
Process Control and Scheduling Issues
for

Multiprogrammed Shared-Memory Multiprocessors

Andrew Tucker and Anoop Gupta
Department of Computer Science

Stanford University, Stanford, CA 94305

Abstract

Shared-memory multiprocessors are frequently used in a time-
sharing style with multiple parallel applications executing at the
same time. In such an environment, where the machine load is
continuously varying, the question arises of how an application
should maximize its performance while being fair to other users
of the system. In this paper, we address this issue. We first show
that if the number of runnable processes belonging to a parallel
application significantly exceeds the effective number of physi-
cal processors executing it, its perfomlance can be significantly
degraded We then propose a way of controlling the number of
nmnable processes associated with an application dynamically, to
ensure good performance. The optimal number of runnable pro-
cesses for each application is determined by a centralized server,
and applications dynamically suspend or resume processes in or-
der to match that number. A preliminary implementation of the
proposed scheme is now running on the Encore Multimax and we
show how it helps improve the perfomlance of several apphca-
tions. III some cases the improvement is more than a factor of
two. We also discuss implications of the proposed scheme for
multiprocessor schedulers, and how the scheme should interface
with parallel programming languages.

1 Introduction

The computing environment we consider in this paper is that of
a multiprogrammed shared-memory multiprocessor, with multiple
simultaneously running parallel applications. There are several
commercially available parallel systems that support such an en-
vironment, including machines from Alliant. Encore, and Sequent.
In these environments, where the number of running applications
is continuously changing, the issue arises of how an application
should maximize its performance. We have observed that the per-
formance of parallel applications degrades when the number of
processes associated with all applications exceeds the total num-
ber of available processors. One possible reason for the degrada-
tion in performance is the preemption of processes while they are
executing within a spinlock-controlled critical section. In such
a situation, other processes may be wasting processor resources

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for

Computing Machinery. To copy othetise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-338-3/89/0012/0159$1.50

just SpiMkIg, waiting to enter that critical section. Other possi-
ble reasons for degradation include the overhead of unnecessary
context switching, and the problem of processor cache corruption
when several processes are being multiplexed on a given processor.
Consequently, we would like the number of runnable processes in
all applications not to exceed the number of processors in the
machine.

Ensuring that the number of processes does not exceed the num-
ber of processors is trivial when there is only a single user, as he
can make sure that the application spawns the right number of
processes. A variation that is allowed by some machines and op-
erating systems is that the user can ask the OS for some number of
processors. If that many are available, the OS grants them to him,
giving him the appearance of a personal machine with that many
processors. For example, a BBN Butterfly can be divided into
multiple independent clusters [3_]. Many of the message-passing
hypercube computers also work this way [I]. However, such a
scheme is potentially wasteful of resources, since applications will
not be able to utilize processing resources that may become avail-
able if the system load decreases at a later time. Ideally, we
would like an application to be able to use all processors in the
system if it is the only application running. As more applications
start running, the number of processors available for this applica-
tion decreases. Correspondingly, the application should reduce its
number of runnable processes. Similarly, when other applications
finish and more processors become free, the application should be
capable of increasing its number of runnable processes to use the
extra processors.

In this paper we present preliminary results from a system that
permits control of the number of runnable processes as described
above. The system runs on an Encore Multimax under the UMAX
operating system. The panallel applications are written using the
Brown University Threads package [6]. We have modtied the
threads package so that it contains the code for controlling the
number of runnable processes. This has been done iu a way
such that the process control is totally transparent to the appli-
cations programmer. In addition, we have implemented a server
that communicates with the OS kernel to detemnne how many
processes each application should have. The applications period-
ically communicate with the server to check how many processes
they should have ruunable, and at suitable times increase or de-
crease the number of processes they do have runnable. We have
tested the system with several applications. In many of the test
cases the applications execute more than twice as quickly when
our modified threads package is used.

A couple of notes on terminology. In this paper, the term pro-
cess is used to refer to both lightweight and heavyweight pro-
cesses that are preemptively scheduled by the kernel. We as-

159

sume that multiple processes can share memory. For heavyweight
processes this could be implemented with distinct addiress spaces
that are overlapped through virtuaI memory (e.g., Unix System
V and UMAX processes with explicitly shared memory), while
for lightweight processes the shared memory is obtained by using
the same address space (e.g., Mach kernel “threads” and V-System
processes). The other term we frequently use in the paper is tusks.
We consider the computation associated with a parallel application
to be divided into small chunks, each of which may potentially
execute in parallel. These chunks of parallel computation are
called tasks. Tasks are assigned to processes in a co:routine-like
manner for execution by user-level code, and over its lifetime,
a single process may be responsible for the execution of several
tasks. An example of this notion of tasks is user-level threads as
implemented in the Brown University Threads package.

