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Abstract 

Shared-memory multiprocessors are frequently used in a time- 
sharing style with multiple parallel applications executing at the 
same time. In such an environment, where the machine load is 
continuously varying, the question arises of how an application 
should maximize its performance while being fair to other users 
of the system. In this paper, we address this issue. We first show 
that if the number of runnable processes belonging to a parallel 
application significantly exceeds the effective number of physi- 
cal processors executing it, its perfomlance can be significantly 
degraded We then propose a way of controlling the number of 
nmnable processes associated with an application dynamically, to 
ensure good performance. The optimal number of runnable pro- 
cesses for each application is determined by a centralized server, 
and applications dynamically suspend or resume processes in or- 
der to match that number. A preliminary implementation of the 
proposed scheme is now running on the Encore Multimax and we 
show how it helps improve the perfomlance of several apphca- 
tions. III some cases the improvement is more than a factor of 
two. We also discuss implications of the proposed scheme for 
multiprocessor schedulers, and how the scheme should interface 
with parallel programming languages. 

1 Introduction 

The computing environment we consider in this paper is that of 
a multiprogrammed shared-memory multiprocessor, with multiple 
simultaneously running parallel applications. There are several 
commercially available parallel systems that support such an en- 
vironment, including machines from Alliant. Encore, and Sequent. 
In these environments, where the number of running applications 
is continuously changing, the issue arises of how an application 
should maximize its performance. We have observed that the per- 
formance of parallel applications degrades when the number of 
processes associated with all applications exceeds the total num- 
ber of available processors. One possible reason for the degrada- 
tion in performance is the preemption of processes while they are 
executing within a spinlock-controlled critical section. In such 
a situation, other processes may be wasting processor resources 
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just SpiMkIg, waiting to enter that critical section. Other possi- 
ble reasons for degradation include the overhead of unnecessary 
context switching, and the problem of processor cache corruption 
when several processes are being multiplexed on a given processor. 
Consequently, we would like the number of runnable processes in 
all applications not to exceed the number of processors in the 
machine. 

Ensuring that the number of processes does not exceed the num- 
ber of processors is trivial when there is only a single user, as he 
can make sure that the application spawns the right number of 
processes. A variation that is allowed by some machines and op- 
erating systems is that the user can ask the OS for some number of 
processors. If that many are available, the OS grants them to him, 
giving him the appearance of a personal machine with that many 
processors. For example, a BBN Butterfly can be divided into 
multiple independent clusters [3_]. Many of the message-passing 
hypercube computers also work this way [I]. However, such a 
scheme is potentially wasteful of resources, since applications will 
not be able to utilize processing resources that may become avail- 
able if the system load decreases at a later time. Ideally, we 
would like an application to be able to use all processors in the 
system if it is the only application running. As more applications 
start running, the number of processors available for this applica- 
tion decreases. Correspondingly, the application should reduce its 
number of runnable processes. Similarly, when other applications 
finish and more processors become free, the application should be 
capable of increasing its number of runnable processes to use the 
extra processors. 

In this paper we present preliminary results from a system that 
permits control of the number of runnable processes as described 
above. The system runs on an Encore Multimax under the UMAX 
operating system. The panallel applications are written using the 
Brown University Threads package [6]. We have modtied the 
threads package so that it contains the code for controlling the 
number of runnable processes. This has been done iu a way 
such that the process control is totally transparent to the appli- 
cations programmer. In addition, we have implemented a server 
that communicates with the OS kernel to detemnne how many 
processes each application should have. The applications period- 
ically communicate with the server to check how many processes 
they should have ruunable, and at suitable times increase or de- 
crease the number of processes they do have runnable. We have 
tested the system with several applications. In many of the test 
cases the applications execute more than twice as quickly when 
our modified threads package is used. 

