CSCI 538 Computability

Assignment 2 (10 marks)

Question 1 (2 marks)

Let $T = \{ \langle M \rangle | M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w \}$. Show that T is undecidable.

Question 2 (2 marks)

Show that A is Turing-recognizable if and only if $A \leq_m A_{TM}$.

Question 3 (2 marks)

In the following instance of the Post Correspondence Problem, is there a match? Why?

ab	a	abab	abab	b	ab
a	ab	a	b	ab	b
1	2	3	4	5	6

The 6-card PCP instance for question 3.

Question 4 (2 marks)

Let $EQ_{DFA} = \{ \langle G, H \rangle | G, H \text{ are DFA's and } L(G) = L(H) \}$. Show that EQ_{DFA} is in P.

Question 5 (2 marks)

Define SD-SSUM as the problem where you are given a set of positive integers $S = \{a_i | a_i \text{ has a single decimal digit for } i = 1, ..., n\}$ and another positive integer C, and you need to decide whether there exists a subset of integers in Swhich sum to C. Show that SD-SSUM is in P.

Date Due: 8:30pm, **Thursday**, **Feb 22**, **2024**. You should upload your assignment in pdf format on D2L, under the "Assignment 2" directory.