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Abstract. Polygonal chains are fundamental objects in many applica-
tions like pattern recognition and protein structure alignment. A well-
known measure to characterize the similarity of two polygonal chains
is the (continuous/discrete) Fréchet distance. In this paper, for the first
time, we consider the Voronoi diagram of polygonal chains in d-dimension
under the discrete Fréchet distance. Given a set C of n polygonal chains in
d-dimension, each with at most k vertices, we prove fundamental proper-
ties of such a Voronoi diagram VDF (C). Our main results are summarized
as follows.

– The combinatorial complexity of VDF (C) is at most O(ndk+ε).
– The combinatorial complexity of VDF (C) is at least Ω(ndk) for di-

mension d = 1, 2; and Ω(nd(k−1)+2) for dimension d > 2.

1 Introduction

The Fréchet distance was first defined by Maurice Fréchet in 1906 [8]. While
known as a famous distance measure in the field of mathematics (more specifi-
cally, abstract spaces), it was first applied in measuring the similarity of polygo-
nal curves by Alt and Godau in 1992 [2]. In general, the Fréchet distance between
2D polygonal chains (polylines) can be computed in polynomial time [2],[3], even
under translation or rotation (though the running time is much higher) [4],[15].
While computing (approximating) Fréchet distance for surfaces is NP-hard [9],
it is polynomially solvable for restricted surfaces [5].
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In 1994, Eiter and Mannila defined the discrete Fréchet distance between two
polygonal chains A and B in d-dimension. This simplified distance is always
realized by two vertices in A and B [7]. They showed that with dynamic pro-
gramming the discrete Fréchet distance between polygonal chains A and B can
be computed in O(|A||B|) time. In [10], Indyk defined a similar discrete Fréchet
distance in some metric space and showed how to compute approximate nearest
neighbors using that distance.

Recently, Jiang, Xu and Zhu applied the discrete Fréchet distance in align-
ing the backbones of proteins (which are called the protein structure-structure
alignment problem [11] and protein local structure alignment respectively [16]).
In fact, in these applications the discrete Fréchet distance makes more sense as
the backbone of a protein is simply a polygonal chain in 3D, with each vertex
being the alpha-carbon atom of a residue.

On the other hand, a lot is still unknown regarding the discrete or continu-
ous Fréchet distance. For instance, even though the Voronoi diagram has been
studied for many objects and distance measures, it has not yet been studied for
polygonal chains under the discrete (continuous) Fréchet distance. This problem
is fundamental, it has potential applications, e.g., in protein structure alignment,
especially with the ever increasing computational power. Imagine that we have
some polylines A1, A2, A3... in space. If we can construct the Voronoi diagram
for A1, A2, A3, ... in space, then given a new polyline B we can easily compute
all the approximate alignments of B with the Ai’s. The movement of B defines
a subspace (each point in the subspace represents a copy of B) and if we sample
this subspace evenly then all we need to do is to locate all these sample points
in the Voronoi diagram for the Ai’s.

Unfortunately, nothing is known about the Voronoi diagram under the dis-
crete (continuous) Fréchet distance, even for the simplest case of line segments.
In this paper, we will present the first set of such results by proving some fun-
damental properties for both the general case and some special case. We believe
that these results will be essential for us to design efficient algorithms for com-
puting/approximating the Voronoi diagram under the Fréchet distance.

2 Preliminaries

Given two polygonal chains A, B with |A| = k and |B| = l vertices respectively,
we aim at measuring the similarity of A and B (possibly under translation and
rotation) such that their distance is minimized under certain measure. Among
the various distance measures, the Hausdorff distance is known to be better
suited for matching two point sets than for matching two polygonal chains; the
(continuous) Fréchet distance is a superior measure for matching two polygonal
chains [2].

Let X be the Euclidean plane R
d; let d(a, b) denote the Euclidean distance

between two points a, b ∈ X . The (continuous) Fréchet distance between two
parametric curves f : [0, 1] → X and g : [0, 1] → X is

δF(f, g) = inf
α,β

max
s∈[0,1]

d(f(α(s)), g(β(s))),
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where α and β range over all continuous non-decreasing real functions with
α(0) = β(0) = 0 and α(1) = β(1) = 1.