The rest of the paper is structured as follows. Iu Section 2,
we describe the problem of process preemption in detail and dis-
cuss some of its effects on application performance. S,ection 3 de-
scribes related work and discusses why a new solution approach is
needed. In Section 4, we discuss our scheme for avoiding process
preemption by dynamically controlling the number of processes
each application uses. Section 5 describes our implementation of
this scheme in detail, and Section 6 presents performance data
gathered from the implementation. Finally, in Sections 7 and 8,
we discuss some of the directions we pIan to explore i.n the future
and present our conclusions.

2 The Problem Description

When several parallel applications are concurrently executing on a
moderately-sized parallel machine, processes often must contend
for processors. In order to fairly handle the excess number of pro-
cesses, the processors are multiplexed between the processes, pe-
riodically preempting executing processes and scheduling waiting
processes. A process is usually preempted due to the expiration
of its time quantum, which occurs independently of the section of
code the process is executing. Excessive preemption of processes
can result in inefficiency from many sources, including time spent
waiting for a suspended process to leave a critical section, time
wasted in context switching, and inefficient cache bebavior.

Figure 2 shows what can happen when a parallel application’s
processes must contend for processors. The data is gathered from
an Encore Multimax with 16 processors. The graph sh.ows the per-
formance of two simultaneously executing parallel applications, a
matrix multiplication and a one-dimensional FFT. Each application
breaks its problem into a number of tasks, which are scheduled
onto the processes executing that application. The lignre shows
the speed-up for the applications as the number of processes ex-
ecuting the tasks in each application is varied from 1 to 24. For
example, we see that when both applications are started simulta-
neously with 24 processes each, the speed-up obtained by matrix
muhiplication is 2.8-fold and that for FFT is 2.4-fold.

Figure 2 shows that the performance of both applications wors-
ens considerably when the number of processes in each appli-
cation exceeds 8 and thus the total number of processes in the
system exceeds the number of processors. Furthermore, the larger
the number of processes the worse the performance gets, since
it takes longer for preempted processes to be rescheduled. This
is because unscheduled processes are placed on a FIFO queue,
and the more unscheduled processes there are, the longer it takes
for a preempted process to get to the front of the queue and be
rescheduled. We also note that while an increasing number of
running processes in a parallel application can often increase lock

4 a.0 t I I I I I t

I I I I I c 4 8 12 16 20 24

number of processes

Figure 1: Speed-up when a matrix multiplication application and
an FFT application rue run simultaneously and the number of pro-
cesses per application is varied

contention, this is not the reason for performance degradation seen
in Figure 2. Since only scheduled, running, processes can contend
for a lock, the contention when the number of processes exceeds
the number of processors will be equivalent to the contention when
the number of processes equals the number of processors.

The decreased performance in parallel applications when the
number of processes in the system exceeds the available number of
processors can be attributed to several problems. These problems
include the following:

Processes may be preempted while inside spinlock-controlled
critical sections. When this occurs, other processes execut-
ing the same application may end up waiting to enter that
critical section, busy-waiting until the preempted process is
scheduled for execution. While the chance of a process be-
ing preempted while inside a critical section is small if that
critical section is small, the amount of time that may be
spent waiting for the preempted process to be rescheduled is
potentially very large. The problem is worst in fine-grained
systems, where critical sections are entered frequently and
are fairly large relative to the grain size.

Similar problems can arise between producer and consumer
processes of an application. While a producer process is
suspended, the consumer process may be scheduled to nm
on a processor only to realize that there is nothing for it
to do. Depending on how the synchronization between the
producer and consumer processes is implemented, this can
result in many wasted CPU cycles.

The frequent context switching that goes on when the num-
ber of processes greatly exceeds the number of processors is
another source of performance degradation. Aside from the
problem of corrupted caches (discussed below), a context-
switch involves a number of system-specific operations (sav-
ing and restoring registers, switching address spaces, etc.)
that do no real work.

Finally, a major source of performance degradation for high-
performance multiprocessors is processor cache corruption.
When a processor is interleaved between multiple applica-
tions, much of the data from previously scheduled appli-
cations will be purged from the cache on each time slice.

