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I. Definitions
We briefly define some necessary concepts in approximation algorithms. An approximation
algorithm for a (maximization) optimization problem Π provides a performance guarantee
of ρ if for every instance I of Π, the solution value returned by the approximation algorithm
is at least 1/ρ of the optimal value for I. For the simplicity of description, we simply say that
this is a factor ρ approximation algorithm for Π.

Similarly, an approximation algorithm for a (minimization) optimization problem Π provides
a performance guarantee of ρ if for every instance I of Π, the solution value returned by
the approximation algorithm is at most ρ of the optimal value for I.

Notice that following the above definitions, ρ is at least 1.
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II. Examples on minimization problems
(2.1) Given a simple polygon P with n vertices v1, ..., vn, decompose P into minimum number
of convex pieces without using Steiner points (i.e., using diagonals only). (Clearly, such a
diagonal d must be incident to v and v must be reflex.)

Given a triangulation of P , a diagonal d is said to be essential for vertex v if cutting P
by removing d creates a piece that is non-convex at v. (v must be incident to d and v must
be reflex.) A diagonal which is not essential for any vertex is said to be inessential.

Algorithm: Start with a triangulation of P , repeat removing inessential diagonals.
Clearly this runs in O(n) time. We will prove that this algorithm (by Hertel and Mehlhorn)
has an approximation factor of 4.

Lemma 2.1.1. Let O∗ be the minimum number of convex pieces one can obtain and r
be the number of reflex vertices in P . Then ⌈r/2⌉ + 1 ≤ O∗ ≤ r + 1.

Lemma 2.1.2. There can be at most 2 diagonals essential for any reflex vertex.

Theorem 2.1.3. Hertel-Mehlhorn algorithm achieves an approximation factor of 4.

Proof. When the algorithm stops, there can be at most 2r essential diagonals left. The
number of convex pieces N produced by the algorithm satisfies 2r +1 ≥ N . By Lemma 2.1.1,
O∗ ≥ ⌈r/2⌉ + 1. Therefore, 4O∗ ≥ 2r + 4 > 2r + 1 ≥ N . 2
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(2.2) Geometric TSP (Traveling Salesman Problem): Given n points S in the plane, find the
shortest closed path passing through all of them.

The problem is NP-complete (Papadimitriou, 1977). We show below two very simple
approximation algorithms. Let the length of the Minimum Spanning Tree of S (MST(S)) be
l(MST (S)).

Algorithm 1: Compute the Minimum Spanning Tree of S. Double each edge of MST(S)
and return the closed path as an approximation.

Theorem 2.2.1. Algorithm 1 achieves an approximation factor of 2 in O(n log n) time.

Proof. Let O∗ be the optimal TSP tour and let its length be l(O∗). Let Opath be a
path obtained from O∗ by deleting an edge. Then, obviously we have l(MST (S)) ≤ l(Opath).
Consequently, l(MST (S)) ≤ l(Opath) < l(O∗). Therefore the approximation solution value
2l(MST (S)) satisfies, 2l(MST (S)) ≤ 2l(Opath) < 2l(O∗). The time complexity of Algorithm
1 is dominated by the computation of MST (S), which is O(n log n). 2

Algorithm 2: Compute the MST(S). Compute a minimum Euclidean matching M on
all vertices with odd degree in MST(S). Traverse MST(S)∪M , which is Eulerian.

Theorem 2.2.2. Algorithm 2 achieves an approximation factor of 1.5 in O(n3) time.

Proof. Let O∗ be the optimal TSP tour and let its length be l(O∗). Clearly, l(MST (S)) <
l(O∗) and we need to show that l(M) ≤ 1

2
l(O∗). First, let S ′ be the set of vertices with odd

degrees. So we have |S ′| is even. We consider the tour O′ obtained by taking shortcuts for
odd vertices in O∗. Apparently, we have l(O′) ≤ l(O∗). Now if we pick up every other edge in
O′ we obtain two matchings of S ′, by the optimality of M , l(M) is no larger than the shorter
of the two matchings. Therefore, l(M) ≤ 1

2
l(O′) ≤ 1

2
l(O∗). Consequently, the approximation

solution value l(MST (S)) + l(M) satisfies that l(MST (S)) + l(M) ≤ 1.5l(O∗). The running
time is dominated by the cost for computing M in O(n3) time (Gabow, 1972). 2
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(2.3) Optimal bridge problem: Given two (convex) polygons P, Q, compute two points p ∈
P, q ∈ Q such that du∈P (u, p) + d(p, q) + dv∈Q(q, v) is minimized.