Imagine that a person and a dog walk along two different paths while con-
nected by a leash; they always move forward, though (possibly) at different
paces. The minimum possible length of the leash is the Fréchet distance between
the two paths. To compute the Fréchet distance between two polygonal curves
A and B (in the Euclidean plane) of |A| and |B| vertices, respectively, Alt and
Godau [3] presented an O(|A||B| log(|A||B|)) time algorithm. We now define the
discrete Fréchet distance following [7].

Definition 1. Given a polygonal chain (polyline) in d-dimension P = 〈p1, . . . ,
pk〉 of k vertices, a m-walk along P partitions the path into m disjoint non-
empty subchains {Pi}i=1..m such that Pi = 〈pki−1+1, . . . , pki〉 and 0 = k0 < k1
< · · · < km = k.

Given two polylines in d-dimension A = 〈a1, . . . , ak〉 and B = 〈b1, . . . , bl〉,
a paired walk along A and B is a m-walk {Ai}i=1..m along A and a m-
walk {Bi}i=1..m along B for some m, such that, for 1 ≤ i ≤ m, |Ai| = 1 or
|Bi| = 1 (that is, Ai or Bi contains exactly one vertex). The cost of a paired
walk W = {(Ai, Bi)} along two paths A and B is

dW
F (A, B) = max

i
max

(a,b)∈Ai×Bi

d(a, b).

The discrete Fréchet distance between two polylines A and B in d-
dimension is

dF (A, B) = min
W

dW
F (A, B).

The paired walk that achieves the discrete Fréchet distance between two paths A
and B is also called the Fréchet alignment of A and B.

Consider the scenario in which the person walks along A and the dog along B.
Intuitively, the definition of the paired walk is based on three cases:

1. |Bi| > |Ai| = 1: the person stays and the dog moves forward;
2. |Ai| > |Bi| = 1: the person moves forward and the dog stays;
3. |Ai| = |Bi| = 1: both the person and the dog move forward.

Eiter and Mannila presented a simple dynamic programming algorithm to
compute dF (A, B) in O(|A||B|) = O(kl) time [7]. Recently, Jiang et al. showed

bo o
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Fig. 1. The relationship between discrete and continuous Fréchet distances
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that in 2D the minimum discrete Fréchet distance between A and B under trans-
lation can be computed in O(k3l3 log(k+l)) time, and under both translation and
rotation it can be computed in O(k4l4 log(k+l)) time [11]. They are significantly
faster than the corresponding bounds for the continuous Fréchet distance. In 2D,
for the continuous Fréchet distance, under translation, the current fastest algo-
rithm for computing the minimum (continuous) Fréchet distance between A, B
takes O((kl)3(k + l)2 log(k + l)) time [4]; under both translation and rotation,
the bound is O((k + l)11 log(k + l)) time [15].

We comment that while the discrete Fréchet distance could be arbitrarily
larger than the corresponding continuous Fréchet distance (e.g., in Fig. 1 (I), they
are d(a2, b2) and d(a2, o) respectively), by adding sample points on the polylines,
one can easily obtain a close approximation of the continuous Fréchet distance
using the discrete Fréchet distance (e.g., one can use d(a2, b) in Fig. 1 (II) to
approximate d(a2, o)). This fact has been pointed out in [7],[10]. Moreover, the
discrete Fréchet distance is a more natural measure for matching the geometric
shapes of biological sequences such as proteins.

In the remaining part of this paper, for the first time, we investigate the
Voronoi diagram of a set of polygonal chains (polylines) in d-dimension. For the
fundamentals regarding Voronoi diagram, the readers are referred to [12].

In our case, the Voronoi diagram of polygonal curves can be represented using
the correspondence

polygonal curve with k vertices in R
d ↔ point in R

dk

〈(x11, . . . , x1d), . . . , (xk1, . . . , xkd)〉 ↔ (x11, . . . , x1d, . . . , xk1, . . . , xkd).

In the following, we always use the parameters n, d, and k to denote n input
curves in R

d, each with at most k vertices. We give upper and lower bounds on
the combinatorial complexity of the Voronoi diagram of the input curves, which
is a partition of the space in R

dk into Voronoi regions associated with each input
curve. By a Voronoi region we mean a set of curves with a common set of nearest
neighbors under the discrete Fréchet distance in the given set of input curves.

3 The Combinatorial Upper Bound of VDF (C)

In this section, we prove the combinatorial upper bound of VDF (C). We first
show the case for d = 2, and then we sketch how to generalize the result to any
fixed d-dimension.