160

By the time the old application is schcdulcd again, it will
have to refetch its entire working set into the cache. Given
that the cache miss penalty for remote accesses for some of
the scalable multiprocessors currently b&g designed (e.g.,
the Encore Ultrarnax using the Motorola 88000 [17] and the
Stanford multiprocessor using the MIPS R3000 [111) will be
50-100 processor cycles, the perfonance degradation may
be a factor of 10 or more.

In summary, serious performance degradation may occur when
several parallel applications with a large number of processes are
run on a multiprocessor. This will be especially true for appli-
cations which exploit parallelism at a tile granularity and for the
new generation of scalable multiprocessors with very high cache-
miss penalties. Consequently, one needs to be very careful in how
application processes are scheduled onto processors, and efforts
should be made to have the same process run on a processor for
a long time.

3 Related Work
Since multiprocessors have become widely available only recently,
not much research has been done in the past to address the issues
raised in the previous section. We now briefly discuss some of
the multiprocessor scheduling strategies others have proposed that
attempt to address at least some of the problems involved.

The first one we consider is called coscheduling. It was
proposed by Ousterhout [14] for the Medusa OS for the Cm*
multiprocessor. In coscheduling, the multiprocessor scheduler
is modified so that all runnable processes of an application are
scheduled to run on the processors at the same time. Similarly,
when an application is preempted, all of its processes are pre-
empted, so processes will not be wasting processing resources
busy-waiting. Effectively, the system context switches between
applications, running all processes from one application for a time
slice, then all processes from a second application for a time slice,
and so on. While coscheduling handles the problems associated
with spinlock-controlled critical sections and those with producer-
consumer processes well (points 1 and 2 in the previous section),
it does not reduce the overhead due to context switching or the
degradation due to processor cache corruption (points 3 and 4). By
the time an application is rescheduled on the system, the caches
will probably not contain any of its data. In all fairness, though,
we point out that processors in the Cm* machine did not have
caches, so cache corruption was not an issue.

The second scheduling strategy that we consider is due to Za-
horjan et al [181 from the University of Washington. They propose
a smart scheduler for their threads package that avoids preempt-
ing processes when they are inside critic‘al sections, and avoids
rescheduling busy-waiting processes while a process inside a lock
is suspended. In this approach when a process enters a critical
section it sets a special flag, and the scheduler has been modified
so that it will not preempt a process with this flag set. When the
process leaves the critical section it resets the flag. While this
scheme quite nicely prevents processes from being preempted in-
side a critical section, some of its weaknesses are the following.
It has undesirable protection properties, in that it allows user pro-
cesses to directly control the behavior of the scheduler. It makes
incorrect decisions for some frequently occurring situations that
arise in parallel applications. For example, it is common to have
a hash table data structure with separate locks per bucket. It is
reasonable in such applications to have many processes accessing
different buckets in the hash table while hoIding the correspond-
ing distinct locks. This scheme will prevent all of these processes

from being preempted, even though they are not dependent on
each other in any way. Finally, as in the case of coscheduling, this
scheme does not address the issues of reducing context-switching
overhead and reducing perfomuurce degradation due to processor
cache corruption.

A third approach that combines facets of the previous two was
proposed by Edler et al [7] at the NYU Ultracomputer project. In
this proposal, processes can be fomred into groups. The schedul-
ing policy of a group of processes can be set so that either the
processes are scheduled and preempted normally, or all processes
in the same group are scheduled and preempted simultaneously (as
in coscheduling), or processes in the group are never preempted.
Also, an individual process can prevent its own preemption, inde-
pendent of the scheduling policy of its group. This can be used
to implement spinlock flags. While this approach is more flexible
than the ones previously described, it also does not address the
problems of cache corruption and context-switching overhead.

Finally, we consider some recent work from the University of
Washington by Lazowska and Squillante [12] that evaluates the
performance of several multiprocessor scheduling policies. The
policies they consider rely on the “affinity” of a process for a pro-
cessor, where the affinity is based on the contents of the proces-
sor’s cache. The key idea is that a process should be scheduled on
the processor on which it last executed (before being preempted),
where hopefully a large fraction of its working set is still present
in the processor’s cache. However, if this policy is strictly fol-
lowed it can lead to load imbalance, as processes are not allowed
to migrate from busy processors to idle ones. Consequently, La-
zowska and Squilhmte propose variations on the basic policy and
evaluate the perfomlance of the variations using queueing theory
models. While the proposed approach helps in reducing cache
corruption effects, it does not address the other problems that we
discussed in Section 2. Furthermore, since the proposed policies
have not been implemented yet, it is difficult to predict what the
performance benefits will be in realistic situations.

