
CSCI 418— Operating Systems

Lecture 6

Processor Management, part 1

Textbook: Operating Systems
by William Stallings

1

1. Basic Concepts

• Processor — is also called CPU (Central Processing Unit).

• Process — an executable program, also called task, activity.

• Job — a unit of work that is submitted by the user. A job is

composed a set of processes.

• Processor management for a single-user system is easy: set a

job either idle or busy.

• Multiprogramming — many users with many jobs on the same

system.

• Processor management can be further divided into two parts:

Job scheduler which is at a high-level and Process sched-

uler which is at a low-level.

• We will mainly focus on process scheduler.

2. Process Scheduler

• Process scheduler assigns the CPU to execute the processes

of those jobs placed in the READY queue by the Job Sched-

uler.

• There are 2 classes of jobs: I/O-oriented and CPU-oriented.

• Each process in the system is represented by a data structure

called Process Control Block (PCB).

• PCBs are usually linked into queues.

• What makes a good scheduling policy?

– 1. Maximize throughput: running as many jobs as pos-

sible in a fixed period of time. /* running short jobs or jobs

with no interrupts */

– 2. Minimize response time: satisfying interactive re-

quests. /* running only interactive jobs, letting batch jobs

wait */

– 3. Minimize turnaround time: moving entire jobs in

and out of the system quickly. /* running batch jobs first

*/

– 4. Minimize waiting time: moving jobs out of READY

queue as quickly as possible. /* reducing the number of

users */

– 5. Maximize CPU efficiency: keeping CPU busy 100%

of the time. /* running only CPU-bound jobs */

– 6. Ensure fairness for all jobs: giving each job an equal

amount of CPU and I/O time. /* disregarding priority */

• Preemptive scheduling policy: A scheduling strategy

that interrupts the processing of a job and transfers the CPU

to another job.

• Nonpreemptive scheduling policy: A scheduling strat-

egy that does not allow external interrupts.

3. Scheduling Algorithms

• First Come First Serve (nonpreemptive)

– 1. The earlier the jobs arrive, the sooner they are served.

– 2. No WAIT queue is needed (as there is no interrupt).

• Shortest Job Next (nonpreemptive)

– 1. Does not work in an interactive system.

– 2. SJN is optimal when all the jobs are available at the

same time and CPU times are estimated accurately.

• Priority Scheduling (nonpreemptive)

– 1. One of the most common methods used in batch systems.

– 2. High-priority jobs will be run first, tie is broken by ar-

riving time.

– 3. It is usually hard to set priorities. Non-technical

factor: position, fee. Technical factor: Memory re-

quirements, # of peripheral devices, total CPU time, time

in system (aging).

• Shortest Remaining Time (preemptive)

– 1. CPU time is divided into small fragments.

– 2. SRT will try to finish the job closest to completion.

– 3. Not suitable for interactive systems.

– 4. Context switching: When a job is preempted, all its

running information must be kept.

• Round Robin (preemptive)

– 1. CPU time is divided into small fragments (slices).

– 2. Suitable for interactive systems.

– 3. First come first serve.

– 4. Slices too large → FCFS.

– 5. Slices too small → too much context switching.

• Highest Response Ratio Next (Nonpreemptive)

– 1. Objective: run jobs to minimize (turnaround time/service time)-

ratio.

– 2. As both turnaround time and service time cannot be

known in advance in most situations, we approximate them

based on past history (especially when the job takes several

slices to run).

– 3. Approximate ratio R = (waiting time+expected service time)
expected service time

.

– 4. Aging → a job has a long waiting time → it’s ratio R

gets bigger → it will get serviced earlier.

• Multi-level Queues

• It is a combination of some of the previous algorithms.

• Example: in a system which handles both batch and interac-

tive jobs, we have a background queue for the first one and a

foreground queue for the latter ones.

• How do we switch queues? How fair is this?

– 1. No movement between queues. Good for high-priority

jobs. High-priority queue empties first.

– 2. With movement between queues. Feedback Schedul-

ing: Divided CPU time into slices and once a job is in

system its priority is disregarded — it can be preempted

and moved to the end of the next lower queue. This

is the fairest if the jobs are divided into CPU-bound and

I/O-bound. Good for I/O-bound jobs.

– 3. Movement between queues with variable time slices.

Highest-priority queue get time slices t. Second highest-

priority queue get time slices 2t. A job in system

can be preempted and moved to the end of the next lower

queue. Good for CPU-bound jobs. It also handles aging

well.

