
CSCI 460—Operating Systems

Lecture 4

Memory Management–recent systems

Textbook: Operating Systems

by William Stallings

1



1. Paging (Paged memory allocation)

• Does a program have to be resided completely and contiguously

in the main memory for execution? NO!

• IDEA: Dividing an incoming job into memory blocks (frames)

of equal size, which are called pages.

• To execute a program, Memory Manager must do the following

– 1. Decide # of pages in the program.

– 2. Have enough empty page frames in main memory.

– 3. Load all the program’s pages into them.

• Advantage

– 1. Memory is certainly used efficiently.

– 2. No external fragmentation.

– 3. Almost no internal fragmentation.

• Drawback? Overhead is increased significantly. An OS nowa-

days has to be designed by experts and by substantial team-

work.



• How do we manage paging?

– 1. Job Table.

– 2. Page Map Table (for each job).

– 3. Memory Map Table.



• What if we have a goto statement?

• Offset (displacement) of a line is the factor used to locate that

line within the page frame.

• Intuitively, offset represents how far away a line is from the

beginning of its page.



• In general, the following is the method to handle a goto state-

ment (or to access any special line).

– 1. Using the previous arithmetic computation to

compute page # and displacement of the line.

– 2. Look up this job’s PMT to find the page frame

which contains this page.

– 3. page frame address = page frame num * page size

– 4. instruction address = page frame address +

– displacement.



• Advantage of paging.

– 1. Job is stored non-contiguously in memory.

– 2. No external fragmentation.

• Disadvantage of paging.

– 1. Overhead.

– 2. Internal fragmentation still exists.

– 3. Page size too small → PMT’s have large size.

– 4. Page size too large → internal fragmentation increases.



2. Demand Paging

• Demand paging only loads a part of a program into memory

for running.

– 1. Jobs are still decomposed into equally sized pages.

– 2. Jobs are initially stored in secondary memory.

• Why demand paging is feasible?



• Demand paging allows a user to run jobs with less main

memory (this is the idea of virtual memory: the user would

feel that the physical memory is almost infinite, though it is

not the case in reality).



• Page Map Table (PMT) needs to be modified.



• How does the computer fetch an instruction?

– 1. Start processing instruction

– 2. Generate data address

– 3. Compute page number

– 4. If page is in memory

– then

– get data and finish instruction

– advance to the next instruction

– return to step 1

– else

– generate page interrupt

– call page interrupt handler



• Algorithm: Page Interrupt Handler

– 1. If there is no free page frame

– then

– select page to be swapped out using

– a page removal algorithm

– update job’s Page Map Table

– if content of page had been changed

– then write page to disk

– 2. Use page number (step 3 of the previous

– algorithm to get disk address where

– page is stored (the File Manager, to

– be discussed later, uses the page

– number to get the disk address)

– 3. Read page into memory

– 4. Update job’s Page Map Table

– 5. Update Memory Map Table

– 6. Restart interrupted instruction



• Although demand paging is a solution to inefficient memory

utilization, it does not solve all the problems

• Thrashing: if a large amount of page swapping is performed,

the system efficiency is affected.

• Page fault: a failure to find a page in memory.