4 The Proposed Solution

Unlike the solutions described in the previous section, our ap-
proach to the problem is based on the hypothesis that applications
perform best when the number of runnable processes is the same
as the number of processors. This hypothesis is suggested by ex-
periments like the one shown in Figure 2, and is what we would
like to validate in this paper. Intuitively, our approach is simi-
lar to that of a virtual memory machine, where the system works
efficiently and avoids thrashing if the total number of pages in
all running processes’ working sets does not exceed the available
physical memory.

The most important part of our solution is that applications
should dynamically control their number of runnable processes
to match the number of processors available to them. Once this
is achieved, each runnable process will have its own processor.
There will be no reason for preemption, the time spent context
switching will be negligible, and there should be no degradation
due to corruption of caches. Also, unlike coscheduling, spinlock
flagging, and processor affinity schemes requiring kernel modifi-
cations, our method can be implemented entirely in user space.
Of course, this description leaves many questions unanswered.
Among them are how the number of processes in a running ap-
plication can be varied, how the ideal number of runnable pro-
cesses for each application should be determined, and how the
real number of runnable processes should be made to match the
ideal number. We divide the various issues into two categories,

161

application-related issues and system-related issues, and consider
them in that order.

4.1 Application-Related Issues
Before going into the mechanisms of process control, we need
to discuss the question of when it is safe to limit the number
of mnnable processes in an application by suspending a process.
By safe, we mean without potential starvation, loss of data, or
significant loss of efficiency. A process can be safely suspended
if and only if we can guarantee that either the results from the
task it is executing will not be needed by the application until
the process can be resumed. or that the task can be executed by
some other process if necessary. For the general class of parallel
applications, it can be difficult to determine when a process can
be safely suspended.

Fortunately, for a slightly more limited class of parallel appli-
cations, the problem is much simpler. If an applicaition can be
broken up into a number of tasks (as defined in Section 1). where
processes select tasks from a queue and execute them, then a pro-
cess can be safely suspended after it has finished executing a task
(or has put it back on the queue) and before it has selected an-
other task to execute. As long as the application does not depend
on having a certain number of processes executing, the number
of processes can be varied without problems. We note that such
task-queue based mo&ls are widely used to implement parallel
apphcations on shared-memory architectunzs, so the restriction is
not serious. For example, one can find several programming lan-
guages based on the task-queue model [3, 8, lo]. and consequently
all programs w&ten in them follow the model. Similarly, most
applications written using threads packages [6] follow this model,
and also many independently written applications follow the task-
queue model [9, 1.5, 161. The task-queue model provides an easy
way to achieve load balancing in shared-memory multiprocessors,
and hence its popularity.

At this point in our implementation, we have only added pro-
cess control support for applications written using threads pack-
ages. Our reason for doing so is that several operating systems
provide libraries that implement threads for the application pro-
grammer. These packages give the programmer a few commands
for creating and destroying threads and controlling access to data
shared between threads, and hide the rest of the details from the
application. One such library is the Brown University Threads
package [6]. The implementation results we present in Section 5
are based on the Brown system.’

With applications written using threads packages, the appli-
cation programmer breaks parts of his problem up into threads
(which correspond to our “tasks”). When the application is started,
some user specified number of processes are created to execute the
threads. As the execution proceeds, the processes pick up threads
for execution from a task queue. As the result of executing a thread
of control, that thread may decide to add new threads to the task
queue. The application ends when there are no more threads to
execute. As an example of how process control would work us-
ing threads, consider an application that generates four threads. If

‘Another, similar, package is Mach’s C-Threads package [5]. Under
C-Threads, though, a new process is normally created whenever a thread is
created. and killed when it finishes executing that thread. While C-Threads
does have a mechanism for limiting the total number of processes used
by an application, the paradigm of having a one-to-one correspondence
between threads and processes does not work well with process control,
where the number of proccs,ses must be independent of the number of tasks
to be executed. For this reason, we did not use the C-Threads package for
our implementation of process control.

four runnable processes are used to execute the code, each thread
can be executed on a process at the same time. Now suppose
the system load increases so that the application should be limited
to three runnable processes. Then, if one of the threads blocks,
the process executing it can be safely suspended after queueing
the partially executed thread. After another thread finishes ex-
ecuting, the process that was running the completed thread can
now dequeue and finish executing the suspended thread. Thus,
the application programmer can write his code independently of
the number of processes and processors that will be executing that
code.