Let Ak = 〈a1, a2, . . . , ak〉 and Bl = 〈b1, b2, . . . , bl〉 be two polygonal chains in
the plane where ai = (x(ai), y(ai)), bj = (x(bj), y(bj)) and k, l ≥ 1. We first have
the following lemma, which is easy to prove.

Lemma 1. Let A2 = 〈a1, a2〉 and B2 = 〈b1, b2〉 be two line segments in the
plane, then dF (A2, B2) = max(d(a1, b1), d(a2, b2)).

For general polylines, we can generalize the above lemma as follows. Notice that
as dF () is a min-max-max measure and as we will be using the fact that the
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Voronoi diagram is a minimization of distance functions, the following lemma is
essential.

Lemma 2. Let Ak = 〈a1, a2, . . . , ak〉 and Bl = 〈b1, b2, . . . , bl〉 be two polygonal
chains in the plane where k, l ≥ 1. The discrete Fréchet distance between Ak

and Bl can be computed as dF (Ak, Bl) = max{d(ai, b1), i = 1, 2, . . . , k}, if l = 1;
dF (Ak, Bl) = max{d(a1, bj), j = 1, 2, . . . , l}, if k = 1; and dF (Ak, Bl) = max
{d(ak, bl), min(dF (Ak−1, Bl−1), dF (Ak, Bl−1), dF (Ak−1, Bl))}, if k, l > 1.

Based on the above lemma, we investigate the combinatorial complexity of
VDF (C), the Voronoi diagram of a set C of n planar polylines each with at most
k vertices. Following [6],[14], a Voronoi diagram is a minimization of distance
functions to the sites (in this case the polylines in C). We first briefly review a
result on the upper bound of lower envelopes in high dimensions by Sharir [14].

Let Σ = {σ1, . . . , σn} be a collection of n (d−1)-dimensional algebraic surface
patches in d-space. Let A(Σ) be the arrangement of Σ. The result in [14] holds
upon the following three conditions.

(i) Each σi is monotone in the x1x2 . . . xd−1-direction (i.e. any line parallel to
xd-axis intersects σi in at most one point). Moreover, each σi is a portion
of a (d − 1)-dimensional algebraic surface of constant maximum degree b.

(ii) The projection of σi in xd-direction onto the hyperplane xd = 0 is a semi-
algebraic set defined in terms of a constant number of (d − 1)-variate poly-
nomials of constant maximum degree.

(iii) The surface patches σi are in general position meaning that the coeffi-
cients of the polynomials defining the surfaces and their boundaries are
algebraically independent over the rationals.

Theorem 1. [14] Let Σ be a collection of n (d−1)-dimensional algebraic surface
patches in d-space, which satisfy the above conditions (i),(ii), and (iii). Then
the number of vertices of A(Σ) that lie at the lower envelope (i.e., level one) is
O(nd−1+ε), for any ε > 0.

We now show a general upper bound on the combinatorial complexity of VDF (C).

Lemma 3. Let B ∈ R
2l be a polygonal chain of l vertices b1, . . . , bl in the plane

where bi = (x(bi), y(bi)). Let f : R
2k → R be the distance function defined as

f(C) = dF (C, B),

where C = 〈c1, . . . , ck〉 ∈ R
2k is a polyline with k vertices and ci= (x(ci), y(ci)),

i = 1, . . . , k. The space R
2k can be partitioned into at most (kl)! semi-algebraic

sets R1, R2, R3, . . . such that the function f(C) with domain restricted to any Ri

is algebraic. Thus, the function f(C) satisfies the above conditions (i) and (ii).

We can prove the following theorem regarding the combinatorial upper bound
for VDF (C).
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Theorem 2. Let C be a collection of n polygonal chains C1, . . . , Cn each with
at most k vertices in the plane. The combinatorial complexity of the Voronoi
diagram VDF (C) is O(n2k+ε), for any ε > 0.

For protein-related applications, the input are polygonal chains in 3D. So it
makes sense to consider the cases when d > 2. We have

Theorem 3. Let C be a collection of n polygonal chains C1, . . . , Cn each with
at most k vertices in R

d. The combinatorial complexity of the Voronoi diagram
VDF (C) is O(ndk+ε), for any ε > 0.