A couple of notes on terminology. In this paper, the term pro- 
cess is used to refer to both lightweight and heavyweight pro- 
cesses that are preemptively scheduled by the kernel. We as- 
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sume that multiple processes can share memory. For heavyweight 
processes this could be implemented with distinct addiress spaces 
that are overlapped through virtuaI memory (e.g., Unix System 
V and UMAX processes with explicitly shared memory), while 
for lightweight processes the shared memory is obtained by using 
the same address space (e.g., Mach kernel “threads” and V-System 
processes). The other term we frequently use in the paper is tusks. 
We consider the computation associated with a parallel application 
to be divided into small chunks, each of which may potentially 
execute in parallel. These chunks of parallel computation are 
called tasks. Tasks are assigned to processes in a co:routine-like 
manner for execution by user-level code, and over its lifetime, 
a single process may be responsible for the execution of several 
tasks. An example of this notion of tasks is user-level threads as 
implemented in the Brown University Threads package. 

The rest of the paper is structured as follows. Iu Section 2, 
we describe the problem of process preemption in detail and dis- 
cuss some of its effects on application performance. S,ection 3 de- 
scribes related work and discusses why a new solution approach is 
needed. In Section 4, we discuss our scheme for avoiding process 
preemption by dynamically controlling the number of processes 
each application uses. Section 5 describes our implementation of 
this scheme in detail, and Section 6 presents performance data 
gathered from the implementation. Finally, in Sections 7 and 8, 
we discuss some of the directions we pIan to explore i.n the future 
and present our conclusions. 

2 The Problem Description 

When several parallel applications are concurrently executing on a 
moderately-sized parallel machine, processes often must contend 
for processors. In order to fairly handle the excess number of pro- 
cesses, the processors are multiplexed between the processes, pe- 
riodically preempting executing processes and scheduling waiting 
processes. A process is usually preempted due to the expiration 
of its time quantum, which occurs independently of the section of 
code the process is executing. Excessive preemption of processes 
can result in inefficiency from many sources, including time spent 
waiting for a suspended process to leave a critical section, time 
wasted in context switching, and inefficient cache bebavior. 

Figure 2 shows what can happen when a parallel application’s 
processes must contend for processors. The data is gathered from 
an Encore Multimax with 16 processors. The graph sh.ows the per- 
formance of two simultaneously executing parallel applications, a 
matrix multiplication and a one-dimensional FFT. Each application 
breaks its problem into a number of tasks, which are scheduled 
onto the processes executing that application. The lignre shows 
the speed-up for the applications as the number of processes ex- 
ecuting the tasks in each application is varied from 1 to 24. For 
example, we see that when both applications are started simulta- 
neously with 24 processes each, the speed-up obtained by matrix 
muhiplication is 2.8-fold and that for FFT is 2.4-fold. 

Figure 2 shows that the performance of both applications wors- 
ens considerably when the number of processes in each appli- 
cation exceeds 8 and thus the total number of processes in the 
system exceeds the number of processors. Furthermore, the larger 
the number of processes the worse the performance gets, since 
it takes longer for preempted processes to be rescheduled. This 
is because unscheduled processes are placed on a FIFO queue, 
and the more unscheduled processes there are, the longer it takes 
for a preempted process to get to the front of the queue and be 
rescheduled. We also note that while an increasing number of 
running processes in a parallel application can often increase lock 
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Figure 1: Speed-up when a matrix multiplication application and 
an FFT application rue run simultaneously and the number of pro- 
cesses per application is varied 

contention, this is not the reason for performance degradation seen 
in Figure 2. Since only scheduled, running, processes can contend 
for a lock, the contention when the number of processes exceeds 
the number of processors will be equivalent to the contention when 
the number of processes equals the number of processors. 

The decreased performance in parallel applications when the 
number of processes in the system exceeds the available number of 
processors can be attributed to several problems. These problems 
include the following: 

Processes may be preempted while inside spinlock-controlled 
critical sections. When this occurs, other processes execut- 
ing the same application may end up waiting to enter that 
critical section, busy-waiting until the preempted process is 
scheduled for execution. While the chance of a process be- 
ing preempted while inside a critical section is small if that 
critical section is small, the amount of time that may be 
spent waiting for the preempted process to be rescheduled is 
potentially very large. The problem is worst in fine-grained 
systems, where critical sections are entered frequently and 
are fairly large relative to the grain size. 

Similar problems can arise between producer and consumer 
processes of an application. While a producer process is 
suspended, the consumer process may be scheduled to nm 
on a processor only to realize that there is nothing for it 
to do. Depending on how the synchronization between the 
producer and consumer processes is implemented, this can 
result in many wasted CPU cycles. 