4.2 System-Related Issues

For our implementation, we divided the task of controlling applica-
tion processes into two ptis: (i) determining how many runnable
processes each application should have, and (ii) restricting each
application to the appropriate number. The functionality of each
part could be put in the kernel, distributed among the applications,
or placed in a user-level centralized server process. We now eval-
uate some of these options.

In order to determine the number of processes each application
should have runnable, we need to know the number of processors
in the system, the number of runnable processes used by appli-
cations that cannot be controlled, and the number of applications
we are controlling. Implementing this functionality outside of the
kernel in a centralized user-level server necessitates kernel system
calls to determine information about process status. However, dis-
tributing this functionality among the applications requires even
more of these system calls, one for each application for each up-
date interval. The kernel approach, on the other hand, requires
extending the kernel.

For our current implementation, we have chosen to use the
centralized user-level server approach. We experimented with the
decentralized approach and found it to be too inefficient for our
purposes. It also introduced stability problems that appeared to be
only solvable with expensive communication protocols. Finally,
in the short run, we did not want to modify the kernel, and the
centralized server approach was found to be adequate. The results
in Section 6 are based on this approach. In the long term, however,
we think it will be necessary to modify the kernel. We discuss our
ideas about kernel mocliications and multiprocessor scheduling in
Section 7.

To control the number of runnable processes in each applica-
tion, the controller must be able to suspend and resume those
processes. A user-level centralized server cannot do this, since it
has no control over processes it has not spawned, aside from inter-
process communication. That control must either come from the
kernel or from the application itself. The problem with controlling
the number of runnable processes from the kernel is that it is diffi-
cult for the kernel to determine when a process can be suspended
safely; it needs infomlation from the application to detelmtie this.
Letting the application suspend and resume processes is simpler
and more efficient, and is the approach we have taken. We further
note that since the scheduling and descheduling of threads from
the task queue is managed by the threads package library rather
than by the applications programmer, it is possible to implement
the safe suspension and resumption of processes totally transpar-
ently to the user. We have actually done this, and the details are
presented in the following section.

162

kernel

Figure 2: Basic structure of the server-based scheme.

5 Implementation
In our current implementation we have chosen to use a central-
ized user-level server to help determine how many processes an
application should have. The code for controlling the number of
processes in an application has been embedded into a version of
Brown University’s Threads package, running on a 16 processor
Encore Multimax with a variant of 4.2 BSD Unix called UMAX.
The UMAX operating system provides interprocess communica-
tion through sockets, and also provides a system call for detennin-
ing information about the runnable processes in the system. Both
of these features were necessary to our implementation, though
they could be replaced by similar features on other systems if we
were to port our scheme to another machine.

The overall structure of our scheme is shown in Figure 5. It con-
sists of a central server, and some number of processes partitioned
in various ways. To determine the number of runnable processes
that each controllable application should have, the server period-
ically calls the kernel and gets a list of all runnable processes. It
first determines the number of xunnable processes not belonging
to controllable applications. It then subtracts this from the number
of processors in the system, to detemline the number of proces-
sors available for the use of the controllable applications in the
system. It then partitions these processors among the applications
fairly in order to determine the number of runnable processeseach
application should be using. Special provisions are made so that
an application will not be “assigned” more processors than it can
use; that is, the server makes sure that the number of runnable
processes it thinks a given application should have does not ex-
ceed the total number of processes the application has. It also
ensures that each application has at least one runnable process to
avoid starvation.

For example, assume the system has the runnable processes and
applications shown in Figure 5, and further assume the machine
has 8 processors. The central server will determine that 2 proces-
sors are being used by uncontrollable applications, and proceed
to distribute the other 6 among the three controllable applications.
Given that all three have the same priority, each of them gets two
processors. The first application with only 2 processes need not
suspend any processes as it has 2 processors available, but the
other two applications will have to suspend one process each to
avoid context switching. As applications are created or completed,
this process is repeated.