4 The Combinatorial Lower Bounds of VDF (C)

We now present a general lower bound for VDF (C). In fact we first show a result
that even a slice of VDF (C) could contain a L∞ Voronoi diagram in k dimensions,
whose combinatorial complexity is Ω(n� k+1

2 �). This result is somehow a ‘folklore’
as the relationship between discrete Fréchet distance and L∞-distance is known
to many researchers, e.g., in [10]. We treat this more like a warm-up of our lower
bound constructions.

Schaudt and Drysdale proved that a L∞ Voronoi diagram in k dimensions has
combinatorial complexity of Ω(n� k+1

2 �) [13]. Let S = {p1, p2, . . . , pn} be a set of n

points in R
k such that the L∞ Voronoi diagram of S has complexity of Ω(n� k+1

2 �).
Let M > 0 be a real number such that the hypercube [−M, M ]k contains S and
all the Voronoi vertices of the L∞ Voronoi diagram of S. We consider a k-
dimensional flat F of R

2k defined as F = {(a1, M, a2, 2M, . . . , ak, kM) | a1, . . . ,
ak ∈ R} and a projection π : F → R

k defined as π(b) = (b1, b3, . . . , b2k−1), for
b = (b1, b2, b3, ..., b2k−1, b2k).

Let C = {C1, C2, ..., Cn}, each Ci being a planar polygonal chain with k
vertices. Let Ci = 〈ci1, ci2, ..., cik〉 and cim = (x(cim), y(cim)), for m = 1, 2, ..., k.
We set cim = (pim, mM), for 1 ≤ i ≤ n, 1 ≤ m ≤ k. Clearly, every Ci ∈ F . With
Ci we associate a point C′

i = π(Ci) in R
k. We show that the intersection of F

and a VDF (C) has complexity of Ω(n� k+1
2 �).

Consider a point T ∈ F such that T ′ = π(T ) is a L∞ Voronoi vertex of S in R
k.

Then T ′ ∈ [−M, M ]k. At this point, the question is: what is the discrete Fréchet
distance between T and a chain Ci? Note that dW

F (T, Ci) < M if and only if W =
W0 where W0 = {(tm, cim) | m = 1, . . . , k}. Therefore dF (T, Ci) = dW0

F (T, Ci) =
max{|x(t1)− x(ci1)|, |x(t2)− x(ci2)|, ..., |x(tj)− x(cij)|, ..., |x(tk) −x(cik)|}. This
is exactly the L∞-distance between T ′ and C′

i, or dF (T, Ci) = d∞(T ′, C′
i). Then

the slice of VDF (C) contains the L∞ Voronoi diagram of S in k dimensions. We
thus have the following theorem.

Theorem 4. The combinatorial complexity of VDF (C) for a set C of n planar
polygonal chains with k vertices is Ω(n� k+1

2 �); in fact even a k-dimensional slice
of VDF (C) can have a combinatorial complexity of Ω(n� k+1

2 �).
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This lower bound on the combinatorial complexity is apparently not tight and
we next show an improved lower bound construction which does not make use
of the L∞ Voronoi diagram. We summarize our result as follows.

Theorem 5. For any d, k, n, there is a set of n polygonal curves in R
d with

k vertices each whose Voronoi diagram under the discrete Fréchet distance,
VDF (C), has combinatorial complexity Ω(ndk) for d = 1, 2 and k ∈ N and
complexity Ω(nd(k−1)+2) for d > 2 and k ∈ N.

We show the lower bounds in Theorem 5 first for dimension d = 1 (Lemma 4)
and then for dimensions d ≥ 2 (Lemma 5). For both lower bounds we construct a
set S of n curves. Then we construct g(n) query curves which all lie in different
Voronoi regions of the Voronoi diagram of S. This implies that the Voronoi
diagram has complexity Ω(g(n)).

Lemma 4. For all n and k, there is a set of n polygonal curves in R
1 with k

vertices each whose Voronoi diagram under the discrete Fréchet distance has at
least 	n

k 
k Voronoi regions.