The problem was first studied by Cai, Xu and Zhu [CXZ99]. Recently, it was found that the
problem can be solved in linear time (though the solution is still hard). We present below a
simple approximation solution.

Algorithm: Compute the minimum distance between P, Q, d(p”, q”). Let u be the
furthest vertex of P from p” and let v be the furthest vertex of Q from q”. Return (u, p”, q”, v)
as the approximation solution.

Theorem 2.3.1. The above algorithm presents a factor 2 approximation to the optimal
bridge problem.

Proof. Let (u∗, p∗, q∗, v∗) be the the optimal solution. The optimal solution value is
d(u∗, p∗)+d(p∗, q∗)+d(q∗, v∗). Let D(P ), D(Q) be the diameters of P, Q respectively. Clearly,
d(u∗, p∗) ≥ 1

2
D(P ) and d(q∗, v∗) ≥ 1

2
D(Q).

On the other hand, d(u, p”) ≤ D(P ) and d(q”, v) ≤ D(Q) since u is the furthest vertex in P
from p” and v is the furthest vertex in Q from q”. Therefore, {d(u, p”)+d(p”, q”)+d(q”, v)} ≤
D(P )+d(p”, q”)+D(Q) ≤ 2d(u∗, p∗)+d(p∗, q∗)+2d(q∗, v∗) < 2{d(u∗, p∗)+d(p∗, q∗)+d(q∗, v∗)}.
2
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(2.4) Minimum diameter spanning tree problem: Given a set P of n points, compute a spanning
tree whose diameter is minimized.

The problem was first studied by Ho, et al. It was found that the problem can be solved in
O(n3) time when the distance is in L2 [HLCW91]. We present below a simple approximation
solution.

Algorithm: Arbitrarily pick up a point p0 and compute a star S centered at p0. Return
S as an approximation solution.

Theorem 2.4.1. The above algorithm presents a factor 2 approximation to the minimum
diameter spanning tree problem.

Proof. Let D(P ) be the diameter of P . Let V ∗ be the value of the optimal solution.
Clearly, V ∗ ≥ D(P ). Any edge in S is at most D(P ), so the diameter of S is at most
2D(P ) ≤ 2V ∗. 2
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III. Examples on maximization problems
(3.1) Diameter problem: Given a set of n points, compute a pair whose inter-distance is the
maximum. (The points can be in any fixed dimension.)

The problem can be solved easily in O(n2) time. We present below two approximation algo-
rithms. (Notice the time-quality tradeoff.)

Algorithm 1: Pick any point w. Find the furthest point x from w. Return (w, x) as an
approximation solution.

Theorem 3.1.1: Algorithm 1 achieves an approximation factor of 2 and it runs in n+O(1)
time.

Proof. Let (u, v) be the farthest pair. By triangle inequality, for any w, d(u, w) +
d(w, v) ≥ d(u, v). So the larger of d(u, w), d(w, v) is at least a half of d(u, v). As x is the
farthest from w, d(w, x) ≥ max{d(u, w), d(w, v)} ≥ 1

2
d(u, v). 2

Algorithm 2: Find the left-most and right-most point a, b. Find the top-most and
bottom-most point c, d. Return the longer of (a, b) and (c, d).

Theorem 3.1.2: Algorithm 2 achieves an approximation factor of
√

2 and it runs in
2n + O(1) time.

Proof. Let (u, v) be the farthest pair. Clearly, by definition d(u, v) ≥ the longer of
(a, b) and (c, d). We have, d2(u, v) ≤ (x(a) − x(b))2 + (y(c) − y(d))2 ≤ twice the larger of
(x(a)−x(b))2, (y(c)− y(d))2. So d(u, v) ≤

√
2× the larger of |x(a)−x(b)|, |y(c)− y(d)|, which

is ≤
√

2× the longer of (a, b) and (c, d). 2
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(3.2) Labeling points with circle pairs: Given a set S of n points in the plane, label each point
with a pair of circles of identical size. The objective is to maximize the radii of the circles
such that no two circles intersect and no point is contained in any circle. (A point must be
exactly at the tangent point of the two circles.)

The problem is known to be NP-hard [QWXZ00]. The first approximation algorithm was
given in [ZP99] and [WTX00]. We will only discuss the algorithm in [ZP99].