The frequent context switching that goes on when the num- 
ber of processes greatly exceeds the number of processors is 
another source of performance degradation. Aside from the 
problem of corrupted caches (discussed below), a context- 
switch involves a number of system-specific operations (sav- 
ing and restoring registers, switching address spaces, etc.) 
that do no real work. 

Finally, a major source of performance degradation for high- 
performance multiprocessors is processor cache corruption. 
When a processor is interleaved between multiple applica- 
tions, much of the data from previously scheduled appli- 
cations will be purged from the cache on each time slice. 
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By the time the old application is schcdulcd again, it will 
have to refetch its entire working set into the cache. Given 
that the cache miss penalty for remote accesses for some of 
the scalable multiprocessors currently b&g designed (e.g., 
the Encore Ultrarnax using the Motorola 88000 [17] and the 
Stanford multiprocessor using the MIPS R3000 [ 111) will be 
50-100 processor cycles, the perfonance degradation may 
be a factor of 10 or more. 

In summary, serious performance degradation may occur when 
several parallel applications with a large number of processes are 
run on a multiprocessor. This will be especially true for appli- 
cations which exploit parallelism at a tile granularity and for the 
new generation of scalable multiprocessors with very high cache- 
miss penalties. Consequently, one needs to be very careful in how 
application processes are scheduled onto processors, and efforts 
should be made to have the same process run on a processor for 
a long time. 

3 Related Work 
Since multiprocessors have become widely available only recently, 
not much research has been done in the past to address the issues 
raised in the previous section. We now briefly discuss some of 
the multiprocessor scheduling strategies others have proposed that 
attempt to address at least some of the problems involved. 

The first one we consider is called coscheduling. It was 
proposed by Ousterhout [14] for the Medusa OS for the Cm* 
multiprocessor. In coscheduling, the multiprocessor scheduler 
is modified so that all runnable processes of an application are 
scheduled to run on the processors at the same time. Similarly, 
when an application is preempted, all of its processes are pre- 
empted, so processes will not be wasting processing resources 
busy-waiting. Effectively, the system context switches between 
applications, running all processes from one application for a time 
slice, then all processes from a second application for a time slice, 
and so on. While coscheduling handles the problems associated 
with spinlock-controlled critical sections and those with producer- 
consumer processes well (points 1 and 2 in the previous section), 
it does not reduce the overhead due to context switching or the 
degradation due to processor cache corruption (points 3 and 4). By 
the time an application is rescheduled on the system, the caches 
will probably not contain any of its data. In all fairness, though, 
we point out that processors in the Cm* machine did not have 
caches, so cache corruption was not an issue. 

The second scheduling strategy that we consider is due to Za- 
horjan et al [ 181 from the University of Washington. They propose 
a smart scheduler for their threads package that avoids preempt- 
ing processes when they are inside critic‘al sections, and avoids 
rescheduling busy-waiting processes while a process inside a lock 
is suspended. In this approach when a process enters a critical 
section it sets a special flag, and the scheduler has been modified 
so that it will not preempt a process with this flag set. When the 
process leaves the critical section it resets the flag. While this 
scheme quite nicely prevents processes from being preempted in- 
side a critical section, some of its weaknesses are the following. 
It has undesirable protection properties, in that it allows user pro- 
cesses to directly control the behavior of the scheduler. It makes 
incorrect decisions for some frequently occurring situations that 
arise in parallel applications. For example, it is common to have 
a hash table data structure with separate locks per bucket. It is 
reasonable in such applications to have many processes accessing 
different buckets in the hash table while hoIding the correspond- 
ing distinct locks. This scheme will prevent all of these processes 

from being preempted, even though they are not dependent on 
each other in any way. Finally, as in the case of coscheduling, this 
scheme does not address the issues of reducing context-switching 
overhead and reducing perfomuurce degradation due to processor 
cache corruption. 