Proof. We construct a set S of n curves with k vertices each for n = m · k with
m ∈ N. S will be a union of k sets S1, . . . , Sk of m curves each. We show that
the Voronoi diagram of S contains mk Voronoi regions.

p1 p2 p3

r r r

q2q1

r

q3a1m a11. . . a21 a2m. . . a3j

Fig. 2. Construction for d = 1 and k = 3

The construction for k = 3 is shown in Fig. 2. We place k points p1, . . . , pk

with distance 2m between consecutive points on the real line. A curve in S has
the form 〈p1, . . . , pi−1, p

′
i, pi+1, pk〉 for some i ∈ {1, . . . , k} and point p′i close to

pi. Our construction uses the following points, curves, and sets of curves. See
Fig. 2 for an illustration for k = 3.

pi= (i − 1)2m for i = 1, . . . , k
a1j= p2 − j, a2j = p2 + j for j = 1, . . . , m
aij= pi − j/(m + 1) for i = 3, . . . , k, j = 1, . . . , m

Sij= 〈p1, aij , p2, . . . , pk〉 for i = 1, 2, j = 1, . . . , m
Sij= 〈p1, . . . , pi−1, aij , pi+1, . . . , pk〉 for i = 3, . . . , k, j = 1, . . . , m

Si= {Si1, . . . , Sim} for i = 1, . . . , k

We claim that for all 1 ≤ j1, . . . , jk ≤ m a query curve Q exists whose set of
nearest neighbors in S under the discrete Fréchet distance denoted by NS(Q), is

NS(Q) = {S11, . . . , S1j1 , . . . , Sk1, . . . , Skjk
}. (1)

Since these are mk different sets, this implies that there are at least mk Voronoi
regions.
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The query curve Q will have k vertices q1, . . . , qk with qi close to pi for i =
1, . . . , k. The discrete Fréchet distance of Q to any curve in S will be realized
by a bijection mapping each pi or p′i to qi. Because the pi are placed at large
pairwise distances, this is the best possible matching of the vertices for the
discrete Fréchet distance.

Let r = (a2j2 − a1j1)/2 denote half the distance between a1j1 and a2j2 . We
choose the first vertex of Q as q1 = −r. The second vertex q2 we choose as mid-
point between a1j1 and a2j2 , i.e., q2 = (a1j1 + a2j2)/2. Since p1 = 0, the distance
between p1 and q1 is r. Because all curves in S start at p1, this is the small-
est possible discrete Fréchet distance between Q and any curve in S. We now
construct the remaining points of Q, such that the curves in NS(Q) are exactly
those given in equation 1 and these have discrete Fréchet distance r to Q.

We have already constructed q2 such that it has distance at most r to the
points a11, . . . , a1j1 and a21, . . . , a2j2 (cf. Fig. 2). Now we choose the remaining
points qi as qi = aiji + r for i = 3, . . . , k. Then the point qi has distance at most
r to the points pi, ai1, . . . , aiji for i = 3, . . . , k. ��

Lemma 5. For all n, k and for all d ≥ 2, there is a set of n polygonal curves
in R

d with k vertices each whose Voronoi diagram under the discrete Fréchet
distance has at least 	 n

d(k−1)+2
d(k−1)+2 Voronoi regions.

Proof. We first give the construction for dimension d = 2 and then show how to
generalize it for d > 2.

Construction for d = 2. We construct the set S as union of 2k = d(k − 1) + 2
sets S1, . . . , S2k of m curves each for m ∈ N.

p2p1

a1j1

a2j2

r

r

r

q2

V (A)

r′

r′
q1

r′

p3

r
q3r′

a3j3
a4j4

a5j5

a6j6

δε

Fig. 3. Construction for d = 2 and k = 3

First, we place k points p1, . . . , pk at sufficient pairwise distance in R
2, that

is, at distance 4r for some distance r > 0. Let a11, . . . , a1m be points evenly
distributed on the circle of radius 2r around p1. Let a21, a31, and a41 be points
evenly distributed on the circle with radius r around p2. Let the points
a22, . . . , a2m lie on the line through a21 and p2 moved away from a21 by at
most ε > 0 as in Fig. 3. The distance ε is sufficiently small for our construction,
namely ε < r

(
1

cos
(

π
m

) −1
)

(assuming m > 2). Place the points a32, . . . , a3m and

a42, . . . , a4m analogously.
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For i ≥ 5 the points aij are placed as follows. The points a(i−1)j and aij for
i = 2l are placed close to the point pl. Then we place a(i−1)1 and ai1 on the
intersection of the coordinate axes originating in pl with the circle of radius r
around pl. The points a(i−1)j , aij for j ≥ 2 are placed on these axes, moved away
from a(i−1)1, ai1 by at most δ > 0. The distance δ is also sufficiently small for
our construction, namely it is δ ≤ (

√
2 − 1)r.