The direct control of the number of runnable processes of an
application is performed by individual processes in that applica-
tion. As each controllable application begins execution, the root
process of the application sends a message to the central server no-
tifying the server of the application’s existence, and further telling
it the process ID of the root process. This process ID is used
to determine which processes belong to the application, by com-
paring it with each process’ parent process ID. (It also indirectly
helps the server determine the number of runnable processes not
belonging to a controllable application.) The application then be-
gins execution, and periodically a process in the application polls

the sewer to determine the number of processes it should ideally
have runnable. This
rent implementation. 4

olling is done every 6 seconds in the cur-
The application then receives and stores

this information, and whenever a process in the application enters
a section of code where it may safely suspend itself. it compares
this number with the actual number of runnable processes in the
system. If the ideal number is less than the actual number, the
process suspends itself; if the ideal number is greater than the ac-
tual number, the process wakes up a previously suspended process.
The suspension is done by having the process wait for a signal that
will not ordinarily be generated by the system; the resumption is
done by sending that signal to a waiting process, kept on a queue.
If processes enter sections of code where they may be safely sus-
pended fairly often, the actual number of runnable processes will
approach the ideal number of runnable processes fairly rapidly,
and will stay fairly close to it as circumstances change the ideal
number.

The process control mechanisms in the threads package are
actually hidden from the application programmer. The interface
to the threads commands was not changed when process control
was added. The process monitoring, suspension, and resumption,
is done when the application returns control to the threads package
when a thread is suspended or has finished execution. This lets
almost all applications written using the threads package run using
process control without any modifications whatsoever.

6 Results
In this section we present preliminary results from our implemen-
tation on the 16 processor Encore Multimax. The results are for
several applications under a variety of system load conditions. All
of the applications are implemented using the Brown University
Threads package. The applications considered are the following:

f f t A parallel single-dimension Fast Fourier Transform, based
on an algorithm by Norton and Silberger at IBM Yorktown
Heights [13]. This FFT algorithm has several loops that were
broken into parts to provide parallelism.

sort A parallel merge sort algorithm, simultaneously sorting a
number of small lists of numbers with heapsort, and then
merging pairs of sorted lists iu parallel until the final sorted
list is achieved.

gauss A parallel Gaussian elimination algorithm. The solution
is computed using partial pivoting and back substitution, and
the row elimination is parallelized.

matmul A simple matrix multiplication algorithm. The multipli-
cation is parallelized by splitting the multiplicand by rows.

2The interval of 6 seconds was chosen without much experimentation,
and another choice might result in better performance. The 6 second in-
terval was an attempt at balancing the overhead of process suspension and
resumption against the overhead of having too few or too many nmnable
processes.

163

J.0 I I I I I
0 8 16 24 32 40 48

number of processes

8.0
t

16 24 32 40 48

number of processes

cL 16.0

3 I a I I I 1 8 1
3 12.0

8.0

4.0

0.0

-G uncontrolled
G-G controlled

0 8 16 24 32 40 48

number of processes

sort

ii:-t:‘i

8.0
t

number of processes

Figure 3: Comparison of speed-up as the number of processes is
varied with and without process control in effect.

I I I I I I I I f
with process control

I fft n

n qauss n
l matmul a

ICmatmul n

0 10 io 3b 40 ito do ti 8b

time in seconds

Figure 4: Execution profiles for fft, gauss, and matmul ap-
plications, each started with 16 processes, beginning execution at
different times but overlapping with each other.

Figure 6 shows the performance of the four applications de-
scribed above. For each application we plot the speed-up as the
number of parallel processes is increased. Two curves are shown
for each application: (i) the dashed line shows the implementa-
tion of the application on top of the original, unmodified Brown
Threads package, and (ii) the solid line corresponds to the imple-
mentation on top of our modified threads package that controls
the number of processes. We would like to make the following
observations. First, as expected, for each application the speed-
up increases up to 16 processes, which is equal to the number of
processors. Second, note that the dashed and the solid curves are
almost identical up to 16 processes. This means that the overhead
of our implementation is negligible, at least in cases where no
reduction in the number of processes is necessary. Third, beyond
the 16 process point, the speed-up with the unmodified threads
package is signiticantly worse than that with ours. In fact, the
huger the number of processes, the more the difference. The rea-
son is that a process that is suspended within a critical section
uakes a longer time to get rescheduled if the number of runnable
processes is larger.

While Figure 6 showed results when only one application was
running on the system, a more realistic case is when there are sev-
eral applications running concurrently. Figure 6 shows the rest&s
when three applications execute at the same time, both with and
without process control. The applications were started at intervals
of 10 seconds, each with 16 processes. As is clear from the figure,
the wall clock time to execute the f ft and gauss applications is
much longer without process control than with it. By using pro-
cess control, we are greatly increasing the performance of these
applications. The time for the matmul is also increased, but not
by a large amount. This is somewhat surprising because when
matmul starts up under the uncontrolled version there are a total
of 48 processes, and the performance for matmul under those
conditions is pretty bad as shown in Figure 6. Our current guess
is that it may be due to the structure of the Encore’s scheduler,
where processes just starting up may have higher priority than
slightly older processes due to the relation of priority to past CPU
use.