A third approach that combines facets of the previous two was 
proposed by Edler et al [7] at the NYU Ultracomputer project. In 
this proposal, processes can be fomred into groups. The schedul- 
ing policy of a group of processes can be set so that either the 
processes are scheduled and preempted normally, or all processes 
in the same group are scheduled and preempted simultaneously (as 
in coscheduling), or processes in the group are never preempted. 
Also, an individual process can prevent its own preemption, inde- 
pendent of the scheduling policy of its group. This can be used 
to implement spinlock flags. While this approach is more flexible 
than the ones previously described, it also does not address the 
problems of cache corruption and context-switching overhead. 

Finally, we consider some recent work from the University of 
Washington by Lazowska and Squillante [12] that evaluates the 
performance of several multiprocessor scheduling policies. The 
policies they consider rely on the “affinity” of a process for a pro- 
cessor, where the affinity is based on the contents of the proces- 
sor’s cache. The key idea is that a process should be scheduled on 
the processor on which it last executed (before being preempted), 
where hopefully a large fraction of its working set is still present 
in the processor’s cache. However, if this policy is strictly fol- 
lowed it can lead to load imbalance, as processes are not allowed 
to migrate from busy processors to idle ones. Consequently, La- 
zowska and Squilhmte propose variations on the basic policy and 
evaluate the perfomlance of the variations using queueing theory 
models. While the proposed approach helps in reducing cache 
corruption effects, it does not address the other problems that we 
discussed in Section 2. Furthermore, since the proposed policies 
have not been implemented yet, it is difficult to predict what the 
performance benefits will be in realistic situations. 

4 The Proposed Solution 

Unlike the solutions described in the previous section, our ap- 
proach to the problem is based on the hypothesis that applications 
perform best when the number of runnable processes is the same 
as the number of processors. This hypothesis is suggested by ex- 
periments like the one shown in Figure 2, and is what we would 
like to validate in this paper. Intuitively, our approach is simi- 
lar to that of a virtual memory machine, where the system works 
efficiently and avoids thrashing if the total number of pages in 
all running processes’ working sets does not exceed the available 
physical memory. 

The most important part of our solution is that applications 
should dynamically control their number of runnable processes 
to match the number of processors available to them. Once this 
is achieved, each runnable process will have its own processor. 
There will be no reason for preemption, the time spent context 
switching will be negligible, and there should be no degradation 
due to corruption of caches. Also, unlike coscheduling, spinlock 
flagging, and processor affinity schemes requiring kernel modifi- 
cations, our method can be implemented entirely in user space. 
Of course, this description leaves many questions unanswered. 
Among them are how the number of processes in a running ap- 
plication can be varied, how the ideal number of runnable pro- 
cesses for each application should be determined, and how the 
real number of runnable processes should be made to match the 
ideal number. We divide the various issues into two categories, 
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application-related issues and system-related issues, and consider 
them in that order. 

4.1 Application-Related Issues 
Before going into the mechanisms of process control, we need 
to discuss the question of when it is safe to limit the number 
of mnnable processes in an application by suspending a process. 
By safe, we mean without potential starvation, loss of data, or 
significant loss of efficiency. A process can be safely suspended 
if and only if we can guarantee that either the results from the 
task it is executing will not be needed by the application until 
the process can be resumed. or that the task can be executed by 
some other process if necessary. For the general class of parallel 
applications, it can be difficult to determine when a process can 
be safely suspended. 

Fortunately, for a slightly more limited class of parallel appli- 
cations, the problem is much simpler. If an applicaition can be 
broken up into a number of tasks (as defined in Section 1). where 
processes select tasks from a queue and execute them, then a pro- 
cess can be safely suspended after it has finished executing a task 
(or has put it back on the queue) and before it has selected an- 
other task to execute. As long as the application does not depend 
on having a certain number of processes executing, the number 
of processes can be varied without problems. We note that such 
task-queue based mo&ls are widely used to implement parallel 
apphcations on shared-memory architectunzs, so the restriction is 
not serious. For example, one can find several programming lan- 
guages based on the task-queue model [3, 8, lo]. and consequently 
all programs w&ten in them follow the model. Similarly, most 
applications written using threads packages [6] follow this model, 
and also many independently written applications follow the task- 
queue model [9, 1.5, 161. The task-queue model provides an easy 
way to achieve load balancing in shared-memory multiprocessors, 
and hence its popularity. 

