a without the receiver’s ID — add this ID and pass on the
message.
b with the receiver’s ID (the message has been round the
ring)—send a message (coordinator, highest ID in the
message) around the ring.