Algorithm 1: Find the closest pair D2(S) of S. Label each point with a pair of circles
of radius of D2(S)/4 arbitrarily.

Theorem 3.2.1: Algorithm 1 achieves an approximation factor of 2 and it runs in
O(n log n) time.

Proof. First of all, it is easy to see that no two circles generated by Algorithm 1 intersect
each other. As the closest pair has length D2(S), clearly, the optimal solution value d∗ is at
most 1

2
D2(S), i.e., 1

2
D2(S) ≥ d∗. As the approximation solution value is 1

4
D2(S) ≥ d∗, we

have 1
4
D2(S) ≥ 1

2
d∗. 2
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(3.3) Labeling points with uniform circles: Given a set S of n points in the plane, label each
point with a circle of identical size. The objective is to maximize the radii of the circles such
that a point is on the boundary of its labeling circle, no two circles intersect and no point is
contained in any circle.

For this problem, I want to illustrate two algorithms. The first one is a simple factor-29.86
approximation which uses a direct method [DMMMZ97]. The second one is a factor-3 ap-
proximation which is more involved.

Define D3(S) as the minimum diameter of all subsets of S with size 3. Let Ci be the open
circle centered at pi ∈ S with radius D3(S)/2. Clearly, Ci can contain at most two points in
S (including its center pi).

Algorithm 1: Identify the points contained in Ci for all i. If Ci only contains pi then
label pi with a circle of radius D3(S)/8 arbitrarily; otherwise, if Ci contains another point pj

then label pi, pj with circles of radii D3(S)/8 along < pj, pi > and < pi, pj > respectively.

Theorem 3.3.1: Algorithm 1 achieves an approximation factor of 29.86 and it runs in
O(n log n) time.

Proof. First of all, it is easy to see that no two circles generated by Algorithm 1 intersect
each other. Let R∗ be the radius of those circles in the optimal solution for the problem. We
have R∗ ≤ (2+

√
3)D3(S). The approximation solution value is 1

8
D3(S) ≥ 1

8(2+
√

3)
R∗ ≈ 1

29.86
R∗.

2

The details of Algorithm 2 are in a separate handout.
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IV. Inapproximability results
In geometric optimization, inapproximability results are mainly restricted to inapproxima-
bility within some (usually constant) factor. The technique used is usually a NP-hardness
reduction (similar to the usual NP-hardness proof). We will illustrate an example here on
labeling points with circle pairs (or, alternatively, labeling points with circles if you view each
point as a pair of identical points).

The details are in a separate handout.
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V. Decision procedures for designing approxi-
mation algorithms
In geometric approximation, usually a direct algorithm based on the properties of the optimal
solution will only give a very rough approximation. In reality, to obtain better approximation
algorithms, a very typical way is to design a decision procedure. We use MLUC as an example.
Suppose that given fixed R, we can decide whether the set of input points S can be labelled
with circles of radii R/c, where c is a constant. Then we can run binary search in the domain
[D2(S)/2, (2+

√
3)D3(S)]. By Theorem 3.3.1, R∗ must fall within this interval. Then, counting

out errors introduced in the binary search process, a factor c + ǫ can be obtained.

This is the main idea in [JQQZC03]. This idea can also be combined with the griding technique
and geometric separators to obtain efficient approximation algorithms (sometimes, PTAS).

It is worth mentioning that this idea can be used in geometric optimization to obtain exact
optimal solution. The technique is called parametric search and is based on using both sequen-
tial and parallel decision procedures to speed up the search of optimal solution. The method
was initially invented by Megiddo (1983, JACM, vol 30(4):852-865) and Cole (1987, JACM,
vol 34(1):200-208). In computational geometry, it has been widely used by the group of Micha
Sharir.

The following is a simple example to apply parametric search to solve the planar 2-watchtower
problem (COCOON’2001, SoCG’2005).