At this point in our implementation, we have only added pro- 
cess control support for applications written using threads pack- 
ages. Our reason for doing so is that several operating systems 
provide libraries that implement threads for the application pro- 
grammer. These packages give the programmer a few commands 
for creating and destroying threads and controlling access to data 
shared between threads, and hide the rest of the details from the 
application. One such library is the Brown University Threads 
package [6]. The implementation results we present in Section 5 
are based on the Brown system.’ 

With applications written using threads packages, the appli- 
cation programmer breaks parts of his problem up into threads 
(which correspond to our “tasks”). When the application is started, 
some user specified number of processes are created to execute the 
threads. As the execution proceeds, the processes pick up threads 
for execution from a task queue. As the result of executing a thread 
of control, that thread may decide to add new threads to the task 
queue. The application ends when there are no more threads to 
execute. As an example of how process control would work us- 
ing threads, consider an application that generates four threads. If 

‘Another, similar, package is Mach’s C-Threads package [5]. Under 
C-Threads, though, a new process is normally created whenever a thread is 
created. and killed when it finishes executing that thread. While C-Threads 
does have a mechanism for limiting the total number of processes used 
by an application, the paradigm of having a one-to-one correspondence 
between threads and processes does not work well with process control, 
where the number of proccs,ses must be independent of the number of tasks 
to be executed. For this reason, we did not use the C-Threads package for 
our implementation of process control. 

four runnable processes are used to execute the code, each thread 
can be executed on a process at the same time. Now suppose 
the system load increases so that the application should be limited 
to three runnable processes. Then, if one of the threads blocks, 
the process executing it can be safely suspended after queueing 
the partially executed thread. After another thread finishes ex- 
ecuting, the process that was running the completed thread can 
now dequeue and finish executing the suspended thread. Thus, 
the application programmer can write his code independently of 
the number of processes and processors that will be executing that 
code. 

4.2 System-Related Issues 

For our implementation, we divided the task of controlling applica- 
tion processes into two ptis: (i) determining how many runnable 
processes each application should have, and (ii) restricting each 
application to the appropriate number. The functionality of each 
part could be put in the kernel, distributed among the applications, 
or placed in a user-level centralized server process. We now eval- 
uate some of these options. 

In order to determine the number of processes each application 
should have runnable, we need to know the number of processors 
in the system, the number of runnable processes used by appli- 
cations that cannot be controlled, and the number of applications 
we are controlling. Implementing this functionality outside of the 
kernel in a centralized user-level server necessitates kernel system 
calls to determine information about process status. However, dis- 
tributing this functionality among the applications requires even 
more of these system calls, one for each application for each up- 
date interval. The kernel approach, on the other hand, requires 
extending the kernel. 

For our current implementation, we have chosen to use the 
centralized user-level server approach. We experimented with the 
decentralized approach and found it to be too inefficient for our 
purposes. It also introduced stability problems that appeared to be 
only solvable with expensive communication protocols. Finally, 
in the short run, we did not want to modify the kernel, and the 
centralized server approach was found to be adequate. The results 
in Section 6 are based on this approach. In the long term, however, 
we think it will be necessary to modify the kernel. We discuss our 
ideas about kernel mocliications and multiprocessor scheduling in 
Section 7. 

To control the number of runnable processes in each applica- 
tion, the controller must be able to suspend and resume those 
processes. A user-level centralized server cannot do this, since it 
has no control over processes it has not spawned, aside from inter- 
process communication. That control must either come from the 
kernel or from the application itself. The problem with controlling 
the number of runnable processes from the kernel is that it is diffi- 
cult for the kernel to determine when a process can be suspended 
safely; it needs infomlation from the application to detelmtie this. 
Letting the application suspend and resume processes is simpler 
and more efficient, and is the approach we have taken. We further 
note that since the scheduling and descheduling of threads from 
the task queue is managed by the threads package library rather 
than by the applications programmer, it is possible to implement 
the safe suspension and resumption of processes totally transpar- 
ently to the user. We have actually done this, and the details are 
presented in the following section. 
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kernel 

Figure 2: Basic structure of the server-based scheme. 