We can now define the curves in S. As in the construction for d = 1, the
curves in S visit all but one of the points p1, . . . , pk, and in the one point deviate
slightly. We define

S1j= 〈a1j , p2, . . . , pk〉 for j = 1, . . . , m
Sij= 〈p1, aij , p2, . . . , pk〉 for i = 2, 3, 4, j = 1, . . . , m
Sij= 〈p1, . . . , p� i

2 	−1, aij , p� i
2 	, . . . , pk〉 for i = 5, . . . , k, j = 1, . . . , m

Si= {Si1, . . . , Sim} for i = 1, . . . , 2k

Again we claim that for all 1 ≤ j1, . . . , j2k ≤ m a query curve Q exists whose
set of nearest neighbors in S is

NS(Q) = {S1j1 , S21, . . . , S2j2 , . . . , S(2m)1, . . . , S(2m)j(2m)
}.

This will imply that there are at least m2k different Voronoi regions in the
Voronoi diagram of S.

As second point q2 of Q we choose the midpoint of the circle defined by the
three points a2j2 , a3j3 , and a4j4 . Let r′ > r be the radius of this circle. Note
that r′ ≤ r + ε and that this circle contains the point p2. Thus, the points
p2, a21, . . . , a2j2 , a31, . . . , a3j3 , and a41, . . . , a4j4 have distance at most r′ to the
point q2.

As first point q1 of Q we choose a point that has distance r′ to both p1 and
a1j1 , and a larger distance to all other a1j . Consider the Voronoi diagram of
the points p, a11, . . . , a1m. Consider the edge between the cells of p and of a1j1 .

Because we chose ε sufficiently small, namely ε < r
(

1
cos

(
π
m

) − 1
)
, and because

r′ ≤ r + ε, there are two points in the interior of this edge with distance r′ to p1
and a1j1 . We choose q1 as one of these two points. Then the distance of q1 to all
a1j for j �= j1 is larger than r′.

Now we choose the remaining points qi of Q for i = 3, . . . , k. Let l = 2i, l′ =
2i − 1. There are two circles with radius r′ that touch the points aljl

and al′j′
l
.

As qi we choose the midpoint of the one circle that contains the point pi. Then
a point alj or al′j has distance at most r′ to qi exactly if l ≤ jl or l′ ≤ j′l ,
respectively.

Construction for d > 2. The construction can be generalized to d > 2 giving a
lower bound of md(k−1)+2 for m · d(k − 1) + 2 curves.

The construction at p1 remains the same. At p2 we place d + 1 sets of points.
Then one point from each set, i.e., d+1 points, define a d-ball. At pi for i ≥ 3 we
place d sets of points. Then one point from each set, i.e., d points, define a ball



Voronoi Diagram of Polygonal Chains under the Discrete Fréchet Distance 361

of the radius given by the choice of q2. In total, this gives us md(k−1)+2 choices:
m choices at p1, md+1 choices at p2 and md choices each at p3, . . . , pk. ��

5 Concluding Remarks

In this paper, for the first time, we study the Voronoi diagram of polygonal
chains under the discrete Fréchet distance. We show combinatorial upper and
lower bounds for such a Voronoi diagram. We conjecture that the upper bound
is tight (up to ε) as we have shown here for dimension d = 2. For closing the
gap, consider how the construction for d = 2 is generalized to d > 2 in the proof
of Lemma 5. While the constructions at the vertices p2, . . . , pk are replaced by
higher-dimensional analogs, the construction at p1 stays the same as in the two-
dimensional case. Improving the construction at p1 might close the gap.

At this point, how to compute the diagram is still open. Our upper bound
proof does not imply an algorithm as it is also an open problem to compute the
lower envelope in high dimensions. If we simply want to compute low dimensional
components, like vertices, in the envelope (or in our Voronoi diagram), then
there is an O(nkd+ε) time algorithm [1]. However, due to the high combinatorial
lower bound, to make the diagram useful, we probably need to develop efficient
approximation algorithms to approximate such a Voronoi diagram for decent k
(say k = 20 ∼ 30) so that one can first use a (k − 1)-link chain to approximate a
general input polyline. The good news is that in many applications like protein
structural alignment, n is not very large (typically ≤ 100). So designing such an
(exact or approximate) algorithm is another major open problem along this line.
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