——Finally, we show that with parametric search [Me83] the discrete 2-watchtower problem
can be solved in O(n3 log2 n) time. The height h of two towers is a parameter of the decision
problem which asks whether there exist a pair of vertices vi and vj of the terrain T such that
every point of the terrain is visible from towers of height h located at vi and vj . We need two
algorithms, sequential and parallel, for the decision problem. Let Ts be the running time of
the sequential decision algorithm. (From the previous discussion, it is easy to see Ts = O(n3).)
Let Tp and P denote the running time and the number of processors of the parallel algorithm
respectively. The parametric searching scheme allows us to solve the optimization problem,
i.e., the planar discrete 2-watchtower problem, in O(PTp+TPTs log P ) time. We use a parallel
algorithm of Atallah et al. [ACW91, JACM] for computing visibility in a simple polygon.
Their algorithm is based on a divide-and-conquer technique and can be implemented in the
weak parallel model of computation of Valiant [Va75]. The running time is O(log n) using
O(n/ log n) processors. We just need a simplified version of the algorithm with O(log n)
running time and O(n) processors. We apply the algorithm in parallel for all pairs of vi, vj

using O(n3) processors. Hence Tp = O(logn) and P = O(n3).——

References (available upon request)
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VI. Open problems
(6.1) For decomposing a polygon into convex pieces without using Steiner points, Hertel-
Mehlhorn algorithm obtains an approximation factor of 4 and it runs in O(n) time. Can we
design an o(n2) time algorithm to achieve a better approximation factor?

Status of the problem. The problem can be solved in O(n3 log n) time using dynamic
programming (Keil, 1985).

(6.2) For decomposing a polygon into convex pieces with Steiner points, no fast constant-
factor approximation algorithm is known. Can we design an o(n3) time algorithm to achieve
a constant-factor approximation?

Status of the problem. The problem can be solved in O(n + r3) = O(n3) time using
dynamic programming (Chazelle, 1980).

(6.3) For computing the minimum diameter spanning tree of a set of n points, can we design
an o(n3) time algorithm to achieve an approximation with a factor better than 2?

Status of the problem. The problem can be solved in O(n3) time using dynamic pro-
gramming (Ho, Lee, Chang and Wong, 1991). In L1 metric, the problem can be solved in
O(n2 log n) time.

(6.4) For problem of labeling points with maximum sliding squares, can we design an algorithm
to achieve an approximation with a factor better than 2?

Status of the problem. The problem was proved to be NP-hard (in fact, NP-hard to
approximate with a factor better than 1.33) (van Kreveld, Strijk and Wolff, 1999). Zhu and
Qin obtained a factor-4 approximation (Zhu and Qin, 2002) and a factor-2 approximation
(Qin and Zhu, 2002)—the proof was very complex and not really complete in the conference
proceeding. Recently, an alternative, very simple factor-3 approximation is obtained (Zhu and
Jiang, 2006).

(6.5) For problem of labeling points with maximum uniform circles, can we design an algorithm
to achieve an approximation with a factor better than 3?

Status of the problem. The problem was proved to be NP-hard (Strijk and Wolff, 2001);
in fact, NP-hard to approximate with a factor better than 1.0349 (Jiang, Bereg, Qin and Zhu,
2004). Doddi et al. first obtained a factor-29.86 approximation (SODA’97), and Strijk and
Wolff obtained a factor-19.35 approximation in 1999 (journal version: Strijk and Wolff, 2001).
Doddi, Marathe and Moret improved the factor significantly to 3.6 in 2000. Recently Jiang
et al. improved the factor further to 3 (Jiang at al., 2003) and 2.98 (Jiang et al., 2004).

(6.6) For problem of labeling points with maximum sliding square pairs, can we design an
algorithm to achieve an approximation with a factor better than 2?

Status of the problem. The problem was proved to be NP-hard (in fact, NP-hard to
approximate with a factor better than 1.33) (Spriggs, 2000. manuscript). Zhu and Poon
obtained a factor-4 approximation (Zhu and Poon, 1999). Zhu and Qin then obtained a factor-
3 approximation (Zhu and Qin, 2002). The best factor of 2 is due to Qin et al. [QWXZ00].
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(6.7) For problem of labeling points with maximum circle pairs, can we design an algorithm
to achieve an approximation with a factor better than 1.5?

Status of the problem. The problem was proved to be NP-hard [QWXZ00]; in fact, NP-
hard to approximate with a factor better than 1.0349 (Jiang et al. 2004). (The 1.37 inapprox-
imability result in [QWXZ00] was wrong.) Zhu and Poon obtained a factor-2 approximation
(Zhu and Poon, 1999). Qin et al. improved the factor to 1.95 [QWXZ00]. Then, Spriggs and
Keil obtained a factor-1.687 approximation (Spriggs and Keil, 2002). The best approximation
of 1.5 is due to Wolff, Thon and Xu [WTX00]. Recently the bound is improved to 1.495
(Jiang, et al., 2004).
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