5 Implementation 
In our current implementation we have chosen to use a central- 
ized user-level server to help determine how many processes an 
application should have. The code for controlling the number of 
processes in an application has been embedded into a version of 
Brown University’s Threads package, running on a 16 processor 
Encore Multimax with a variant of 4.2 BSD Unix called UMAX. 
The UMAX operating system provides interprocess communica- 
tion through sockets, and also provides a system call for detennin- 
ing information about the runnable processes in the system. Both 
of these features were necessary to our implementation, though 
they could be replaced by similar features on other systems if we 
were to port our scheme to another machine. 

The overall structure of our scheme is shown in Figure 5. It con- 
sists of a central server, and some number of processes partitioned 
in various ways. To determine the number of runnable processes 
that each controllable application should have, the server period- 
ically calls the kernel and gets a list of all runnable processes. It 
first determines the number of xunnable processes not belonging 
to controllable applications. It then subtracts this from the number 
of processors in the system, to detemline the number of proces- 
sors available for the use of the controllable applications in the 
system. It then partitions these processors among the applications 
fairly in order to determine the number of runnable processeseach 
application should be using. Special provisions are made so that 
an application will not be “assigned” more processors than it can 
use; that is, the server makes sure that the number of runnable 
processes it thinks a given application should have does not ex- 
ceed the total number of processes the application has. It also 
ensures that each application has at least one runnable process to 
avoid starvation. 

For example, assume the system has the runnable processes and 
applications shown in Figure 5, and further assume the machine 
has 8 processors. The central server will determine that 2 proces- 
sors are being used by uncontrollable applications, and proceed 
to distribute the other 6 among the three controllable applications. 
Given that all three have the same priority, each of them gets two 
processors. The first application with only 2 processes need not 
suspend any processes as it has 2 processors available, but the 
other two applications will have to suspend one process each to 
avoid context switching. As applications are created or completed, 
this process is repeated. 

The direct control of the number of runnable processes of an 
application is performed by individual processes in that applica- 
tion. As each controllable application begins execution, the root 
process of the application sends a message to the central server no- 
tifying the server of the application’s existence, and further telling 
it the process ID of the root process. This process ID is used 
to determine which processes belong to the application, by com- 
paring it with each process’ parent process ID. (It also indirectly 
helps the server determine the number of runnable processes not 
belonging to a controllable application.) The application then be- 
gins execution, and periodically a process in the application polls 

the sewer to determine the number of processes it should ideally 
have runnable. This 
rent implementation. 4 

olling is done every 6 seconds in the cur- 
The application then receives and stores 

this information, and whenever a process in the application enters 
a section of code where it may safely suspend itself. it compares 
this number with the actual number of runnable processes in the 
system. If the ideal number is less than the actual number, the 
process suspends itself; if the ideal number is greater than the ac- 
tual number, the process wakes up a previously suspended process. 
The suspension is done by having the process wait for a signal that 
will not ordinarily be generated by the system; the resumption is 
done by sending that signal to a waiting process, kept on a queue. 
If processes enter sections of code where they may be safely sus- 
pended fairly often, the actual number of runnable processes will 
approach the ideal number of runnable processes fairly rapidly, 
and will stay fairly close to it as circumstances change the ideal 
number. 

The process control mechanisms in the threads package are 
actually hidden from the application programmer. The interface 
to the threads commands was not changed when process control 
was added. The process monitoring, suspension, and resumption, 
is done when the application returns control to the threads package 
when a thread is suspended or has finished execution. This lets 
almost all applications written using the threads package run using 
process control without any modifications whatsoever. 

6 Results 
In this section we present preliminary results from our implemen- 
tation on the 16 processor Encore Multimax. The results are for 
several applications under a variety of system load conditions. All 
of the applications are implemented using the Brown University 
Threads package. The applications considered are the following: 

f f t A parallel single-dimension Fast Fourier Transform, based 
on an algorithm by Norton and Silberger at IBM Yorktown 
Heights [13]. This FFT algorithm has several loops that were 
broken into parts to provide parallelism. 

sort A parallel merge sort algorithm, simultaneously sorting a 
number of small lists of numbers with heapsort, and then 
merging pairs of sorted lists iu parallel until the final sorted 
list is achieved. 

gauss A parallel Gaussian elimination algorithm. The solution 
is computed using partial pivoting and back substitution, and 
the row elimination is parallelized. 

matmul A simple matrix multiplication algorithm. The multipli- 
cation is parallelized by splitting the multiplicand by rows. 

