CS 350 Theory of Computation

Assignment 1 (8 marks)

Question 1 (2 marks)

Given an undirected graph \(G = (V, E) \), the breadth-first-search starting at \(v \in V \) (\(\text{bfs}(v) \) for short) is to generate a shortest path tree starting at vertex \(v \in V \). The diameter of \(G \) is the longest of all shortest paths \(\delta(u, v), u, v \in V \).

When \(G \) is a tree, the following algorithm is proposed to compute the diameter of \(G \).

1. Run \(\text{bfs}(w), w \in V \) and compute the vertex \(x \in V \) furthest from \(w \).
2. Run \(\text{bfs}(x) \) and compute the vertex \(y \in V \) furthest from \(x \).
3. Return \(\delta(x, y) \) as the diameter of \(G \).

Prove that this algorithm is correct; i.e., \(\delta(x, y) \) is in fact the longest among all the shortest paths between \(u, v \in V \).

Question 2 (2 marks)

Given a convex polygon \(C(n) \) with \(n \) vertices, prove that one can always decompose \(C(n) \) into triangles using \(n - 3 \) diagonals (a diagonal is a line segment connecting two vertices of \(C(n) \)).

Question 3 (2 marks)

Show that in any simple graph there is a path from any vertex of odd degree to some other vertex of odd degree.

Question 4 (2 marks)

A fully binary tree \(T \) is a tree such that all internal nodes have two children. Prove that a fully binary tree with \(n \) internal nodes in total has \(2n + 1 \) nodes.

Date Due: before the end of class on Thursday, February 3, 2005. Late assignment will lose 2 marks for each overdue day.