CSCI 460—Operating Systems

Lecture 5

Memory Management—recent systems (cont.)

Textbook: Operating Systems
by William Stallings
1. Demand Paging (continued)

- How do we swap a page out of memory?
- FIFO (First In First Out).
 FIFO removes the page that has been in the memory the longest.

- LRU (Least Recently Used).
 LRU removes the page that shows the least sign of recent usage.

- MRU (Most Recently Used).
 MRU removes the page that shows the strongest sign of recent usage.
• LFU (Least Frequently Used).
 LFU removes the page that shows the least amount of recent usage, over certain period of time.

• How do we make use of the PMT (Page Map Table)?

• How to improve the performance of demand paging?
 – Working set: a set of pages in memory which do not need to be swapped out back and forth.
 – However, identifying working set is not easy.

• Summary
 – 1. Virtual memory is introduced.
 – 2. Utilizes memory more efficiently.
 – 3. Overhead is heavy.
2. Segmented Memory Allocation

• Both of the paging algorithms divide a job into physically equal-sized pages, which might cause serious problems in reality.

• The idea of segmented memory allocation algorithm is to divide job into logical segments.

• Memory is consequently divided into page frames with different sizes → external fragmentation reappears.

• For each job we associate it with a Segment Map Table (SMT).
• Similar to paging we need to maintain the following data structures: Job Table, Segment Map Table and Memory Map Table.
 – 1. Job Table lists every job in process.
 – 2. Segment Map Table lists details about each segment.
 – 3. Memory Map Table monitors the allocation of main memory.

• How to access a specific instruction? You still need to locate SEGMENT NUMBER and DISPLACEMENT.
3. Segmented/Demand Paged Memory Allocation

- IDEA: Divide each segment further into pages of equal size. Hence we need the following 4 data structures:

 1. Job Table lists every job in process.
 2. Segment Map Table (for each job) lists details about each segment.
 3. Page Map Table (for each segment) monitors the pages associated with each segment.
 4. Memory Map Table monitors the allocation of main memory.
• Now we can move pages at will between main memory and second memory — Virtual Memory.

• Advantage of Virtual Memory.
 – 1. Job size has almost nothing to do with size of memory.
 – 2. Memory is used more efficiently.
 – 3. External fragmentation is eliminated and internal fragmentation is minimized.
 – 4. Sharing of code/data is possible.
 – 5. Dynamic linking of program segments is facilitated.

• Disadvantage of Virtual Memory.
 – 1. Hardware cost is increased.
 – 2. Overhead (for paging interrupts) is increased significantly.
 – 3. High cost for preventing thrashing.

• End of Memory Management. Before we say that, how does UNIX memory management work?
4. Why buddy system?

- In real systems, a page is usually of size 2^a — a power of 2.
- A combination of dynamic partition and paging.
- Allocation algorithm
 - 1. Take a free block B_i.
 - 2. If the job requests more than 50% of B_i, allocate B_i to the job. Otherwise break B_i into two blocks B_{i1}, B_{i2} with equal size and proceed recursively on B_{i1}.
- Deallocation algorithm
 - 1. Take a block B_i to be released.
 - 2. If the buddy of B_i (i.e., shares the same parent and has the same size as B_i), B_j, is free, then combine B_i, B_j into a free block B_k with twice of the size.
 - 3. Recurse on B_k.