2The interval of 6 seconds was chosen without much experimentation, 
and another choice might result in better performance. The 6 second in- 
terval was an attempt at balancing the overhead of process suspension and 
resumption against the overhead of having too few or too many nmnable 
processes. 

163 



J.0 I I I I I 
0 8 16 24 32 40 48 

number of processes 

8.0 
t 

16 24 32 40 48 

number of processes 

cL 16.0 

3 I a I I I 1 8 1 
3 12.0 

8.0 

4.0 

0.0 

-G uncontrolled 
G-G controlled 

0 8 16 24 32 40 48 

number of processes 

sort 

ii:-t:‘i 

8.0 
t 

number of processes 

Figure 3: Comparison of speed-up as the number of processes is 
varied with and without process control in effect. 
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Figure 4: Execution profiles for fft, gauss, and matmul ap- 
plications, each started with 16 processes, beginning execution at 
different times but overlapping with each other. 

Figure 6 shows the performance of the four applications de- 
scribed above. For each application we plot the speed-up as the 
number of parallel processes is increased. Two curves are shown 
for each application: (i) the dashed line shows the implementa- 
tion of the application on top of the original, unmodified Brown 
Threads package, and (ii) the solid line corresponds to the imple- 
mentation on top of our modified threads package that controls 
the number of processes. We would like to make the following 
observations. First, as expected, for each application the speed- 
up increases up to 16 processes, which is equal to the number of 
processors. Second, note that the dashed and the solid curves are 
almost identical up to 16 processes. This means that the overhead 
of our implementation is negligible, at least in cases where no 
reduction in the number of processes is necessary. Third, beyond 
the 16 process point, the speed-up with the unmodified threads 
package is signiticantly worse than that with ours. In fact, the 
huger the number of processes, the more the difference. The rea- 
son is that a process that is suspended within a critical section 
uakes a longer time to get rescheduled if the number of runnable 
processes is larger. 

While Figure 6 showed results when only one application was 
running on the system, a more realistic case is when there are sev- 
eral applications running concurrently. Figure 6 shows the rest&s 
when three applications execute at the same time, both with and 
without process control. The applications were started at intervals 
of 10 seconds, each with 16 processes. As is clear from the figure, 
the wall clock time to execute the f ft and gauss applications is 
much longer without process control than with it. By using pro- 
cess control, we are greatly increasing the performance of these 
applications. The time for the matmul is also increased, but not 
by a large amount. This is somewhat surprising because when 
matmul starts up under the uncontrolled version there are a total 
of 48 processes, and the performance for matmul under those 
conditions is pretty bad as shown in Figure 6. Our current guess 
is that it may be due to the structure of the Encore’s scheduler, 
where processes just starting up may have higher priority than 
slightly older processes due to the relation of priority to past CPU 
use. 

To provide a more detailed look at how process control is hap- 
pening, we present the graphs in Figure 6. In this figure we plot 

164 



8 
484 I I I I I I I 

I. 

with process control 

I I I 

48’ I :,:.:.:.:,:.: :~‘.~: . . . . I I I 
:,.,:.: :.::.::.:.:. :;:aJlqtyy!.:::: without process control 

0 
b 

10 20 30 40 50 60 70 80 

time in seconds 

Figure 5: Total number of runnable processes in the system as a 
function of time. The top half of the figure corresponds to the 
case when number of processes is being controlled by our threads 
package. The bottom half shows the same run without process 
control. 

the number of runnable processes in the system as a function of 
time. These plots correspond to the three application runs shown 
in Figure 6. We see that with process control turned on, the total 
number of processes quickly returns to 16, which is the number 
of processors in the system. The few seconds of delay before 
the number of processes starts decreasing is because applications 
query the central server only once every six seconds. We can 
also see how the processors are equally divided between f f t and 
gauss during the time interval 10-20, and how they are divided 
among all three applications during the interval 25-30. Also note 
that the number of processes used by each running application 
starts increasing during the interval 3040 as applications finish 
executing. Of course, with process control turned off, the number 
of processes increases much beyond the number of processors (see 
bottom half of Figure 6), and the performance suffers as a result. 
For example, the gauss application takes 66 seconds to execute 
instead of 28 seconds. 