To provide a more detailed look at how process control is hap-
pening, we present the graphs in Figure 6. In this figure we plot

164

8
484 I I I I I I I

I.

with process control

I I I

48’ I :,:.:.:.:,:.: :~‘.~: I I I
:,.,:.: :.::.::.:.:. :;:aJlqtyy!.:::: without process control

0
b

10 20 30 40 50 60 70 80

time in seconds

Figure 5: Total number of runnable processes in the system as a
function of time. The top half of the figure corresponds to the
case when number of processes is being controlled by our threads
package. The bottom half shows the same run without process
control.

the number of runnable processes in the system as a function of
time. These plots correspond to the three application runs shown
in Figure 6. We see that with process control turned on, the total
number of processes quickly returns to 16, which is the number
of processors in the system. The few seconds of delay before
the number of processes starts decreasing is because applications
query the central server only once every six seconds. We can
also see how the processors are equally divided between f f t and
gauss during the time interval 10-20, and how they are divided
among all three applications during the interval 25-30. Also note
that the number of processes used by each running application
starts increasing during the interval 3040 as applications finish
executing. Of course, with process control turned off, the number
of processes increases much beyond the number of processors (see
bottom half of Figure 6), and the performance suffers as a result.
For example, the gauss application takes 66 seconds to execute
instead of 28 seconds.

7 Future Work
Although the system described in this paper increases the effi-
ciency of parallel applications without requiring changes to the
kernels of typical operating systems, we think that in continuing
this work we will need to make kernel modifications. This is
particularly true if we are to effectively handle realistic multipro-
gramming environments where them will be a mixture of applica-
tions. There may be some parallel applications that control their
processes, there may be others that don’t, and there may be single-
process applications like compilers, editors, and network daemons.
One problem with using process control in such environments is
that an application that does not control its processes may get
an unfair share of the processors. The solution to this problem
we have decided to implement involves partitioning the machine’s
processors fairly, and isolating the processes used by each appli-
cation to a partition. A controlled application could then execute
concurrently with an uncontrolled application, and still get a fair

portion of the system processing resources. Another benefit is
that processes running on any given processor would be from the
same application, using many of the same code locations and data
structures. This would help increase hit ratio of the caches and
increase performance of individual processors.

We plan to implement the above by dynamicalIy partitioning
processors in a machine into processor groups. As the overall sys-
tem load and the requirements of individual applications change,
the assignment of processes to processor groups and the number of
processors in each processor group will vary. For example, there
would usually be one processor group per parallel application.
Similarly. there would nomlally be a separate processor group for
single-process applications like compilers, OS daemons, etc. Of
course, if the number of applications is larger than the number of
processors, then multiple applications may have to be assigned to
the same processor group. However, if applications that control
their processes are kept in different processor groups from those
applications that don’t, then unfair hogging of processors can still
be avoided.

We propose that the processor groups be managed by a high
level policy module. The functions of the policy module would
be to decide: (i) when to create or delete processor groups; (ii)
how to distribute the processors among the processor groups; and
(iii) how to assign applications to processor groups. We envision
scheduling of processes within a processor group happening at a
lower level. We expect that each processor group will have its own
separate run queue, and will pick processes from that queue using
standard priority mechanisms. Splitting the functionality between
a central policy module and distributed scheduling will hopefully
prevent the policy module from becoming a bottleneck.

8 Conclusions

In this paper, we considered the problem of performance degra-
dation of parallel applications when the number of runnable pro-
cesses greatly exceeds the number of available processors. This
is a frequent occurrence in multiprogrammed parallel systems.
In these situations, processor time may be wasted due to busy-
waiting trying to obtain locks held by suspended processes, wait-
ing for data from suspended producer processes, context-switching
overhead, and processor cache corruption. These problems, par-
ticularly the last, will be even more significant on the scalable
high-performance multiprocessors currently being developed We
propose that by dynamically controlling the number of processes
each application uses, we can keep the number of runnable pro-
cesses in the system close to the number of available processors,
thus avoiding process preemption and the associated costs.