7 Future Work 
Although the system described in this paper increases the effi- 
ciency of parallel applications without requiring changes to the 
kernels of typical operating systems, we think that in continuing 
this work we will need to make kernel modifications. This is 
particularly true if we are to effectively handle realistic multipro- 
gramming environments where them will be a mixture of applica- 
tions. There may be some parallel applications that control their 
processes, there may be others that don’t, and there may be single- 
process applications like compilers, editors, and network daemons. 
One problem with using process control in such environments is 
that an application that does not control its processes may get 
an unfair share of the processors. The solution to this problem 
we have decided to implement involves partitioning the machine’s 
processors fairly, and isolating the processes used by each appli- 
cation to a partition. A controlled application could then execute 
concurrently with an uncontrolled application, and still get a fair 

portion of the system processing resources. Another benefit is 
that processes running on any given processor would be from the 
same application, using many of the same code locations and data 
structures. This would help increase hit ratio of the caches and 
increase performance of individual processors. 

We plan to implement the above by dynamicalIy partitioning 
processors in a machine into processor groups. As the overall sys- 
tem load and the requirements of individual applications change, 
the assignment of processes to processor groups and the number of 
processors in each processor group will vary. For example, there 
would usually be one processor group per parallel application. 
Similarly. there would nomlally be a separate processor group for 
single-process applications like compilers, OS daemons, etc. Of 
course, if the number of applications is larger than the number of 
processors, then multiple applications may have to be assigned to 
the same processor group. However, if applications that control 
their processes are kept in different processor groups from those 
applications that don’t, then unfair hogging of processors can still 
be avoided. 

We propose that the processor groups be managed by a high 
level policy module. The functions of the policy module would 
be to decide: (i) when to create or delete processor groups; (ii) 
how to distribute the processors among the processor groups; and 
(iii) how to assign applications to processor groups. We envision 
scheduling of processes within a processor group happening at a 
lower level. We expect that each processor group will have its own 
separate run queue, and will pick processes from that queue using 
standard priority mechanisms. Splitting the functionality between 
a central policy module and distributed scheduling will hopefully 
prevent the policy module from becoming a bottleneck. 

8 Conclusions 

In this paper, we considered the problem of performance degra- 
dation of parallel applications when the number of runnable pro- 
cesses greatly exceeds the number of available processors. This 
is a frequent occurrence in multiprogrammed parallel systems. 
In these situations, processor time may be wasted due to busy- 
waiting trying to obtain locks held by suspended processes, wait- 
ing for data from suspended producer processes, context-switching 
overhead, and processor cache corruption. These problems, par- 
ticularly the last, will be even more significant on the scalable 
high-performance multiprocessors currently being developed We 
propose that by dynamically controlling the number of processes 
each application uses, we can keep the number of runnable pro- 
cesses in the system close to the number of available processors, 
thus avoiding process preemption and the associated costs. 

We have implemented a system for controlling the number of 
runnable processes used by applications, and have compared the 
perfomlance of applications both with and without process control 
when executing on a 16processor Encore Multimax. The appli- 
cations executed much faster with process control than without. 
While our current implementation runs only in conjunction with 
Brown University’s Threads package, it should be easily portable 
to other systems providing software thread support. An important 
feature of our implementation is that it requires no modifications 
to the user application code. Only the underlying threads package 
needs to be modified. Our scheme should also increase the effi- 
ciency of task-queue based parallel programming languages like 
QLISP if used in their run-time systems. 

Our current implementation has certain limitations when appli- 
cations that control their processes are run with applications that 
do not control their processes. In such cases, the applications 
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without control end up with a disproportionate amount of proces- 
sor time. To avoid this, we plan to modify the process scheduler 
in such a way that processors are partitioned fairly, and each par- 
tition executes only the prozesses of one application. This should 
avoid the problem of greedy uncontrolled applications, iand should 
also help increase cache hit ratios. We are currently incorporat- 
ing our ideas into the scheduler associated with the V distributed 
operating system [4]. 
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