We have implemented a system for controlling the number of
runnable processes used by applications, and have compared the
perfomlance of applications both with and without process control
when executing on a 16processor Encore Multimax. The appli-
cations executed much faster with process control than without.
While our current implementation runs only in conjunction with
Brown University’s Threads package, it should be easily portable
to other systems providing software thread support. An important
feature of our implementation is that it requires no modifications
to the user application code. Only the underlying threads package
needs to be modified. Our scheme should also increase the effi-
ciency of task-queue based parallel programming languages like
QLISP if used in their run-time systems.

Our current implementation has certain limitations when appli-
cations that control their processes are run with applications that
do not control their processes. In such cases, the applications

165

without control end up with a disproportionate amount of proces-
sor time. To avoid this, we plan to modify the process scheduler
in such a way that processors are partitioned fairly, and each par-
tition executes only the prozesses of one application. This should
avoid the problem of greedy uncontrolled applications, iand should
also help increase cache hit ratios. We are currently incorporat-
ing our ideas into the scheduler associated with the V distributed
operating system [4].

Acknowledgments

We would like to thank David Cheriton. Hugh Lauer, Edward
Lazowska, and Susan Owicki for their helpful comments on this
paper and the work it describes. This research was sponsored by
DARPA contract NOOO14-87-K-0828.

References

[l] William C. Athas and Charles L. Seitz. Multicomputers:
Message-passing concurrent computers. IEEE Computer,
21(8):9-24, August 1988.

[Z] BBN Laboratories Inc. Butterjly Parallel Processor
Overview. 1986. BBN Report No. 6148.

[3] Rohit Chandra, Anoop Gupta, and John Hennessy. COOL:
A language for parallel programming. In Proceedings of the
Second Workshop on Programming Languages and Compil-
ers for Parollel Compuring, University of Illinois, August
1989.

[4] D.R. Cheriton. The V distributed operating system. Com-
munications of the ACM, 31(2):105-115, February 1988.

[5] Eric C. Cooper and Richard P. Draves. C threads. Technical
Report CMU-CS-88-154, Department of Computer Science,
Carnegie-Mellon University, 1988.

163 Thomas W. Doeppner, Jr. Threads: A system for the sup-
port of concurrent programming. Technical Report CS-8 7- 11,
Department of Computer Science, Brown University, 1987.

[7] Jan Edler, Jim Lipkis, and Edith Schonbeg. Process man-
agement for highly parallel UNIX systems. Technical Report
Ultracomputer Note 136, New York University, 1988.

[8] Richard P. Gabriel and John McCarthy. Queue-based multi-
processing Lisp. In ACM Symposium on Lisp and Functional
Programming, pages 25-43, 1984.

[9] Anoop Gupta, CharIes Forgy, Dirk Kalp, Allen Newell, and
Milind Tambe. Parallel implementation of OPS5 on the
Encore multiprocessor: Results and analysis. Znternational
Journal of Parallel Programming, 17(2), 1988.

[lo] Robert H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM Transactions on Programming
Lunguuges and Systems, 7(4):501-538, October 1985.

[ll] John Hennessy et al. DASH: A directory-based scalable
general-purpose shared-memory multiprocessor. In prepa-
ration, Computer Systems Laboratory, Stanford University,
August 1989.

[12] Edward D. Lazowska and Mark S. Squillante. Using
processor-cache affinity in shared-memory multiprocessor
scheduling. Department of Computer Science, University
of Washington, Seattle, June 1989.

[I31

[I41

[I51

[I61

1171

WI

Alan Norton and AJlan Silberger. Pamllehzation and per-
fomnurce prediction of the Cooley-Tukey FFT algorithm for
shared-memory architectures. Technical Report RC 11237,
IBM Research Division, 1985.

John K. Ousterhout. Scheduling techniques for concurrcnt
systems. In Third International Conference on Distributed
Computing Systems, pages 22-30, 1982.

Jonathan Rose. LocusRoute: A parallel global router for
standard cells. In Proceedings of the 25th ACMJIEEE Design
Auronration Conference, June 1988.

Larry Soule and Anoop Gupta. Characterization of paral-
lelism and deadlocks in distributed digital logic simulation.
In Proceedings of the 26th ACMIIEEE Design Automation
Conference, June 1989.

Andrew W. Wilson, Jr. Hierarchical cache/bus architecture
for shared memory multiprocessors. Jn Proceedings of the
14th Annual International Symposium on Computer Archi-
tecture, pages 244-251, 1987.

John Zahojan, Edward D. Lazowska, and Derek L. Eagar.
Spinning versus blocking in parallel systems with uncer-
tainty. Technical Report 88-03-01, Department of Computer
Science, University of Washington, 1988.

166

